/* * Copyright (c) 2003 Matteo Frigo * Copyright (c) 2003 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * */ /* This file was automatically generated --- DO NOT EDIT */ /* Generated on Sat Jul 5 21:57:34 EDT 2003 */ #include "codelet-rdft.h" /* Generated by: /homee/stevenj/cvs/fftw3.0.1/genfft/gen_hc2hc -compact -variables 4 -twiddle-log3 -n 32 -dit -name hf2_32 -include hf.h */ /* * This function contains 488 FP additions, 280 FP multiplications, * (or, 376 additions, 168 multiplications, 112 fused multiply/add), * 204 stack variables, and 128 memory accesses */ /* * Generator Id's : * $Id: hf2_32.c,v 1.1 2008/10/17 06:12:34 scuri Exp $ * $Id: hf2_32.c,v 1.1 2008/10/17 06:12:34 scuri Exp $ * $Id: hf2_32.c,v 1.1 2008/10/17 06:12:34 scuri Exp $ */ #include "hf.h" static const R *hf2_32(R *rio, R *iio, const R *W, stride ios, int m, int dist) { DK(KP831469612, +0.831469612302545237078788377617905756738560812); DK(KP555570233, +0.555570233019602224742830813948532874374937191); DK(KP195090322, +0.195090322016128267848284868477022240927691618); DK(KP980785280, +0.980785280403230449126182236134239036973933731); DK(KP707106781, +0.707106781186547524400844362104849039284835938); DK(KP923879532, +0.923879532511286756128183189396788286822416626); DK(KP382683432, +0.382683432365089771728459984030398866761344562); int i; for (i = m - 2; i > 0; i = i - 2, rio = rio + dist, iio = iio - dist, W = W + 8) { E T1, T3t, T4S, TQ, T3G, T49, T20, T2n, T4y, T1J, T43, T2w, T4z, T36, T4Z; E TK, T8b, T40, T6l, T3U, T6k, T1h, T3L, T1D, T3V, T1s, T3X, T3E, T7E, T3O; E T6h, T2k, T6w, T4i, T4x, T3q, T6I, T4O, T4P, T3w, T4T, T4R, T4U, Tm, To; E TX, T4I, T3a, T3H, T31, T4Y, T3f, T4J, T2G, T4s, T4r, T2B, T4q, T4t, T27; E T4a, T2M, T4m, T4n, T2P, T4l, T4o, T1U, T44, Tn, Tp, T7G; T1 = rio[0]; { E Tv, T3e, Tz, T3c, T39, TE, TI, T38, TN, T3v, TU, T1l, T3u, TW, T12; E T35, T1f, T3m, T1b, T3o, T30, T2L, T16, T1k, T33, T2W, TP, T2J, T2D, T1w; E T1z, T2A, T1B, T2z, T2F, T1u, T2N, T1q, T1I, T2O, T1o, T1G, T2m, T24, T1Z; E T2r, T1X, T2v, T2l, T26, T2i, T1R, T1T, T2g, T2, Ti, T3, Tc, TF, TC; E TG, TB, Tu, T1a, T15, Ty, T1t, T1Y, T1W, T1v, TH, T1y, T11, TD, T1A; E T1e, T4g, T3k, T1n, T1p, T2e, T4M, TM, T1K, T1O, TO, T1L, T1N, Ta, Tb; E T2t, Tk, T2o, Tf, Tg, T2s, Tj, T2p; Tv = rio[WS(ios, 8)]; T3e = iio[-WS(ios, 8)]; Tz = iio[-WS(ios, 23)]; T3c = rio[WS(ios, 23)]; T39 = iio[-WS(ios, 24)]; TE = rio[WS(ios, 24)]; TI = iio[-WS(ios, 7)]; T38 = rio[WS(ios, 7)]; TN = rio[WS(ios, 4)]; T3v = iio[-WS(ios, 20)]; TU = rio[WS(ios, 20)]; T1l = iio[-WS(ios, 29)]; T3u = rio[WS(ios, 11)]; TW = iio[-WS(ios, 11)]; T12 = rio[WS(ios, 28)]; T35 = iio[-WS(ios, 16)]; T1f = iio[-WS(ios, 19)]; T3m = rio[WS(ios, 19)]; T1b = rio[WS(ios, 12)]; T3o = iio[-WS(ios, 12)]; T30 = iio[0]; T2L = iio[-WS(ios, 2)]; T16 = iio[-WS(ios, 3)]; T1k = rio[WS(ios, 2)]; T33 = rio[WS(ios, 15)]; T2W = rio[WS(ios, 31)]; TP = iio[-WS(ios, 27)]; T2J = rio[WS(ios, 29)]; T2D = rio[WS(ios, 21)]; T1w = iio[-WS(ios, 21)]; T1z = rio[WS(ios, 26)]; T2A = iio[-WS(ios, 26)]; T1B = iio[-WS(ios, 5)]; T2z = rio[WS(ios, 5)]; T2F = iio[-WS(ios, 10)]; T1u = rio[WS(ios, 10)]; T2N = rio[WS(ios, 13)]; T1q = iio[-WS(ios, 13)]; T1I = iio[-WS(ios, 1)]; T2O = iio[-WS(ios, 18)]; T1o = rio[WS(ios, 18)]; T1G = rio[WS(ios, 30)]; T2m = iio[-WS(ios, 22)]; T24 = rio[WS(ios, 22)]; T1Z = iio[-WS(ios, 25)]; T2r = rio[WS(ios, 25)]; T1X = rio[WS(ios, 6)]; T2v = iio[-WS(ios, 6)]; T2l = rio[WS(ios, 9)]; T26 = iio[-WS(ios, 9)]; T2i = iio[-WS(ios, 14)]; T1R = rio[WS(ios, 14)]; T1T = iio[-WS(ios, 17)]; T2g = rio[WS(ios, 17)]; { E T2c, T2d, T3s, T3r, T3j, T3i, T4, T7, T5, T8, T6, T9, T14, T1d, Ts; E T18, T19, T1c, Te, Td, Tt, Tw, T13, TZ, T10, Tx; T2c = rio[WS(ios, 1)]; T2d = iio[-WS(ios, 30)]; T3s = iio[-WS(ios, 4)]; T3r = rio[WS(ios, 27)]; T3j = iio[-WS(ios, 28)]; T3i = rio[WS(ios, 3)]; T2 = W[6]; Ti = W[7]; T3 = W[4]; Tc = W[5]; T4 = W[2]; T7 = W[3]; T5 = W[0]; T8 = W[1]; T6 = T4 * T5; T9 = T7 * T8; T14 = Ti * T5; T1d = Tc * T4; Ts = T3 * T5; T18 = T3 * T4; T19 = Tc * T7; T1c = T3 * T7; Te = T7 * T5; Td = T4 * T8; Tt = Tc * T8; Tw = T3 * T8; TF = T2 * T7; T13 = T2 * T8; TC = Ti * T7; TG = Ti * T4; TZ = T2 * T5; T10 = Ti * T8; TB = T2 * T4; Tx = Tc * T5; Tu = Ts + Tt; T1a = T18 - T19; T15 = T13 + T14; Ty = Tw - Tx; T1t = Ts - Tt; T1Y = T1c - T1d; T1W = T18 + T19; T1v = Tw + Tx; TH = TF - TG; T1y = TZ + T10; T11 = TZ - T10; TD = TB + TC; T1A = T13 - T14; T1e = T1c + T1d; T3t = FMA(T2, T3r, Ti * T3s); T4g = FNMS(T8, T2c, T5 * T2d); T4S = FNMS(Ti, T3r, T2 * T3s); T3k = FMA(T4, T3i, T7 * T3j); T1n = FMA(T2, T3, Ti * Tc); T1p = FNMS(Ti, T3, T2 * Tc); T2e = FMA(T5, T2c, T8 * T2d); T4M = FNMS(T7, T3i, T4 * T3j); TM = T6 - T9; T1K = T3 * TM; T1O = Tc * TM; TO = Td + Te; T1L = Tc * TO; T1N = T3 * TO; Ta = T6 + T9; Tb = T3 * Ta; T2t = Ti * Ta; Tk = Tc * Ta; T2o = T2 * Ta; Tf = Td - Te; Tg = Tc * Tf; T2s = T2 * Tf; Tj = T3 * Tf; T2p = Ti * Tf; } TQ = FMA(TM, TN, TO * TP); T3G = FNMS(TO, TN, TM * TP); T49 = FMA(T1Y, T1X, T1W * T1Z); T20 = FNMS(T1Y, T1Z, T1W * T1X); T2n = FMA(T3, T2l, Tc * T2m); T4y = FNMS(Tc, T2l, T3 * T2m); { E T1F, T1H, TA, TJ; T1F = TB - TC; T1H = TF + TG; T1J = FMA(T1F, T1G, T1H * T1I); T43 = FNMS(T1H, T1G, T1F * T1I); { E T2q, T2u, T32, T34; T2q = T2o - T2p; T2u = T2s + T2t; T2w = FMA(T2q, T2r, T2u * T2v); T4z = FNMS(T2u, T2r, T2q * T2v); T32 = FMA(T2, T1a, Ti * T1e); T34 = FNMS(Ti, T1a, T2 * T1e); T36 = FNMS(T34, T35, T32 * T33); T4Z = FMA(T34, T33, T32 * T35); } TA = FNMS(Ty, Tz, Tu * Tv); TJ = FNMS(TH, TI, TD * TE); TK = TA + TJ; T8b = TA - TJ; { E T3Y, T3Z, T3S, T3T; T3Y = FNMS(T1v, T1u, T1t * T1w); T3Z = FMA(T1A, T1z, T1y * T1B); T40 = T3Y - T3Z; T6l = T3Y + T3Z; T3S = FMA(Tf, T1k, Ta * T1l); T3T = FMA(T1p, T1o, T1n * T1q); T3U = T3S - T3T; T6k = T3S + T3T; } } { E T17, T1g, Th, Tl; T17 = FMA(T11, T12, T15 * T16); T1g = FMA(T1a, T1b, T1e * T1f); T1h = T17 + T1g; T3L = T17 - T1g; { E T1x, T1C, T1m, T1r; T1x = FMA(T1t, T1u, T1v * T1w); T1C = FNMS(T1A, T1B, T1y * T1z); T1D = T1x + T1C; T3V = T1x - T1C; T1m = FNMS(Tf, T1l, Ta * T1k); T1r = FNMS(T1p, T1q, T1n * T1o); T1s = T1m + T1r; T3X = T1m - T1r; } { E T3C, T3D, T3M, T3N; T3C = FMA(Ty, Tv, Tu * Tz); T3D = FMA(TH, TE, TD * TI); T3E = T3C - T3D; T7E = T3C + T3D; T3M = FNMS(T15, T12, T11 * T16); T3N = FNMS(T1e, T1b, T1a * T1f); T3O = T3M - T3N; T6h = T3M + T3N; { E T2j, T4h, T2f, T2h; T2f = FMA(T2, T1t, Ti * T1v); T2h = FNMS(Ti, T1t, T2 * T1v); T2j = FNMS(T2h, T2i, T2f * T2g); T4h = FMA(T2h, T2g, T2f * T2i); T2k = T2e + T2j; T6w = T4g + T4h; T4i = T4g - T4h; T4x = T2e - T2j; } } { E T3p, T4N, T3l, T3n; T3l = FNMS(Ti, Ty, T2 * Tu); T3n = FMA(T2, Ty, Ti * Tu); T3p = FMA(T3l, T3m, T3n * T3o); T4N = FNMS(T3n, T3m, T3l * T3o); T3q = T3k + T3p; T6I = T4M + T4N; T4O = T4M - T4N; T4P = T3k - T3p; } Th = Tb + Tg; Tl = Tj - Tk; T3w = FNMS(Tl, T3v, Th * T3u); T4T = FMA(Tl, T3u, Th * T3v); T4R = T3t - T3w; T4U = T4S - T4T; Tm = FNMS(Ti, Tl, T2 * Th); To = FMA(T2, Tl, Ti * Th); { E TR, TS, TT, TV; TR = Tb - Tg; TS = Tj + Tk; TT = FMA(T2, TR, Ti * TS); TV = FNMS(Ti, TR, T2 * TS); TX = FNMS(TV, TW, TT * TU); T4I = FNMS(TS, T38, TR * T39); T3a = FMA(TR, T38, TS * T39); T3H = FMA(TV, TU, TT * TW); } { E T2V, T3b, T2Z, T3d; { E T2T, T2U, T2X, T2Y; T2T = T2 * TM; T2U = Ti * TO; T2V = T2T - T2U; T3b = T2T + T2U; T2X = T2 * TO; T2Y = Ti * TM; T2Z = T2X + T2Y; T3d = T2X - T2Y; } T31 = FMA(T2V, T2W, T2Z * T30); T4Y = FNMS(T2Z, T2W, T2V * T30); T3f = FNMS(T3d, T3e, T3b * T3c); T4J = FMA(T3d, T3c, T3b * T3e); } { E T23, T25, T1Q, T1S; { E T2C, T2E, T21, T22; T2C = FNMS(Ti, T1Y, T2 * T1W); T2E = FMA(T2, T1Y, Ti * T1W); T2G = FMA(T2C, T2D, T2E * T2F); T4s = FNMS(T2E, T2D, T2C * T2F); T21 = T1K + T1L; T22 = T1N - T1O; T23 = FNMS(Ti, T22, T2 * T21); T4r = FMA(T22, T2z, T21 * T2A); T25 = FMA(T2, T22, Ti * T21); T2B = FNMS(T22, T2A, T21 * T2z); } T4q = T2B - T2G; T4t = T4r - T4s; T27 = FMA(T23, T24, T25 * T26); T4a = FNMS(T25, T24, T23 * T26); { E T2I, T2K, T1M, T1P; T2I = T2o + T2p; T2K = T2s - T2t; T2M = FNMS(T2K, T2L, T2I * T2J); T4m = FMA(T2K, T2J, T2I * T2L); T1M = T1K - T1L; T1P = T1N + T1O; T1Q = FMA(T2, T1M, Ti * T1P); T4n = FNMS(T1P, T2N, T1M * T2O); T1S = FNMS(Ti, T1M, T2 * T1P); T2P = FMA(T1M, T2N, T1P * T2O); } T4l = T2M - T2P; T4o = T4m - T4n; T1U = FNMS(T1S, T1T, T1Q * T1R); T44 = FMA(T1S, T1R, T1Q * T1T); } } } Tn = rio[WS(ios, 16)]; Tp = iio[-WS(ios, 15)]; T7G = iio[-WS(ios, 31)]; { E T1i, T7V, T6i, T7D, T42, T5e, T5A, T60, T6o, T6Y, TL, T6f, T3F, T5t, T7I; E T8q, T7W, T8c, T3Q, T8p, T5w, T89, T4d, T61, T5f, T5D, T2a, T6t, T7O, T7C; E T7g, T6Z, T4w, T64, T65, T4F, T5i, T5I, T5L, T5j, T2S, T7l, T7y, T6A, T6F; E T73, T7i, T72, T4X, T67, T68, T56, T5l, T5P, T5S, T5m, T3z, T7q, T7z, T6L; E T6Q, T76, T7n, T75; { E TY, T6g, T3W, T41; TY = TQ + TX; T1i = TY + T1h; T7V = T1h - TY; T6g = T3G + T3H; T6i = T6g - T6h; T7D = T6g + T6h; T3W = T3U + T3V; T41 = T3X - T40; T42 = FNMS(KP923879532, T41, KP382683432 * T3W); T5e = FMA(KP923879532, T3W, KP382683432 * T41); } { E T5y, T5z, T6m, T6n; T5y = T3U - T3V; T5z = T3X + T40; T5A = FNMS(KP382683432, T5z, KP923879532 * T5y); T60 = FMA(KP382683432, T5y, KP923879532 * T5z); T6m = T6k - T6l; T6n = T1s - T1D; T6o = T6m - T6n; T6Y = T6n + T6m; } { E Tr, T3B, Tq, T7H, T8a, T7F; Tq = FMA(Tm, Tn, To * Tp); Tr = T1 + Tq; T3B = T1 - Tq; TL = Tr + TK; T6f = Tr - TK; T3F = T3B - T3E; T5t = T3B + T3E; T7F = FNMS(To, Tn, Tm * Tp); T7H = T7F + T7G; T8a = T7G - T7F; T7I = T7E + T7H; T8q = T8b + T8a; T7W = T7H - T7E; T8c = T8a - T8b; } { E T3P, T5v, T3K, T5u, T3I, T3J; T3P = T3L + T3O; T5v = T3L - T3O; T3I = T3G - T3H; T3J = TQ - TX; T3K = T3I - T3J; T5u = T3J + T3I; T3Q = KP707106781 * (T3K - T3P); T8p = KP707106781 * (T5v - T5u); T5w = KP707106781 * (T5u + T5v); T89 = KP707106781 * (T3K + T3P); } { E T47, T5B, T4c, T5C; { E T45, T46, T48, T4b; T45 = T43 - T44; T46 = T20 - T27; T47 = T45 + T46; T5B = T45 - T46; T48 = T1J - T1U; T4b = T49 - T4a; T4c = T48 - T4b; T5C = T48 + T4b; } T4d = FMA(KP382683432, T47, KP923879532 * T4c); T61 = FNMS(KP382683432, T5B, KP923879532 * T5C); T5f = FNMS(KP923879532, T47, KP382683432 * T4c); T5D = FMA(KP923879532, T5B, KP382683432 * T5C); } { E T1E, T7e, T29, T6p, T6s, T7f; T1E = T1s + T1D; T7e = T6k + T6l; { E T1V, T28, T6q, T6r; T1V = T1J + T1U; T28 = T20 + T27; T29 = T1V + T28; T6p = T1V - T28; T6q = T43 + T44; T6r = T49 + T4a; T6s = T6q - T6r; T7f = T6q + T6r; } T2a = T1E + T29; T6t = T6p + T6s; T7O = T29 - T1E; T7C = T7e + T7f; T7g = T7e - T7f; T6Z = T6p - T6s; } { E T4k, T5J, T4B, T5G, T4v, T5H, T4E, T5K, T4j, T4A; T4j = T2n - T2w; T4k = T4i + T4j; T5J = T4i - T4j; T4A = T4y - T4z; T4B = T4x - T4A; T5G = T4x + T4A; { E T4p, T4u, T4C, T4D; T4p = T4l - T4o; T4u = T4q + T4t; T4v = KP707106781 * (T4p - T4u); T5H = KP707106781 * (T4u + T4p); T4C = T4t - T4q; T4D = T4l + T4o; T4E = KP707106781 * (T4C - T4D); T5K = KP707106781 * (T4C + T4D); } T4w = T4k - T4v; T64 = T5G + T5H; T65 = T5J + T5K; T4F = T4B - T4E; T5i = T4k + T4v; T5I = T5G - T5H; T5L = T5J - T5K; T5j = T4B + T4E; } { E T2y, T6B, T6y, T7j, T2R, T6z, T6E, T7k, T2x, T6x; T2x = T2n + T2w; T2y = T2k + T2x; T6B = T2k - T2x; T6x = T4y + T4z; T6y = T6w - T6x; T7j = T6w + T6x; { E T2H, T2Q, T6C, T6D; T2H = T2B + T2G; T2Q = T2M + T2P; T2R = T2H + T2Q; T6z = T2Q - T2H; T6C = T4r + T4s; T6D = T4m + T4n; T6E = T6C - T6D; T7k = T6C + T6D; } T2S = T2y + T2R; T7l = T7j - T7k; T7y = T7j + T7k; T6A = T6y - T6z; T6F = T6B - T6E; T73 = T6B + T6E; T7i = T2y - T2R; T72 = T6y + T6z; } { E T4L, T5N, T55, T5O, T4W, T5R, T52, T5Q; { E T4H, T4K, T53, T54; T4H = T31 - T36; T4K = T4I - T4J; T4L = T4H - T4K; T5N = T4H + T4K; T53 = T4R - T4U; T54 = T4P + T4O; T55 = KP707106781 * (T53 - T54); T5O = KP707106781 * (T54 + T53); } { E T4Q, T4V, T50, T51; T4Q = T4O - T4P; T4V = T4R + T4U; T4W = KP707106781 * (T4Q - T4V); T5R = KP707106781 * (T4Q + T4V); T50 = T4Y - T4Z; T51 = T3a - T3f; T52 = T50 + T51; T5Q = T50 - T51; } T4X = T4L - T4W; T67 = T5N + T5O; T68 = T5Q + T5R; T56 = T52 - T55; T5l = T4L + T4W; T5P = T5N - T5O; T5S = T5Q - T5R; T5m = T52 + T55; } { E T3y, T6P, T6K, T7p, T3h, T6H, T6O, T7o, T3x, T6J; T3x = T3t + T3w; T3y = T3q + T3x; T6P = T3x - T3q; T6J = T4S + T4T; T6K = T6I - T6J; T7p = T6I + T6J; { E T37, T3g, T6M, T6N; T37 = T31 + T36; T3g = T3a + T3f; T3h = T37 + T3g; T6H = T37 - T3g; T6M = T4Y + T4Z; T6N = T4I + T4J; T6O = T6M - T6N; T7o = T6M + T6N; } T3z = T3h + T3y; T7q = T7o - T7p; T7z = T7o + T7p; T6L = T6H - T6K; T6Q = T6O - T6P; T76 = T6O + T6P; T7n = T3h - T3y; T75 = T6H + T6K; } { E T3A, T7A, T2b, T7x, T1j; T3A = T2S + T3z; T7A = T7y - T7z; T1j = TL + T1i; T2b = T1j + T2a; T7x = T1j - T2a; iio[-WS(ios, 16)] = T2b - T3A; rio[WS(ios, 8)] = T7x + T7A; rio[0] = T2b + T3A; iio[-WS(ios, 24)] = T7x - T7A; } { E T7B, T7L, T7K, T7M, T7J; T7B = T7y + T7z; T7L = T3z - T2S; T7J = T7D + T7I; T7K = T7C + T7J; T7M = T7J - T7C; rio[WS(ios, 16)] = T7B - T7K; iio[-WS(ios, 8)] = T7L + T7M; iio[0] = T7B + T7K; rio[WS(ios, 24)] = T7L - T7M; } { E T7h, T7t, T7Q, T7S, T7s, T7R, T7w, T7N, T7d, T7P; T7d = TL - T1i; T7h = T7d + T7g; T7t = T7d - T7g; T7P = T7I - T7D; T7Q = T7O + T7P; T7S = T7P - T7O; { E T7m, T7r, T7u, T7v; T7m = T7i + T7l; T7r = T7n - T7q; T7s = KP707106781 * (T7m + T7r); T7R = KP707106781 * (T7r - T7m); T7u = T7l - T7i; T7v = T7n + T7q; T7w = KP707106781 * (T7u - T7v); T7N = KP707106781 * (T7u + T7v); } iio[-WS(ios, 20)] = T7h - T7s; rio[WS(ios, 20)] = T7N - T7Q; rio[WS(ios, 4)] = T7h + T7s; iio[-WS(ios, 4)] = T7N + T7Q; iio[-WS(ios, 28)] = T7t - T7w; rio[WS(ios, 28)] = T7R - T7S; rio[WS(ios, 12)] = T7t + T7w; iio[-WS(ios, 12)] = T7R + T7S; } { E T71, T79, T7Y, T80, T78, T7Z, T7c, T7T; { E T6X, T70, T7U, T7X; T6X = T6f + T6i; T70 = KP707106781 * (T6Y + T6Z); T71 = T6X + T70; T79 = T6X - T70; T7U = KP707106781 * (T6o + T6t); T7X = T7V + T7W; T7Y = T7U + T7X; T80 = T7X - T7U; } { E T74, T77, T7a, T7b; T74 = FMA(KP382683432, T72, KP923879532 * T73); T77 = FNMS(KP382683432, T76, KP923879532 * T75); T78 = T74 + T77; T7Z = T77 - T74; T7a = FNMS(KP382683432, T73, KP923879532 * T72); T7b = FMA(KP923879532, T76, KP382683432 * T75); T7c = T7a - T7b; T7T = T7a + T7b; } iio[-WS(ios, 18)] = T71 - T78; rio[WS(ios, 18)] = T7T - T7Y; rio[WS(ios, 2)] = T71 + T78; iio[-WS(ios, 2)] = T7T + T7Y; iio[-WS(ios, 26)] = T79 - T7c; rio[WS(ios, 26)] = T7Z - T80; rio[WS(ios, 10)] = T79 + T7c; iio[-WS(ios, 10)] = T7Z + T80; } { E T4f, T59, T8y, T8A, T58, T8z, T5c, T8v; { E T3R, T4e, T8w, T8x; T3R = T3F - T3Q; T4e = T42 - T4d; T4f = T3R + T4e; T59 = T3R - T4e; T8w = T5f - T5e; T8x = T8q - T8p; T8y = T8w + T8x; T8A = T8x - T8w; } { E T4G, T57, T5a, T5b; T4G = FMA(KP980785280, T4w, KP195090322 * T4F); T57 = FNMS(KP980785280, T56, KP195090322 * T4X); T58 = T4G + T57; T8z = T57 - T4G; T5a = FNMS(KP980785280, T4F, KP195090322 * T4w); T5b = FMA(KP195090322, T56, KP980785280 * T4X); T5c = T5a - T5b; T8v = T5a + T5b; } iio[-WS(ios, 23)] = T4f - T58; rio[WS(ios, 23)] = T8v - T8y; rio[WS(ios, 7)] = T4f + T58; iio[-WS(ios, 7)] = T8v + T8y; iio[-WS(ios, 31)] = T59 - T5c; rio[WS(ios, 31)] = T8z - T8A; rio[WS(ios, 15)] = T59 + T5c; iio[-WS(ios, 15)] = T8z + T8A; } { E T5F, T5V, T8k, T8m, T5U, T8l, T5Y, T8h; { E T5x, T5E, T8i, T8j; T5x = T5t - T5w; T5E = T5A - T5D; T5F = T5x + T5E; T5V = T5x - T5E; T8i = T61 - T60; T8j = T8c - T89; T8k = T8i + T8j; T8m = T8j - T8i; } { E T5M, T5T, T5W, T5X; T5M = FMA(KP555570233, T5I, KP831469612 * T5L); T5T = FNMS(KP831469612, T5S, KP555570233 * T5P); T5U = T5M + T5T; T8l = T5T - T5M; T5W = FNMS(KP831469612, T5I, KP555570233 * T5L); T5X = FMA(KP831469612, T5P, KP555570233 * T5S); T5Y = T5W - T5X; T8h = T5W + T5X; } iio[-WS(ios, 21)] = T5F - T5U; rio[WS(ios, 21)] = T8h - T8k; rio[WS(ios, 5)] = T5F + T5U; iio[-WS(ios, 5)] = T8h + T8k; iio[-WS(ios, 29)] = T5V - T5Y; rio[WS(ios, 29)] = T8l - T8m; rio[WS(ios, 13)] = T5V + T5Y; iio[-WS(ios, 13)] = T8l + T8m; } { E T6v, T6T, T84, T86, T6S, T85, T6W, T81; { E T6j, T6u, T82, T83; T6j = T6f - T6i; T6u = KP707106781 * (T6o - T6t); T6v = T6j + T6u; T6T = T6j - T6u; T82 = KP707106781 * (T6Z - T6Y); T83 = T7W - T7V; T84 = T82 + T83; T86 = T83 - T82; } { E T6G, T6R, T6U, T6V; T6G = FMA(KP923879532, T6A, KP382683432 * T6F); T6R = FNMS(KP923879532, T6Q, KP382683432 * T6L); T6S = T6G + T6R; T85 = T6R - T6G; T6U = FNMS(KP923879532, T6F, KP382683432 * T6A); T6V = FMA(KP382683432, T6Q, KP923879532 * T6L); T6W = T6U - T6V; T81 = T6U + T6V; } iio[-WS(ios, 22)] = T6v - T6S; rio[WS(ios, 22)] = T81 - T84; rio[WS(ios, 6)] = T6v + T6S; iio[-WS(ios, 6)] = T81 + T84; iio[-WS(ios, 30)] = T6T - T6W; rio[WS(ios, 30)] = T85 - T86; rio[WS(ios, 14)] = T6T + T6W; iio[-WS(ios, 14)] = T85 + T86; } { E T5h, T5p, T8s, T8u, T5o, T8t, T5s, T8n; { E T5d, T5g, T8o, T8r; T5d = T3F + T3Q; T5g = T5e + T5f; T5h = T5d + T5g; T5p = T5d - T5g; T8o = T42 + T4d; T8r = T8p + T8q; T8s = T8o + T8r; T8u = T8r - T8o; } { E T5k, T5n, T5q, T5r; T5k = FMA(KP555570233, T5i, KP831469612 * T5j); T5n = FNMS(KP555570233, T5m, KP831469612 * T5l); T5o = T5k + T5n; T8t = T5n - T5k; T5q = FNMS(KP555570233, T5j, KP831469612 * T5i); T5r = FMA(KP831469612, T5m, KP555570233 * T5l); T5s = T5q - T5r; T8n = T5q + T5r; } iio[-WS(ios, 19)] = T5h - T5o; rio[WS(ios, 19)] = T8n - T8s; rio[WS(ios, 3)] = T5h + T5o; iio[-WS(ios, 3)] = T8n + T8s; iio[-WS(ios, 27)] = T5p - T5s; rio[WS(ios, 27)] = T8t - T8u; rio[WS(ios, 11)] = T5p + T5s; iio[-WS(ios, 11)] = T8t + T8u; } { E T63, T6b, T8e, T8g, T6a, T8f, T6e, T87; { E T5Z, T62, T88, T8d; T5Z = T5t + T5w; T62 = T60 + T61; T63 = T5Z + T62; T6b = T5Z - T62; T88 = T5A + T5D; T8d = T89 + T8c; T8e = T88 + T8d; T8g = T8d - T88; } { E T66, T69, T6c, T6d; T66 = FMA(KP980785280, T64, KP195090322 * T65); T69 = FNMS(KP195090322, T68, KP980785280 * T67); T6a = T66 + T69; T8f = T69 - T66; T6c = FNMS(KP195090322, T64, KP980785280 * T65); T6d = FMA(KP195090322, T67, KP980785280 * T68); T6e = T6c - T6d; T87 = T6c + T6d; } iio[-WS(ios, 17)] = T63 - T6a; rio[WS(ios, 17)] = T87 - T8e; rio[WS(ios, 1)] = T63 + T6a; iio[-WS(ios, 1)] = T87 + T8e; iio[-WS(ios, 25)] = T6b - T6e; rio[WS(ios, 25)] = T8f - T8g; rio[WS(ios, 9)] = T6b + T6e; iio[-WS(ios, 9)] = T8f + T8g; } } } return W; } static const tw_instr twinstr[] = { {TW_COS, 0, 1}, {TW_SIN, 0, 1}, {TW_COS, 0, 3}, {TW_SIN, 0, 3}, {TW_COS, 0, 9}, {TW_SIN, 0, 9}, {TW_COS, 0, 27}, {TW_SIN, 0, 27}, {TW_NEXT, 1, 0} }; static const hc2hc_desc desc = { 32, "hf2_32", twinstr, {376, 168, 112, 0}, &GENUS, 0, 0, 0 }; void X(codelet_hf2_32) (planner *p) { X(khc2hc_dit_register) (p, hf2_32, &desc); }