/* * Copyright (c) 2003 Matteo Frigo * Copyright (c) 2003 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * */ /* This file was automatically generated --- DO NOT EDIT */ /* Generated on Sat Jul 5 22:11:14 EDT 2003 */ #include "codelet-rdft.h" /* Generated by: /homee/stevenj/cvs/fftw3.0.1/genfft/gen_hc2r -compact -variables 4 -sign 1 -n 32 -name hc2r_32 -include hc2r.h */ /* * This function contains 156 FP additions, 50 FP multiplications, * (or, 140 additions, 34 multiplications, 16 fused multiply/add), * 54 stack variables, and 64 memory accesses */ /* * Generator Id's : * $Id: hc2r_32.c,v 1.1 2008/10/17 06:12:08 scuri Exp $ * $Id: hc2r_32.c,v 1.1 2008/10/17 06:12:08 scuri Exp $ * $Id: hc2r_32.c,v 1.1 2008/10/17 06:12:08 scuri Exp $ */ #include "hc2r.h" static void hc2r_32(const R *ri, const R *ii, R *O, stride ris, stride iis, stride os, int v, int ivs, int ovs) { DK(KP1_662939224, +1.662939224605090474157576755235811513477121624); DK(KP1_111140466, +1.111140466039204449485661627897065748749874382); DK(KP1_961570560, +1.961570560806460898252364472268478073947867462); DK(KP390180644, +0.390180644032256535696569736954044481855383236); DK(KP765366864, +0.765366864730179543456919968060797733522689125); DK(KP1_847759065, +1.847759065022573512256366378793576573644833252); DK(KP707106781, +0.707106781186547524400844362104849039284835938); DK(KP1_414213562, +1.414213562373095048801688724209698078569671875); DK(KP2_000000000, +2.000000000000000000000000000000000000000000000); int i; for (i = v; i > 0; i = i - 1, ri = ri + ivs, ii = ii + ivs, O = O + ovs) { E T9, T2c, TB, T1y, T6, T2b, Ty, T1v, Th, T2e, T2f, TD, TK, T1C, T1F; E T1h, Tp, T2i, T2m, TN, T13, T1K, T1Y, T1k, Tw, TU, T1l, TW, T1V, T2j; E T1R, T2l; { E T7, T8, T1w, Tz, TA, T1x; T7 = ri[WS(ris, 4)]; T8 = ri[WS(ris, 12)]; T1w = T7 - T8; Tz = ii[WS(iis, 4)]; TA = ii[WS(iis, 12)]; T1x = Tz + TA; T9 = KP2_000000000 * (T7 + T8); T2c = KP1_414213562 * (T1w + T1x); TB = KP2_000000000 * (Tz - TA); T1y = KP1_414213562 * (T1w - T1x); } { E T5, T1u, T3, T1s; { E T4, T1t, T1, T2; T4 = ri[WS(ris, 8)]; T5 = KP2_000000000 * T4; T1t = ii[WS(iis, 8)]; T1u = KP2_000000000 * T1t; T1 = ri[0]; T2 = ri[WS(ris, 16)]; T3 = T1 + T2; T1s = T1 - T2; } T6 = T3 + T5; T2b = T1s + T1u; Ty = T3 - T5; T1v = T1s - T1u; } { E Td, T1A, TG, T1E, Tg, T1D, TJ, T1B; { E Tb, Tc, TE, TF; Tb = ri[WS(ris, 2)]; Tc = ri[WS(ris, 14)]; Td = Tb + Tc; T1A = Tb - Tc; TE = ii[WS(iis, 2)]; TF = ii[WS(iis, 14)]; TG = TE - TF; T1E = TE + TF; } { E Te, Tf, TH, TI; Te = ri[WS(ris, 10)]; Tf = ri[WS(ris, 6)]; Tg = Te + Tf; T1D = Te - Tf; TH = ii[WS(iis, 10)]; TI = ii[WS(iis, 6)]; TJ = TH - TI; T1B = TH + TI; } Th = KP2_000000000 * (Td + Tg); T2e = T1A + T1B; T2f = T1E - T1D; TD = Td - Tg; TK = TG - TJ; T1C = T1A - T1B; T1F = T1D + T1E; T1h = KP2_000000000 * (TJ + TG); } { E Tl, T1I, TZ, T1X, To, T1W, T12, T1J; { E Tj, Tk, TX, TY; Tj = ri[WS(ris, 1)]; Tk = ri[WS(ris, 15)]; Tl = Tj + Tk; T1I = Tj - Tk; TX = ii[WS(iis, 1)]; TY = ii[WS(iis, 15)]; TZ = TX - TY; T1X = TX + TY; } { E Tm, Tn, T10, T11; Tm = ri[WS(ris, 9)]; Tn = ri[WS(ris, 7)]; To = Tm + Tn; T1W = Tm - Tn; T10 = ii[WS(iis, 9)]; T11 = ii[WS(iis, 7)]; T12 = T10 - T11; T1J = T10 + T11; } Tp = Tl + To; T2i = T1I + T1J; T2m = T1X - T1W; TN = Tl - To; T13 = TZ - T12; T1K = T1I - T1J; T1Y = T1W + T1X; T1k = T12 + TZ; } { E Ts, T1L, TT, T1M, Tv, T1O, TQ, T1P; { E Tq, Tr, TR, TS; Tq = ri[WS(ris, 5)]; Tr = ri[WS(ris, 11)]; Ts = Tq + Tr; T1L = Tq - Tr; TR = ii[WS(iis, 5)]; TS = ii[WS(iis, 11)]; TT = TR - TS; T1M = TR + TS; } { E Tt, Tu, TO, TP; Tt = ri[WS(ris, 3)]; Tu = ri[WS(ris, 13)]; Tv = Tt + Tu; T1O = Tt - Tu; TO = ii[WS(iis, 13)]; TP = ii[WS(iis, 3)]; TQ = TO - TP; T1P = TP + TO; } Tw = Ts + Tv; TU = TQ - TT; T1l = TT + TQ; TW = Ts - Tv; { E T1T, T1U, T1N, T1Q; T1T = T1L + T1M; T1U = T1O + T1P; T1V = KP707106781 * (T1T - T1U); T2j = KP707106781 * (T1T + T1U); T1N = T1L - T1M; T1Q = T1O - T1P; T1R = KP707106781 * (T1N + T1Q); T2l = KP707106781 * (T1N - T1Q); } } { E Tx, T1r, Ti, T1q, Ta; Tx = KP2_000000000 * (Tp + Tw); T1r = KP2_000000000 * (T1l + T1k); Ta = T6 + T9; Ti = Ta + Th; T1q = Ta - Th; O[WS(os, 16)] = Ti - Tx; O[WS(os, 24)] = T1q + T1r; O[0] = Ti + Tx; O[WS(os, 8)] = T1q - T1r; } { E T1i, T1o, T1n, T1p, T1g, T1j, T1m; T1g = T6 - T9; T1i = T1g - T1h; T1o = T1g + T1h; T1j = Tp - Tw; T1m = T1k - T1l; T1n = KP1_414213562 * (T1j - T1m); T1p = KP1_414213562 * (T1j + T1m); O[WS(os, 20)] = T1i - T1n; O[WS(os, 28)] = T1o + T1p; O[WS(os, 4)] = T1i + T1n; O[WS(os, 12)] = T1o - T1p; } { E TM, T16, T15, T17; { E TC, TL, TV, T14; TC = Ty - TB; TL = KP1_414213562 * (TD - TK); TM = TC + TL; T16 = TC - TL; TV = TN + TU; T14 = TW + T13; T15 = FNMS(KP765366864, T14, KP1_847759065 * TV); T17 = FMA(KP765366864, TV, KP1_847759065 * T14); } O[WS(os, 18)] = TM - T15; O[WS(os, 26)] = T16 + T17; O[WS(os, 2)] = TM + T15; O[WS(os, 10)] = T16 - T17; } { E T2t, T2x, T2w, T2y; { E T2r, T2s, T2u, T2v; T2r = T2b + T2c; T2s = FMA(KP1_847759065, T2e, KP765366864 * T2f); T2t = T2r - T2s; T2x = T2r + T2s; T2u = T2i + T2j; T2v = T2m - T2l; T2w = FNMS(KP1_961570560, T2v, KP390180644 * T2u); T2y = FMA(KP1_961570560, T2u, KP390180644 * T2v); } O[WS(os, 23)] = T2t - T2w; O[WS(os, 31)] = T2x + T2y; O[WS(os, 7)] = T2t + T2w; O[WS(os, 15)] = T2x - T2y; } { E T1a, T1e, T1d, T1f; { E T18, T19, T1b, T1c; T18 = Ty + TB; T19 = KP1_414213562 * (TD + TK); T1a = T18 - T19; T1e = T18 + T19; T1b = TN - TU; T1c = T13 - TW; T1d = FNMS(KP1_847759065, T1c, KP765366864 * T1b); T1f = FMA(KP1_847759065, T1b, KP765366864 * T1c); } O[WS(os, 22)] = T1a - T1d; O[WS(os, 30)] = T1e + T1f; O[WS(os, 6)] = T1a + T1d; O[WS(os, 14)] = T1e - T1f; } { E T25, T29, T28, T2a; { E T23, T24, T26, T27; T23 = T1v - T1y; T24 = FMA(KP765366864, T1C, KP1_847759065 * T1F); T25 = T23 - T24; T29 = T23 + T24; T26 = T1K - T1R; T27 = T1Y - T1V; T28 = FNMS(KP1_662939224, T27, KP1_111140466 * T26); T2a = FMA(KP1_662939224, T26, KP1_111140466 * T27); } O[WS(os, 21)] = T25 - T28; O[WS(os, 29)] = T29 + T2a; O[WS(os, 5)] = T25 + T28; O[WS(os, 13)] = T29 - T2a; } { E T2h, T2p, T2o, T2q; { E T2d, T2g, T2k, T2n; T2d = T2b - T2c; T2g = FNMS(KP1_847759065, T2f, KP765366864 * T2e); T2h = T2d + T2g; T2p = T2d - T2g; T2k = T2i - T2j; T2n = T2l + T2m; T2o = FNMS(KP1_111140466, T2n, KP1_662939224 * T2k); T2q = FMA(KP1_111140466, T2k, KP1_662939224 * T2n); } O[WS(os, 19)] = T2h - T2o; O[WS(os, 27)] = T2p + T2q; O[WS(os, 3)] = T2h + T2o; O[WS(os, 11)] = T2p - T2q; } { E T1H, T21, T20, T22; { E T1z, T1G, T1S, T1Z; T1z = T1v + T1y; T1G = FNMS(KP765366864, T1F, KP1_847759065 * T1C); T1H = T1z + T1G; T21 = T1z - T1G; T1S = T1K + T1R; T1Z = T1V + T1Y; T20 = FNMS(KP390180644, T1Z, KP1_961570560 * T1S); T22 = FMA(KP390180644, T1S, KP1_961570560 * T1Z); } O[WS(os, 17)] = T1H - T20; O[WS(os, 25)] = T21 + T22; O[WS(os, 1)] = T1H + T20; O[WS(os, 9)] = T21 - T22; } } } static const khc2r_desc desc = { 32, "hc2r_32", {140, 34, 16, 0}, &GENUS, 0, 0, 0, 0, 0 }; void X(codelet_hc2r_32) (planner *p) { X(khc2r_register) (p, hc2r_32, &desc); }