/* * Copyright (c) 2003 Matteo Frigo * Copyright (c) 2003 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * */ /* This file was automatically generated --- DO NOT EDIT */ /* Generated on Sat Jul 5 22:11:11 EDT 2003 */ #include "codelet-rdft.h" /* Generated by: /homee/stevenj/cvs/fftw3.0.1/genfft/gen_hc2r -compact -variables 4 -sign 1 -n 9 -name hc2r_9 -include hc2r.h */ /* * This function contains 32 FP additions, 18 FP multiplications, * (or, 22 additions, 8 multiplications, 10 fused multiply/add), * 35 stack variables, and 18 memory accesses */ /* * Generator Id's : * $Id: hc2r_9.c,v 1.1 2008/10/17 06:12:08 scuri Exp $ * $Id: hc2r_9.c,v 1.1 2008/10/17 06:12:08 scuri Exp $ * $Id: hc2r_9.c,v 1.1 2008/10/17 06:12:08 scuri Exp $ */ #include "hc2r.h" static void hc2r_9(const R *ri, const R *ii, R *O, stride ris, stride iis, stride os, int v, int ivs, int ovs) { DK(KP984807753, +0.984807753012208059366743024589523013670643252); DK(KP173648177, +0.173648177666930348851716626769314796000375677); DK(KP300767466, +0.300767466360870593278543795225003852144476517); DK(KP1_705737063, +1.705737063904886419256501927880148143872040591); DK(KP642787609, +0.642787609686539326322643409907263432907559884); DK(KP766044443, +0.766044443118978035202392650555416673935832457); DK(KP1_326827896, +1.326827896337876792410842639271782594433726619); DK(KP1_113340798, +1.113340798452838732905825904094046265936583811); DK(KP500000000, +0.500000000000000000000000000000000000000000000); DK(KP866025403, +0.866025403784438646763723170752936183471402627); DK(KP2_000000000, +2.000000000000000000000000000000000000000000000); DK(KP1_732050807, +1.732050807568877293527446341505872366942805254); int i; for (i = v; i > 0; i = i - 1, ri = ri + ivs, ii = ii + ivs, O = O + ovs) { E T3, Tq, Tc, Tk, Tj, T8, Tm, Ts, Th, Tr, Tw, Tx; { E Tb, T1, T2, T9, Ta; Ta = ii[WS(iis, 3)]; Tb = KP1_732050807 * Ta; T1 = ri[0]; T2 = ri[WS(ris, 3)]; T9 = T1 - T2; T3 = FMA(KP2_000000000, T2, T1); Tq = T9 + Tb; Tc = T9 - Tb; } { E T4, T7, Ti, Tg, Tl, Td; T4 = ri[WS(ris, 1)]; Tk = ii[WS(iis, 1)]; { E T5, T6, Te, Tf; T5 = ri[WS(ris, 4)]; T6 = ri[WS(ris, 2)]; T7 = T5 + T6; Ti = KP866025403 * (T5 - T6); Te = ii[WS(iis, 4)]; Tf = ii[WS(iis, 2)]; Tg = KP866025403 * (Te + Tf); Tj = Tf - Te; } T8 = T4 + T7; Tl = FMA(KP500000000, Tj, Tk); Tm = Ti + Tl; Ts = Tl - Ti; Td = FNMS(KP500000000, T7, T4); Th = Td - Tg; Tr = Td + Tg; } O[0] = FMA(KP2_000000000, T8, T3); Tw = T3 - T8; Tx = KP1_732050807 * (Tk - Tj); O[WS(os, 3)] = Tw - Tx; O[WS(os, 6)] = Tw + Tx; { E Tp, Tn, To, Tv, Tt, Tu; Tp = FMA(KP1_113340798, Th, KP1_326827896 * Tm); Tn = FNMS(KP642787609, Tm, KP766044443 * Th); To = Tc - Tn; O[WS(os, 1)] = FMA(KP2_000000000, Tn, Tc); O[WS(os, 7)] = To + Tp; O[WS(os, 4)] = To - Tp; Tv = FMA(KP1_705737063, Tr, KP300767466 * Ts); Tt = FNMS(KP984807753, Ts, KP173648177 * Tr); Tu = Tq - Tt; O[WS(os, 2)] = FMA(KP2_000000000, Tt, Tq); O[WS(os, 8)] = Tu + Tv; O[WS(os, 5)] = Tu - Tv; } } } static const khc2r_desc desc = { 9, "hc2r_9", {22, 8, 10, 0}, &GENUS, 0, 0, 0, 0, 0 }; void X(codelet_hc2r_9) (planner *p) { X(khc2r_register) (p, hc2r_9, &desc); }