/* * Copyright (c) 2003 Matteo Frigo * Copyright (c) 2003 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * */ /* This file was automatically generated --- DO NOT EDIT */ /* Generated on Sat Jul 5 21:56:49 EDT 2003 */ #include "codelet-rdft.h" /* Generated by: /homee/stevenj/cvs/fftw3.0.1/genfft/gen_r2hc_noinline -compact -variables 4 -n 128 -name mr2hc_128 -include r2hc.h */ /* * This function contains 956 FP additions, 330 FP multiplications, * (or, 812 additions, 186 multiplications, 144 fused multiply/add), * 185 stack variables, and 256 memory accesses */ /* * Generator Id's : * $Id: mr2hc_128.c,v 1.1 2008/10/17 06:12:34 scuri Exp $ * $Id: mr2hc_128.c,v 1.1 2008/10/17 06:12:34 scuri Exp $ * $Id: mr2hc_128.c,v 1.1 2008/10/17 06:12:34 scuri Exp $ */ #include "r2hc.h" static void mr2hc_128_0(const R *I, R *ro, R *io, stride is, stride ros, stride ios) { DK(KP803207531, +0.803207531480644909806676512963141923879569427); DK(KP595699304, +0.595699304492433343467036528829969889511926338); DK(KP146730474, +0.146730474455361751658850129646717819706215317); DK(KP989176509, +0.989176509964780973451673738016243063983689533); DK(KP740951125, +0.740951125354959091175616897495162729728955309); DK(KP671558954, +0.671558954847018400625376850427421803228750632); DK(KP049067674, +0.049067674327418014254954976942682658314745363); DK(KP998795456, +0.998795456205172392714771604759100694443203615); DK(KP242980179, +0.242980179903263889948274162077471118320990783); DK(KP970031253, +0.970031253194543992603984207286100251456865962); DK(KP514102744, +0.514102744193221726593693838968815772608049120); DK(KP857728610, +0.857728610000272069902269984284770137042490799); DK(KP336889853, +0.336889853392220050689253212619147570477766780); DK(KP941544065, +0.941544065183020778412509402599502357185589796); DK(KP427555093, +0.427555093430282094320966856888798534304578629); DK(KP903989293, +0.903989293123443331586200297230537048710132025); DK(KP098017140, +0.098017140329560601994195563888641845861136673); DK(KP995184726, +0.995184726672196886244836953109479921575474869); DK(KP634393284, +0.634393284163645498215171613225493370675687095); DK(KP773010453, +0.773010453362736960810906609758469800971041293); DK(KP881921264, +0.881921264348355029712756863660388349508442621); DK(KP471396736, +0.471396736825997648556387625905254377657460319); DK(KP956940335, +0.956940335732208864935797886980269969482849206); DK(KP290284677, +0.290284677254462367636192375817395274691476278); DK(KP555570233, +0.555570233019602224742830813948532874374937191); DK(KP831469612, +0.831469612302545237078788377617905756738560812); DK(KP195090322, +0.195090322016128267848284868477022240927691618); DK(KP980785280, +0.980785280403230449126182236134239036973933731); DK(KP382683432, +0.382683432365089771728459984030398866761344562); DK(KP923879532, +0.923879532511286756128183189396788286822416626); DK(KP707106781, +0.707106781186547524400844362104849039284835938); { E TcD, TdU, T27, T7r, T5S, T8y, Tf, Ta5, Tu, Tbq, TcG, TdV, T2e, T8z, T5V; E T7s, TK, Ta6, TcK, TdX, T2o, T5X, T7w, T8B, TZ, Ta7, TcN, TdY, T2x, T5Y; E T7z, T8C, T1g, Taa, TcU, TeA, TcX, Tez, T1v, Tab, T2M, T6z, T7E, T9e, T7H; E T9d, T2T, T6A, T4X, T6L, Tdz, TeL, TdK, TeP, T5G, T6P, T8d, T9p, TaV, Tc3; E Tbi, Tc4, T8o, T9t, T3I, T6H, Tde, TeH, Tdp, TeF, T4r, T6F, T7U, T9l, Tao; E TbW, TaL, TbX, T85, T9j, T1L, Tad, Td3, Tew, Td6, Tex, T20, Tae, T37, T6x; E T7L, T9a, T7O, T9b, T3e, T6w, TbZ, Tc0, T3Z, T4s, Tds, TeI, T4g, T4t, T80; E T87, Tdl, TeE, T7X, T86, TaD, TaM, Tc6, Tc7, T5e, T5H, TdN, TeM, T5v, T5I; E T8j, T8q, TdG, TeO, T8g, T8p, Tba, Tbj; { E T3, T23, Td, T25, T6, T5R, Ta, T24; { E T1, T2, Tb, Tc; T1 = I[0]; T2 = I[WS(is, 64)]; T3 = T1 + T2; T23 = T1 - T2; Tb = I[WS(is, 112)]; Tc = I[WS(is, 48)]; Td = Tb + Tc; T25 = Tb - Tc; } { E T4, T5, T8, T9; T4 = I[WS(is, 32)]; T5 = I[WS(is, 96)]; T6 = T4 + T5; T5R = T4 - T5; T8 = I[WS(is, 16)]; T9 = I[WS(is, 80)]; Ta = T8 + T9; T24 = T8 - T9; } TcD = T3 - T6; TdU = Td - Ta; { E T26, T5Q, T7, Te; T26 = KP707106781 * (T24 + T25); T27 = T23 + T26; T7r = T23 - T26; T5Q = KP707106781 * (T25 - T24); T5S = T5Q - T5R; T8y = T5R + T5Q; T7 = T3 + T6; Te = Ta + Td; Tf = T7 + Te; Ta5 = T7 - Te; } } { E Ti, T28, Ts, T2c, Tl, T29, Tp, T2b; { E Tg, Th, Tq, Tr; Tg = I[WS(is, 8)]; Th = I[WS(is, 72)]; Ti = Tg + Th; T28 = Tg - Th; Tq = I[WS(is, 24)]; Tr = I[WS(is, 88)]; Ts = Tq + Tr; T2c = Tq - Tr; } { E Tj, Tk, Tn, To; Tj = I[WS(is, 40)]; Tk = I[WS(is, 104)]; Tl = Tj + Tk; T29 = Tj - Tk; Tn = I[WS(is, 120)]; To = I[WS(is, 56)]; Tp = Tn + To; T2b = Tn - To; } { E Tm, Tt, TcE, TcF; Tm = Ti + Tl; Tt = Tp + Ts; Tu = Tm + Tt; Tbq = Tt - Tm; TcE = Ti - Tl; TcF = Tp - Ts; TcG = KP707106781 * (TcE + TcF); TdV = KP707106781 * (TcF - TcE); } { E T2a, T2d, T5T, T5U; T2a = FNMS(KP382683432, T29, KP923879532 * T28); T2d = FMA(KP923879532, T2b, KP382683432 * T2c); T2e = T2a + T2d; T8z = T2d - T2a; T5T = FNMS(KP923879532, T2c, KP382683432 * T2b); T5U = FMA(KP382683432, T28, KP923879532 * T29); T5V = T5T - T5U; T7s = T5U + T5T; } } { E Ty, T2g, TB, T2m, TF, T2l, TI, T2j; { E Tw, Tx, Tz, TA; Tw = I[WS(is, 4)]; Tx = I[WS(is, 68)]; Ty = Tw + Tx; T2g = Tw - Tx; Tz = I[WS(is, 36)]; TA = I[WS(is, 100)]; TB = Tz + TA; T2m = Tz - TA; { E TD, TE, T2h, TG, TH, T2i; TD = I[WS(is, 20)]; TE = I[WS(is, 84)]; T2h = TD - TE; TG = I[WS(is, 116)]; TH = I[WS(is, 52)]; T2i = TG - TH; TF = TD + TE; T2l = KP707106781 * (T2i - T2h); TI = TG + TH; T2j = KP707106781 * (T2h + T2i); } } { E TC, TJ, TcI, TcJ; TC = Ty + TB; TJ = TF + TI; TK = TC + TJ; Ta6 = TC - TJ; TcI = Ty - TB; TcJ = TI - TF; TcK = FMA(KP923879532, TcI, KP382683432 * TcJ); TdX = FNMS(KP382683432, TcI, KP923879532 * TcJ); } { E T2k, T2n, T7u, T7v; T2k = T2g + T2j; T2n = T2l - T2m; T2o = FMA(KP980785280, T2k, KP195090322 * T2n); T5X = FNMS(KP195090322, T2k, KP980785280 * T2n); T7u = T2g - T2j; T7v = T2m + T2l; T7w = FMA(KP831469612, T7u, KP555570233 * T7v); T8B = FNMS(KP555570233, T7u, KP831469612 * T7v); } } { E TN, T2p, TQ, T2v, TU, T2u, TX, T2s; { E TL, TM, TO, TP; TL = I[WS(is, 124)]; TM = I[WS(is, 60)]; TN = TL + TM; T2p = TL - TM; TO = I[WS(is, 28)]; TP = I[WS(is, 92)]; TQ = TO + TP; T2v = TO - TP; { E TS, TT, T2q, TV, TW, T2r; TS = I[WS(is, 12)]; TT = I[WS(is, 76)]; T2q = TS - TT; TV = I[WS(is, 108)]; TW = I[WS(is, 44)]; T2r = TV - TW; TU = TS + TT; T2u = KP707106781 * (T2r - T2q); TX = TV + TW; T2s = KP707106781 * (T2q + T2r); } } { E TR, TY, TcL, TcM; TR = TN + TQ; TY = TU + TX; TZ = TR + TY; Ta7 = TR - TY; TcL = TN - TQ; TcM = TX - TU; TcN = FNMS(KP382683432, TcM, KP923879532 * TcL); TdY = FMA(KP382683432, TcL, KP923879532 * TcM); } { E T2t, T2w, T7x, T7y; T2t = T2p + T2s; T2w = T2u - T2v; T2x = FNMS(KP195090322, T2w, KP980785280 * T2t); T5Y = FMA(KP195090322, T2t, KP980785280 * T2w); T7x = T2p - T2s; T7y = T2v + T2u; T7z = FNMS(KP555570233, T7y, KP831469612 * T7x); T8C = FMA(KP555570233, T7x, KP831469612 * T7y); } } { E T14, T2N, T17, T2D, T1b, T2O, T1e, T2C, T1j, T1m, T2K, TcR, T2Q, T1q, T1t; E T2H, TcS, T2R; { E T12, T13, T15, T16; T12 = I[WS(is, 2)]; T13 = I[WS(is, 66)]; T14 = T12 + T13; T2N = T12 - T13; T15 = I[WS(is, 34)]; T16 = I[WS(is, 98)]; T17 = T15 + T16; T2D = T15 - T16; } { E T19, T1a, T2B, T1c, T1d, T2A; T19 = I[WS(is, 18)]; T1a = I[WS(is, 82)]; T2B = T19 - T1a; T1c = I[WS(is, 114)]; T1d = I[WS(is, 50)]; T2A = T1c - T1d; T1b = T19 + T1a; T2O = KP707106781 * (T2B + T2A); T1e = T1c + T1d; T2C = KP707106781 * (T2A - T2B); } { E T2I, T2J, T2F, T2G; { E T1h, T1i, T1k, T1l; T1h = I[WS(is, 10)]; T1i = I[WS(is, 74)]; T1j = T1h + T1i; T2I = T1h - T1i; T1k = I[WS(is, 42)]; T1l = I[WS(is, 106)]; T1m = T1k + T1l; T2J = T1k - T1l; } T2K = FMA(KP382683432, T2I, KP923879532 * T2J); TcR = T1j - T1m; T2Q = FNMS(KP382683432, T2J, KP923879532 * T2I); { E T1o, T1p, T1r, T1s; T1o = I[WS(is, 122)]; T1p = I[WS(is, 58)]; T1q = T1o + T1p; T2F = T1o - T1p; T1r = I[WS(is, 26)]; T1s = I[WS(is, 90)]; T1t = T1r + T1s; T2G = T1r - T1s; } T2H = FNMS(KP923879532, T2G, KP382683432 * T2F); TcS = T1q - T1t; T2R = FMA(KP923879532, T2F, KP382683432 * T2G); } { E T18, T1f, TcQ, TcT; T18 = T14 + T17; T1f = T1b + T1e; T1g = T18 + T1f; Taa = T18 - T1f; TcQ = T14 - T17; TcT = KP707106781 * (TcR + TcS); TcU = TcQ + TcT; TeA = TcQ - TcT; } { E TcV, TcW, T1n, T1u; TcV = T1e - T1b; TcW = KP707106781 * (TcS - TcR); TcX = TcV + TcW; Tez = TcW - TcV; T1n = T1j + T1m; T1u = T1q + T1t; T1v = T1n + T1u; Tab = T1u - T1n; } { E T2E, T2L, T7C, T7D; T2E = T2C - T2D; T2L = T2H - T2K; T2M = T2E + T2L; T6z = T2L - T2E; T7C = T2N - T2O; T7D = T2K + T2H; T7E = T7C + T7D; T9e = T7C - T7D; } { E T7F, T7G, T2P, T2S; T7F = T2D + T2C; T7G = T2R - T2Q; T7H = T7F + T7G; T9d = T7G - T7F; T2P = T2N + T2O; T2S = T2Q + T2R; T2T = T2P + T2S; T6A = T2P - T2S; } } { E T4z, TaP, T5B, TaQ, T4G, TaT, T5y, TaS, Tbf, Tbg, T4O, Tdw, T5E, Tbc, Tbd; E T4V, Tdx, T5D; { E T4x, T4y, T5z, T5A; T4x = I[WS(is, 127)]; T4y = I[WS(is, 63)]; T4z = T4x - T4y; TaP = T4x + T4y; T5z = I[WS(is, 31)]; T5A = I[WS(is, 95)]; T5B = T5z - T5A; TaQ = T5z + T5A; } { E T4A, T4B, T4C, T4D, T4E, T4F; T4A = I[WS(is, 15)]; T4B = I[WS(is, 79)]; T4C = T4A - T4B; T4D = I[WS(is, 111)]; T4E = I[WS(is, 47)]; T4F = T4D - T4E; T4G = KP707106781 * (T4C + T4F); TaT = T4D + T4E; T5y = KP707106781 * (T4F - T4C); TaS = T4A + T4B; } { E T4K, T4N, T4R, T4U; { E T4I, T4J, T4L, T4M; T4I = I[WS(is, 7)]; T4J = I[WS(is, 71)]; T4K = T4I - T4J; Tbf = T4I + T4J; T4L = I[WS(is, 39)]; T4M = I[WS(is, 103)]; T4N = T4L - T4M; Tbg = T4L + T4M; } T4O = FNMS(KP382683432, T4N, KP923879532 * T4K); Tdw = Tbf - Tbg; T5E = FMA(KP382683432, T4K, KP923879532 * T4N); { E T4P, T4Q, T4S, T4T; T4P = I[WS(is, 119)]; T4Q = I[WS(is, 55)]; T4R = T4P - T4Q; Tbc = T4P + T4Q; T4S = I[WS(is, 23)]; T4T = I[WS(is, 87)]; T4U = T4S - T4T; Tbd = T4S + T4T; } T4V = FMA(KP923879532, T4R, KP382683432 * T4U); Tdx = Tbc - Tbd; T5D = FNMS(KP923879532, T4U, KP382683432 * T4R); } { E T4H, T4W, Tdv, Tdy; T4H = T4z + T4G; T4W = T4O + T4V; T4X = T4H + T4W; T6L = T4H - T4W; Tdv = TaP - TaQ; Tdy = KP707106781 * (Tdw + Tdx); Tdz = Tdv + Tdy; TeL = Tdv - Tdy; } { E TdI, TdJ, T5C, T5F; TdI = TaT - TaS; TdJ = KP707106781 * (Tdx - Tdw); TdK = TdI + TdJ; TeP = TdJ - TdI; T5C = T5y - T5B; T5F = T5D - T5E; T5G = T5C + T5F; T6P = T5F - T5C; } { E T8b, T8c, TaR, TaU; T8b = T4z - T4G; T8c = T5E + T5D; T8d = T8b + T8c; T9p = T8b - T8c; TaR = TaP + TaQ; TaU = TaS + TaT; TaV = TaR - TaU; Tc3 = TaR + TaU; } { E Tbe, Tbh, T8m, T8n; Tbe = Tbc + Tbd; Tbh = Tbf + Tbg; Tbi = Tbe - Tbh; Tc4 = Tbh + Tbe; T8m = T5B + T5y; T8n = T4V - T4O; T8o = T8m + T8n; T9t = T8n - T8m; } } { E T3k, Tai, T4m, Taj, T3r, Tam, T4j, Tal, TaI, TaJ, T3z, Tdb, T4p, TaF, TaG; E T3G, Tdc, T4o; { E T3i, T3j, T4k, T4l; T3i = I[WS(is, 1)]; T3j = I[WS(is, 65)]; T3k = T3i - T3j; Tai = T3i + T3j; T4k = I[WS(is, 33)]; T4l = I[WS(is, 97)]; T4m = T4k - T4l; Taj = T4k + T4l; } { E T3l, T3m, T3n, T3o, T3p, T3q; T3l = I[WS(is, 17)]; T3m = I[WS(is, 81)]; T3n = T3l - T3m; T3o = I[WS(is, 113)]; T3p = I[WS(is, 49)]; T3q = T3o - T3p; T3r = KP707106781 * (T3n + T3q); Tam = T3o + T3p; T4j = KP707106781 * (T3q - T3n); Tal = T3l + T3m; } { E T3v, T3y, T3C, T3F; { E T3t, T3u, T3w, T3x; T3t = I[WS(is, 9)]; T3u = I[WS(is, 73)]; T3v = T3t - T3u; TaI = T3t + T3u; T3w = I[WS(is, 41)]; T3x = I[WS(is, 105)]; T3y = T3w - T3x; TaJ = T3w + T3x; } T3z = FNMS(KP382683432, T3y, KP923879532 * T3v); Tdb = TaI - TaJ; T4p = FMA(KP382683432, T3v, KP923879532 * T3y); { E T3A, T3B, T3D, T3E; T3A = I[WS(is, 121)]; T3B = I[WS(is, 57)]; T3C = T3A - T3B; TaF = T3A + T3B; T3D = I[WS(is, 25)]; T3E = I[WS(is, 89)]; T3F = T3D - T3E; TaG = T3D + T3E; } T3G = FMA(KP923879532, T3C, KP382683432 * T3F); Tdc = TaF - TaG; T4o = FNMS(KP923879532, T3F, KP382683432 * T3C); } { E T3s, T3H, Tda, Tdd; T3s = T3k + T3r; T3H = T3z + T3G; T3I = T3s + T3H; T6H = T3s - T3H; Tda = Tai - Taj; Tdd = KP707106781 * (Tdb + Tdc); Tde = Tda + Tdd; TeH = Tda - Tdd; } { E Tdn, Tdo, T4n, T4q; Tdn = Tam - Tal; Tdo = KP707106781 * (Tdc - Tdb); Tdp = Tdn + Tdo; TeF = Tdo - Tdn; T4n = T4j - T4m; T4q = T4o - T4p; T4r = T4n + T4q; T6F = T4q - T4n; } { E T7S, T7T, Tak, Tan; T7S = T3k - T3r; T7T = T4p + T4o; T7U = T7S + T7T; T9l = T7S - T7T; Tak = Tai + Taj; Tan = Tal + Tam; Tao = Tak - Tan; TbW = Tak + Tan; } { E TaH, TaK, T83, T84; TaH = TaF + TaG; TaK = TaI + TaJ; TaL = TaH - TaK; TbX = TaK + TaH; T83 = T4m + T4j; T84 = T3G - T3z; T85 = T83 + T84; T9j = T84 - T83; } } { E T1z, T2V, T1C, T39, T1G, T38, T1J, T2Y, T1O, T1R, T32, Td0, T3c, T1V, T1Y; E T35, Td1, T3b; { E T1x, T1y, T1A, T1B; T1x = I[WS(is, 126)]; T1y = I[WS(is, 62)]; T1z = T1x + T1y; T2V = T1x - T1y; T1A = I[WS(is, 30)]; T1B = I[WS(is, 94)]; T1C = T1A + T1B; T39 = T1A - T1B; } { E T1E, T1F, T2W, T1H, T1I, T2X; T1E = I[WS(is, 14)]; T1F = I[WS(is, 78)]; T2W = T1E - T1F; T1H = I[WS(is, 110)]; T1I = I[WS(is, 46)]; T2X = T1H - T1I; T1G = T1E + T1F; T38 = KP707106781 * (T2X - T2W); T1J = T1H + T1I; T2Y = KP707106781 * (T2W + T2X); } { E T30, T31, T33, T34; { E T1M, T1N, T1P, T1Q; T1M = I[WS(is, 6)]; T1N = I[WS(is, 70)]; T1O = T1M + T1N; T30 = T1M - T1N; T1P = I[WS(is, 38)]; T1Q = I[WS(is, 102)]; T1R = T1P + T1Q; T31 = T1P - T1Q; } T32 = FNMS(KP382683432, T31, KP923879532 * T30); Td0 = T1O - T1R; T3c = FMA(KP382683432, T30, KP923879532 * T31); { E T1T, T1U, T1W, T1X; T1T = I[WS(is, 118)]; T1U = I[WS(is, 54)]; T1V = T1T + T1U; T33 = T1T - T1U; T1W = I[WS(is, 22)]; T1X = I[WS(is, 86)]; T1Y = T1W + T1X; T34 = T1W - T1X; } T35 = FMA(KP923879532, T33, KP382683432 * T34); Td1 = T1V - T1Y; T3b = FNMS(KP923879532, T34, KP382683432 * T33); } { E T1D, T1K, TcZ, Td2; T1D = T1z + T1C; T1K = T1G + T1J; T1L = T1D + T1K; Tad = T1D - T1K; TcZ = T1z - T1C; Td2 = KP707106781 * (Td0 + Td1); Td3 = TcZ + Td2; Tew = TcZ - Td2; } { E Td4, Td5, T1S, T1Z; Td4 = T1J - T1G; Td5 = KP707106781 * (Td1 - Td0); Td6 = Td4 + Td5; Tex = Td5 - Td4; T1S = T1O + T1R; T1Z = T1V + T1Y; T20 = T1S + T1Z; Tae = T1Z - T1S; } { E T2Z, T36, T7J, T7K; T2Z = T2V + T2Y; T36 = T32 + T35; T37 = T2Z + T36; T6x = T2Z - T36; T7J = T2V - T2Y; T7K = T3c + T3b; T7L = T7J + T7K; T9a = T7J - T7K; } { E T7M, T7N, T3a, T3d; T7M = T39 + T38; T7N = T35 - T32; T7O = T7M + T7N; T9b = T7N - T7M; T3a = T38 - T39; T3d = T3b - T3c; T3e = T3a + T3d; T6w = T3d - T3a; } } { E T3L, Tdf, T3X, Tar, T42, Tdi, T4e, Tay, T3S, Tdg, T3U, Tau, T49, Tdj, T4b; E TaB, Tdh, Tdk; { E T3J, T3K, Tap, T3V, T3W, Taq; T3J = I[WS(is, 5)]; T3K = I[WS(is, 69)]; Tap = T3J + T3K; T3V = I[WS(is, 37)]; T3W = I[WS(is, 101)]; Taq = T3V + T3W; T3L = T3J - T3K; Tdf = Tap - Taq; T3X = T3V - T3W; Tar = Tap + Taq; } { E T40, T41, Taw, T4c, T4d, Tax; T40 = I[WS(is, 125)]; T41 = I[WS(is, 61)]; Taw = T40 + T41; T4c = I[WS(is, 29)]; T4d = I[WS(is, 93)]; Tax = T4c + T4d; T42 = T40 - T41; Tdi = Taw - Tax; T4e = T4c - T4d; Tay = Taw + Tax; } { E T3O, Tas, T3R, Tat; { E T3M, T3N, T3P, T3Q; T3M = I[WS(is, 21)]; T3N = I[WS(is, 85)]; T3O = T3M - T3N; Tas = T3M + T3N; T3P = I[WS(is, 117)]; T3Q = I[WS(is, 53)]; T3R = T3P - T3Q; Tat = T3P + T3Q; } T3S = KP707106781 * (T3O + T3R); Tdg = Tat - Tas; T3U = KP707106781 * (T3R - T3O); Tau = Tas + Tat; } { E T45, Taz, T48, TaA; { E T43, T44, T46, T47; T43 = I[WS(is, 13)]; T44 = I[WS(is, 77)]; T45 = T43 - T44; Taz = T43 + T44; T46 = I[WS(is, 109)]; T47 = I[WS(is, 45)]; T48 = T46 - T47; TaA = T46 + T47; } T49 = KP707106781 * (T45 + T48); Tdj = TaA - Taz; T4b = KP707106781 * (T48 - T45); TaB = Taz + TaA; } TbZ = Tar + Tau; Tc0 = Tay + TaB; { E T3T, T3Y, Tdq, Tdr; T3T = T3L + T3S; T3Y = T3U - T3X; T3Z = FMA(KP980785280, T3T, KP195090322 * T3Y); T4s = FNMS(KP195090322, T3T, KP980785280 * T3Y); Tdq = FNMS(KP382683432, Tdf, KP923879532 * Tdg); Tdr = FMA(KP382683432, Tdi, KP923879532 * Tdj); Tds = Tdq + Tdr; TeI = Tdr - Tdq; } { E T4a, T4f, T7Y, T7Z; T4a = T42 + T49; T4f = T4b - T4e; T4g = FNMS(KP195090322, T4f, KP980785280 * T4a); T4t = FMA(KP195090322, T4a, KP980785280 * T4f); T7Y = T42 - T49; T7Z = T4e + T4b; T80 = FNMS(KP555570233, T7Z, KP831469612 * T7Y); T87 = FMA(KP555570233, T7Y, KP831469612 * T7Z); } Tdh = FMA(KP923879532, Tdf, KP382683432 * Tdg); Tdk = FNMS(KP382683432, Tdj, KP923879532 * Tdi); Tdl = Tdh + Tdk; TeE = Tdk - Tdh; { E T7V, T7W, Tav, TaC; T7V = T3L - T3S; T7W = T3X + T3U; T7X = FMA(KP831469612, T7V, KP555570233 * T7W); T86 = FNMS(KP555570233, T7V, KP831469612 * T7W); Tav = Tar - Tau; TaC = Tay - TaB; TaD = KP707106781 * (Tav + TaC); TaM = KP707106781 * (TaC - Tav); } } { E T50, TdA, T5c, TaY, T5h, TdD, T5t, Tb5, T57, TdB, T59, Tb1, T5o, TdE, T5q; E Tb8, TdC, TdF; { E T4Y, T4Z, TaW, T5a, T5b, TaX; T4Y = I[WS(is, 3)]; T4Z = I[WS(is, 67)]; TaW = T4Y + T4Z; T5a = I[WS(is, 35)]; T5b = I[WS(is, 99)]; TaX = T5a + T5b; T50 = T4Y - T4Z; TdA = TaW - TaX; T5c = T5a - T5b; TaY = TaW + TaX; } { E T5f, T5g, Tb3, T5r, T5s, Tb4; T5f = I[WS(is, 123)]; T5g = I[WS(is, 59)]; Tb3 = T5f + T5g; T5r = I[WS(is, 27)]; T5s = I[WS(is, 91)]; Tb4 = T5r + T5s; T5h = T5f - T5g; TdD = Tb3 - Tb4; T5t = T5r - T5s; Tb5 = Tb3 + Tb4; } { E T53, TaZ, T56, Tb0; { E T51, T52, T54, T55; T51 = I[WS(is, 19)]; T52 = I[WS(is, 83)]; T53 = T51 - T52; TaZ = T51 + T52; T54 = I[WS(is, 115)]; T55 = I[WS(is, 51)]; T56 = T54 - T55; Tb0 = T54 + T55; } T57 = KP707106781 * (T53 + T56); TdB = Tb0 - TaZ; T59 = KP707106781 * (T56 - T53); Tb1 = TaZ + Tb0; } { E T5k, Tb6, T5n, Tb7; { E T5i, T5j, T5l, T5m; T5i = I[WS(is, 11)]; T5j = I[WS(is, 75)]; T5k = T5i - T5j; Tb6 = T5i + T5j; T5l = I[WS(is, 107)]; T5m = I[WS(is, 43)]; T5n = T5l - T5m; Tb7 = T5l + T5m; } T5o = KP707106781 * (T5k + T5n); TdE = Tb7 - Tb6; T5q = KP707106781 * (T5n - T5k); Tb8 = Tb6 + Tb7; } Tc6 = TaY + Tb1; Tc7 = Tb5 + Tb8; { E T58, T5d, TdL, TdM; T58 = T50 + T57; T5d = T59 - T5c; T5e = FMA(KP980785280, T58, KP195090322 * T5d); T5H = FNMS(KP195090322, T58, KP980785280 * T5d); TdL = FNMS(KP382683432, TdA, KP923879532 * TdB); TdM = FMA(KP382683432, TdD, KP923879532 * TdE); TdN = TdL + TdM; TeM = TdM - TdL; } { E T5p, T5u, T8h, T8i; T5p = T5h + T5o; T5u = T5q - T5t; T5v = FNMS(KP195090322, T5u, KP980785280 * T5p); T5I = FMA(KP195090322, T5p, KP980785280 * T5u); T8h = T5h - T5o; T8i = T5t + T5q; T8j = FNMS(KP555570233, T8i, KP831469612 * T8h); T8q = FMA(KP555570233, T8h, KP831469612 * T8i); } TdC = FMA(KP923879532, TdA, KP382683432 * TdB); TdF = FNMS(KP382683432, TdE, KP923879532 * TdD); TdG = TdC + TdF; TeO = TdF - TdC; { E T8e, T8f, Tb2, Tb9; T8e = T50 - T57; T8f = T5c + T59; T8g = FMA(KP831469612, T8e, KP555570233 * T8f); T8p = FNMS(KP555570233, T8e, KP831469612 * T8f); Tb2 = TaY - Tb1; Tb9 = Tb5 - Tb8; Tba = KP707106781 * (Tb2 + Tb9); Tbj = KP707106781 * (Tb9 - Tb2); } } { E T11, TbV, Tc9, Tcf, T22, Tcb, Tc2, Tce; { E Tv, T10, Tc5, Tc8; Tv = Tf + Tu; T10 = TK + TZ; T11 = Tv + T10; TbV = Tv - T10; Tc5 = Tc3 + Tc4; Tc8 = Tc6 + Tc7; Tc9 = Tc5 - Tc8; Tcf = Tc5 + Tc8; } { E T1w, T21, TbY, Tc1; T1w = T1g + T1v; T21 = T1L + T20; T22 = T1w + T21; Tcb = T21 - T1w; TbY = TbW + TbX; Tc1 = TbZ + Tc0; Tc2 = TbY - Tc1; Tce = TbY + Tc1; } ro[WS(ros, 32)] = T11 - T22; io[WS(ios, 32)] = Tcf - Tce; { E Tca, Tcc, Tcd, Tcg; Tca = KP707106781 * (Tc2 + Tc9); ro[WS(ros, 48)] = TbV - Tca; ro[WS(ros, 16)] = TbV + Tca; Tcc = KP707106781 * (Tc9 - Tc2); io[WS(ios, 16)] = Tcb + Tcc; io[WS(ios, 48)] = Tcc - Tcb; Tcd = T11 + T22; Tcg = Tce + Tcf; ro[WS(ros, 64)] = Tcd - Tcg; ro[0] = Tcd + Tcg; } } { E Tch, Tcu, Tck, Tct, Tco, Tcy, Tcr, Tcz, Tci, Tcj; Tch = Tf - Tu; Tcu = TZ - TK; Tci = T1g - T1v; Tcj = T1L - T20; Tck = KP707106781 * (Tci + Tcj); Tct = KP707106781 * (Tcj - Tci); { E Tcm, Tcn, Tcp, Tcq; Tcm = TbW - TbX; Tcn = Tc0 - TbZ; Tco = FMA(KP923879532, Tcm, KP382683432 * Tcn); Tcy = FNMS(KP382683432, Tcm, KP923879532 * Tcn); Tcp = Tc3 - Tc4; Tcq = Tc7 - Tc6; Tcr = FNMS(KP382683432, Tcq, KP923879532 * Tcp); Tcz = FMA(KP382683432, Tcp, KP923879532 * Tcq); } { E Tcl, Tcs, Tcx, TcA; Tcl = Tch + Tck; Tcs = Tco + Tcr; ro[WS(ros, 56)] = Tcl - Tcs; ro[WS(ros, 8)] = Tcl + Tcs; Tcx = Tcu + Tct; TcA = Tcy + Tcz; io[WS(ios, 8)] = Tcx + TcA; io[WS(ios, 56)] = TcA - Tcx; } { E Tcv, Tcw, TcB, TcC; Tcv = Tct - Tcu; Tcw = Tcr - Tco; io[WS(ios, 24)] = Tcv + Tcw; io[WS(ios, 40)] = Tcw - Tcv; TcB = Tch - Tck; TcC = Tcz - Tcy; ro[WS(ros, 40)] = TcB - TcC; ro[WS(ros, 24)] = TcB + TcC; } } { E Ta9, TbB, Tbs, TbM, Tag, TbL, TbJ, TbR, TaO, Tbw, Tbp, TbC, TbG, TbQ, Tbl; E Tbx, Ta8, Tbr; Ta8 = KP707106781 * (Ta6 + Ta7); Ta9 = Ta5 + Ta8; TbB = Ta5 - Ta8; Tbr = KP707106781 * (Ta7 - Ta6); Tbs = Tbq + Tbr; TbM = Tbr - Tbq; { E Tac, Taf, TbH, TbI; Tac = FMA(KP923879532, Taa, KP382683432 * Tab); Taf = FNMS(KP382683432, Tae, KP923879532 * Tad); Tag = Tac + Taf; TbL = Taf - Tac; TbH = TaV - Tba; TbI = Tbj - Tbi; TbJ = FNMS(KP555570233, TbI, KP831469612 * TbH); TbR = FMA(KP555570233, TbH, KP831469612 * TbI); } { E TaE, TaN, Tbn, Tbo; TaE = Tao + TaD; TaN = TaL + TaM; TaO = FMA(KP980785280, TaE, KP195090322 * TaN); Tbw = FNMS(KP195090322, TaE, KP980785280 * TaN); Tbn = FNMS(KP382683432, Taa, KP923879532 * Tab); Tbo = FMA(KP382683432, Tad, KP923879532 * Tae); Tbp = Tbn + Tbo; TbC = Tbo - Tbn; } { E TbE, TbF, Tbb, Tbk; TbE = Tao - TaD; TbF = TaM - TaL; TbG = FMA(KP831469612, TbE, KP555570233 * TbF); TbQ = FNMS(KP555570233, TbE, KP831469612 * TbF); Tbb = TaV + Tba; Tbk = Tbi + Tbj; Tbl = FNMS(KP195090322, Tbk, KP980785280 * Tbb); Tbx = FMA(KP195090322, Tbb, KP980785280 * Tbk); } { E Tah, Tbm, Tbv, Tby; Tah = Ta9 + Tag; Tbm = TaO + Tbl; ro[WS(ros, 60)] = Tah - Tbm; ro[WS(ros, 4)] = Tah + Tbm; Tbv = Tbs + Tbp; Tby = Tbw + Tbx; io[WS(ios, 4)] = Tbv + Tby; io[WS(ios, 60)] = Tby - Tbv; } { E Tbt, Tbu, Tbz, TbA; Tbt = Tbp - Tbs; Tbu = Tbl - TaO; io[WS(ios, 28)] = Tbt + Tbu; io[WS(ios, 36)] = Tbu - Tbt; Tbz = Ta9 - Tag; TbA = Tbx - Tbw; ro[WS(ros, 36)] = Tbz - TbA; ro[WS(ros, 28)] = Tbz + TbA; } { E TbD, TbK, TbP, TbS; TbD = TbB + TbC; TbK = TbG + TbJ; ro[WS(ros, 52)] = TbD - TbK; ro[WS(ros, 12)] = TbD + TbK; TbP = TbM + TbL; TbS = TbQ + TbR; io[WS(ios, 12)] = TbP + TbS; io[WS(ios, 52)] = TbS - TbP; } { E TbN, TbO, TbT, TbU; TbN = TbL - TbM; TbO = TbJ - TbG; io[WS(ios, 20)] = TbN + TbO; io[WS(ios, 44)] = TbO - TbN; TbT = TbB - TbC; TbU = TbR - TbQ; ro[WS(ros, 44)] = TbT - TbU; ro[WS(ros, 20)] = TbT + TbU; } } { E Tev, Tf7, Tfc, Tfm, Tff, Tfn, TeC, Tfh, TeK, Tf2, TeV, Tf8, TeY, Tfi, TeR; E Tf3; { E Tet, Teu, Tfa, Tfb; Tet = TcD - TcG; Teu = TdY - TdX; Tev = Tet - Teu; Tf7 = Tet + Teu; Tfa = TeF + TeE; Tfb = TeH + TeI; Tfc = FMA(KP290284677, Tfa, KP956940335 * Tfb); Tfm = FNMS(KP290284677, Tfb, KP956940335 * Tfa); } { E Tfd, Tfe, Tey, TeB; Tfd = TeL + TeM; Tfe = TeP + TeO; Tff = FNMS(KP290284677, Tfe, KP956940335 * Tfd); Tfn = FMA(KP956940335, Tfe, KP290284677 * Tfd); Tey = FMA(KP555570233, Tew, KP831469612 * Tex); TeB = FNMS(KP555570233, TeA, KP831469612 * Tez); TeC = Tey - TeB; Tfh = TeB + Tey; } { E TeG, TeJ, TeT, TeU; TeG = TeE - TeF; TeJ = TeH - TeI; TeK = FMA(KP471396736, TeG, KP881921264 * TeJ); Tf2 = FNMS(KP471396736, TeJ, KP881921264 * TeG); TeT = FNMS(KP555570233, Tex, KP831469612 * Tew); TeU = FMA(KP831469612, TeA, KP555570233 * Tez); TeV = TeT - TeU; Tf8 = TeU + TeT; } { E TeW, TeX, TeN, TeQ; TeW = TcN - TcK; TeX = TdV - TdU; TeY = TeW - TeX; Tfi = TeX + TeW; TeN = TeL - TeM; TeQ = TeO - TeP; TeR = FNMS(KP471396736, TeQ, KP881921264 * TeN); Tf3 = FMA(KP881921264, TeQ, KP471396736 * TeN); } { E TeD, TeS, Tf1, Tf4; TeD = Tev + TeC; TeS = TeK + TeR; ro[WS(ros, 54)] = TeD - TeS; ro[WS(ros, 10)] = TeD + TeS; Tf1 = TeY + TeV; Tf4 = Tf2 + Tf3; io[WS(ios, 10)] = Tf1 + Tf4; io[WS(ios, 54)] = Tf4 - Tf1; } { E TeZ, Tf0, Tf5, Tf6; TeZ = TeV - TeY; Tf0 = TeR - TeK; io[WS(ios, 22)] = TeZ + Tf0; io[WS(ios, 42)] = Tf0 - TeZ; Tf5 = Tev - TeC; Tf6 = Tf3 - Tf2; ro[WS(ros, 42)] = Tf5 - Tf6; ro[WS(ros, 22)] = Tf5 + Tf6; } { E Tf9, Tfg, Tfl, Tfo; Tf9 = Tf7 + Tf8; Tfg = Tfc + Tff; ro[WS(ros, 58)] = Tf9 - Tfg; ro[WS(ros, 6)] = Tf9 + Tfg; Tfl = Tfi + Tfh; Tfo = Tfm + Tfn; io[WS(ios, 6)] = Tfl + Tfo; io[WS(ios, 58)] = Tfo - Tfl; } { E Tfj, Tfk, Tfp, Tfq; Tfj = Tfh - Tfi; Tfk = Tff - Tfc; io[WS(ios, 26)] = Tfj + Tfk; io[WS(ios, 38)] = Tfk - Tfj; Tfp = Tf7 - Tf8; Tfq = Tfn - Tfm; ro[WS(ros, 38)] = Tfp - Tfq; ro[WS(ros, 26)] = Tfp + Tfq; } } { E TcP, Te9, Tee, Teo, Teh, Tep, Td8, Tej, Tdu, Te4, TdT, Tea, Te0, Tek, TdP; E Te5; { E TcH, TcO, Tec, Ted; TcH = TcD + TcG; TcO = TcK + TcN; TcP = TcH + TcO; Te9 = TcH - TcO; Tec = Tde - Tdl; Ted = Tds - Tdp; Tee = FMA(KP773010453, Tec, KP634393284 * Ted); Teo = FNMS(KP634393284, Tec, KP773010453 * Ted); } { E Tef, Teg, TcY, Td7; Tef = Tdz - TdG; Teg = TdN - TdK; Teh = FNMS(KP634393284, Teg, KP773010453 * Tef); Tep = FMA(KP634393284, Tef, KP773010453 * Teg); TcY = FMA(KP980785280, TcU, KP195090322 * TcX); Td7 = FNMS(KP195090322, Td6, KP980785280 * Td3); Td8 = TcY + Td7; Tej = Td7 - TcY; } { E Tdm, Tdt, TdR, TdS; Tdm = Tde + Tdl; Tdt = Tdp + Tds; Tdu = FMA(KP995184726, Tdm, KP098017140 * Tdt); Te4 = FNMS(KP098017140, Tdm, KP995184726 * Tdt); TdR = FNMS(KP195090322, TcU, KP980785280 * TcX); TdS = FMA(KP195090322, Td3, KP980785280 * Td6); TdT = TdR + TdS; Tea = TdS - TdR; } { E TdW, TdZ, TdH, TdO; TdW = TdU + TdV; TdZ = TdX + TdY; Te0 = TdW + TdZ; Tek = TdZ - TdW; TdH = Tdz + TdG; TdO = TdK + TdN; TdP = FNMS(KP098017140, TdO, KP995184726 * TdH); Te5 = FMA(KP098017140, TdH, KP995184726 * TdO); } { E Td9, TdQ, Te3, Te6; Td9 = TcP + Td8; TdQ = Tdu + TdP; ro[WS(ros, 62)] = Td9 - TdQ; ro[WS(ros, 2)] = Td9 + TdQ; Te3 = Te0 + TdT; Te6 = Te4 + Te5; io[WS(ios, 2)] = Te3 + Te6; io[WS(ios, 62)] = Te6 - Te3; } { E Te1, Te2, Te7, Te8; Te1 = TdT - Te0; Te2 = TdP - Tdu; io[WS(ios, 30)] = Te1 + Te2; io[WS(ios, 34)] = Te2 - Te1; Te7 = TcP - Td8; Te8 = Te5 - Te4; ro[WS(ros, 34)] = Te7 - Te8; ro[WS(ros, 30)] = Te7 + Te8; } { E Teb, Tei, Ten, Teq; Teb = Te9 + Tea; Tei = Tee + Teh; ro[WS(ros, 50)] = Teb - Tei; ro[WS(ros, 14)] = Teb + Tei; Ten = Tek + Tej; Teq = Teo + Tep; io[WS(ios, 14)] = Ten + Teq; io[WS(ios, 50)] = Teq - Ten; } { E Tel, Tem, Ter, Tes; Tel = Tej - Tek; Tem = Teh - Tee; io[WS(ios, 18)] = Tel + Tem; io[WS(ios, 46)] = Tem - Tel; Ter = Te9 - Tea; Tes = Tep - Teo; ro[WS(ros, 46)] = Ter - Tes; ro[WS(ros, 18)] = Ter + Tes; } } { E T6v, T77, T6C, T7h, T6Y, T7i, T6V, T78, T6R, T7n, T73, T7f, T6K, T7m, T72; E T7c; { E T6t, T6u, T6T, T6U; T6t = T27 - T2e; T6u = T5Y - T5X; T6v = T6t - T6u; T77 = T6t + T6u; { E T6y, T6B, T6W, T6X; T6y = FMA(KP773010453, T6w, KP634393284 * T6x); T6B = FNMS(KP634393284, T6A, KP773010453 * T6z); T6C = T6y - T6B; T7h = T6B + T6y; T6W = T2x - T2o; T6X = T5V - T5S; T6Y = T6W - T6X; T7i = T6X + T6W; } T6T = FNMS(KP634393284, T6w, KP773010453 * T6x); T6U = FMA(KP634393284, T6z, KP773010453 * T6A); T6V = T6T - T6U; T78 = T6U + T6T; { E T6N, T7d, T6Q, T7e, T6M, T6O; T6M = T5I - T5H; T6N = T6L - T6M; T7d = T6L + T6M; T6O = T5v - T5e; T6Q = T6O - T6P; T7e = T6P + T6O; T6R = FNMS(KP427555093, T6Q, KP903989293 * T6N); T7n = FMA(KP941544065, T7e, KP336889853 * T7d); T73 = FMA(KP903989293, T6Q, KP427555093 * T6N); T7f = FNMS(KP336889853, T7e, KP941544065 * T7d); } { E T6G, T7a, T6J, T7b, T6E, T6I; T6E = T4g - T3Z; T6G = T6E - T6F; T7a = T6F + T6E; T6I = T4t - T4s; T6J = T6H - T6I; T7b = T6H + T6I; T6K = FMA(KP427555093, T6G, KP903989293 * T6J); T7m = FNMS(KP336889853, T7b, KP941544065 * T7a); T72 = FNMS(KP427555093, T6J, KP903989293 * T6G); T7c = FMA(KP336889853, T7a, KP941544065 * T7b); } } { E T6D, T6S, T71, T74; T6D = T6v + T6C; T6S = T6K + T6R; ro[WS(ros, 55)] = T6D - T6S; ro[WS(ros, 9)] = T6D + T6S; T71 = T6Y + T6V; T74 = T72 + T73; io[WS(ios, 9)] = T71 + T74; io[WS(ios, 55)] = T74 - T71; } { E T6Z, T70, T75, T76; T6Z = T6V - T6Y; T70 = T6R - T6K; io[WS(ios, 23)] = T6Z + T70; io[WS(ios, 41)] = T70 - T6Z; T75 = T6v - T6C; T76 = T73 - T72; ro[WS(ros, 41)] = T75 - T76; ro[WS(ros, 23)] = T75 + T76; } { E T79, T7g, T7l, T7o; T79 = T77 + T78; T7g = T7c + T7f; ro[WS(ros, 57)] = T79 - T7g; ro[WS(ros, 7)] = T79 + T7g; T7l = T7i + T7h; T7o = T7m + T7n; io[WS(ios, 7)] = T7l + T7o; io[WS(ios, 57)] = T7o - T7l; } { E T7j, T7k, T7p, T7q; T7j = T7h - T7i; T7k = T7f - T7c; io[WS(ios, 25)] = T7j + T7k; io[WS(ios, 39)] = T7k - T7j; T7p = T77 - T78; T7q = T7n - T7m; ro[WS(ros, 39)] = T7p - T7q; ro[WS(ros, 25)] = T7p + T7q; } } { E T99, T9L, T9g, T9V, T9C, T9W, T9z, T9M, T9v, Ta1, T9H, T9T, T9o, Ta0, T9G; E T9Q; { E T97, T98, T9x, T9y; T97 = T7r - T7s; T98 = T8C - T8B; T99 = T97 - T98; T9L = T97 + T98; { E T9c, T9f, T9A, T9B; T9c = FMA(KP471396736, T9a, KP881921264 * T9b); T9f = FNMS(KP471396736, T9e, KP881921264 * T9d); T9g = T9c - T9f; T9V = T9f + T9c; T9A = T7z - T7w; T9B = T8z - T8y; T9C = T9A - T9B; T9W = T9B + T9A; } T9x = FNMS(KP471396736, T9b, KP881921264 * T9a); T9y = FMA(KP881921264, T9e, KP471396736 * T9d); T9z = T9x - T9y; T9M = T9y + T9x; { E T9r, T9R, T9u, T9S, T9q, T9s; T9q = T8q - T8p; T9r = T9p - T9q; T9R = T9p + T9q; T9s = T8j - T8g; T9u = T9s - T9t; T9S = T9t + T9s; T9v = FNMS(KP514102744, T9u, KP857728610 * T9r); Ta1 = FMA(KP970031253, T9S, KP242980179 * T9R); T9H = FMA(KP857728610, T9u, KP514102744 * T9r); T9T = FNMS(KP242980179, T9S, KP970031253 * T9R); } { E T9k, T9O, T9n, T9P, T9i, T9m; T9i = T80 - T7X; T9k = T9i - T9j; T9O = T9j + T9i; T9m = T87 - T86; T9n = T9l - T9m; T9P = T9l + T9m; T9o = FMA(KP514102744, T9k, KP857728610 * T9n); Ta0 = FNMS(KP242980179, T9P, KP970031253 * T9O); T9G = FNMS(KP514102744, T9n, KP857728610 * T9k); T9Q = FMA(KP242980179, T9O, KP970031253 * T9P); } } { E T9h, T9w, T9F, T9I; T9h = T99 + T9g; T9w = T9o + T9v; ro[WS(ros, 53)] = T9h - T9w; ro[WS(ros, 11)] = T9h + T9w; T9F = T9C + T9z; T9I = T9G + T9H; io[WS(ios, 11)] = T9F + T9I; io[WS(ios, 53)] = T9I - T9F; } { E T9D, T9E, T9J, T9K; T9D = T9z - T9C; T9E = T9v - T9o; io[WS(ios, 21)] = T9D + T9E; io[WS(ios, 43)] = T9E - T9D; T9J = T99 - T9g; T9K = T9H - T9G; ro[WS(ros, 43)] = T9J - T9K; ro[WS(ros, 21)] = T9J + T9K; } { E T9N, T9U, T9Z, Ta2; T9N = T9L + T9M; T9U = T9Q + T9T; ro[WS(ros, 59)] = T9N - T9U; ro[WS(ros, 5)] = T9N + T9U; T9Z = T9W + T9V; Ta2 = Ta0 + Ta1; io[WS(ios, 5)] = T9Z + Ta2; io[WS(ios, 59)] = Ta2 - T9Z; } { E T9X, T9Y, Ta3, Ta4; T9X = T9V - T9W; T9Y = T9T - T9Q; io[WS(ios, 27)] = T9X + T9Y; io[WS(ios, 37)] = T9Y - T9X; Ta3 = T9L - T9M; Ta4 = Ta1 - Ta0; ro[WS(ros, 37)] = Ta3 - Ta4; ro[WS(ros, 27)] = Ta3 + Ta4; } } { E T2z, T69, T3g, T6j, T60, T6k, T5P, T6a, T5L, T6p, T65, T6h, T4w, T6o, T64; E T6e; { E T2f, T2y, T5N, T5O; T2f = T27 + T2e; T2y = T2o + T2x; T2z = T2f + T2y; T69 = T2f - T2y; { E T2U, T3f, T5W, T5Z; T2U = FMA(KP098017140, T2M, KP995184726 * T2T); T3f = FNMS(KP098017140, T3e, KP995184726 * T37); T3g = T2U + T3f; T6j = T3f - T2U; T5W = T5S + T5V; T5Z = T5X + T5Y; T60 = T5W + T5Z; T6k = T5Z - T5W; } T5N = FNMS(KP098017140, T2T, KP995184726 * T2M); T5O = FMA(KP995184726, T3e, KP098017140 * T37); T5P = T5N + T5O; T6a = T5O - T5N; { E T5x, T6f, T5K, T6g, T5w, T5J; T5w = T5e + T5v; T5x = T4X + T5w; T6f = T4X - T5w; T5J = T5H + T5I; T5K = T5G + T5J; T6g = T5J - T5G; T5L = FNMS(KP049067674, T5K, KP998795456 * T5x); T6p = FMA(KP671558954, T6f, KP740951125 * T6g); T65 = FMA(KP049067674, T5x, KP998795456 * T5K); T6h = FNMS(KP671558954, T6g, KP740951125 * T6f); } { E T4i, T6c, T4v, T6d, T4h, T4u; T4h = T3Z + T4g; T4i = T3I + T4h; T6c = T3I - T4h; T4u = T4s + T4t; T4v = T4r + T4u; T6d = T4u - T4r; T4w = FMA(KP998795456, T4i, KP049067674 * T4v); T6o = FNMS(KP671558954, T6c, KP740951125 * T6d); T64 = FNMS(KP049067674, T4i, KP998795456 * T4v); T6e = FMA(KP740951125, T6c, KP671558954 * T6d); } } { E T3h, T5M, T63, T66; T3h = T2z + T3g; T5M = T4w + T5L; ro[WS(ros, 63)] = T3h - T5M; ro[WS(ros, 1)] = T3h + T5M; T63 = T60 + T5P; T66 = T64 + T65; io[WS(ios, 1)] = T63 + T66; io[WS(ios, 63)] = T66 - T63; } { E T61, T62, T67, T68; T61 = T5P - T60; T62 = T5L - T4w; io[WS(ios, 31)] = T61 + T62; io[WS(ios, 33)] = T62 - T61; T67 = T2z - T3g; T68 = T65 - T64; ro[WS(ros, 33)] = T67 - T68; ro[WS(ros, 31)] = T67 + T68; } { E T6b, T6i, T6n, T6q; T6b = T69 + T6a; T6i = T6e + T6h; ro[WS(ros, 49)] = T6b - T6i; ro[WS(ros, 15)] = T6b + T6i; T6n = T6k + T6j; T6q = T6o + T6p; io[WS(ios, 15)] = T6n + T6q; io[WS(ios, 49)] = T6q - T6n; } { E T6l, T6m, T6r, T6s; T6l = T6j - T6k; T6m = T6h - T6e; io[WS(ios, 17)] = T6l + T6m; io[WS(ios, 47)] = T6m - T6l; T6r = T69 - T6a; T6s = T6p - T6o; ro[WS(ros, 47)] = T6r - T6s; ro[WS(ros, 17)] = T6r + T6s; } } { E T7B, T8N, T7Q, T8X, T8E, T8Y, T8x, T8O, T8t, T93, T8J, T8V, T8a, T92, T8I; E T8S; { E T7t, T7A, T8v, T8w; T7t = T7r + T7s; T7A = T7w + T7z; T7B = T7t + T7A; T8N = T7t - T7A; { E T7I, T7P, T8A, T8D; T7I = FMA(KP956940335, T7E, KP290284677 * T7H); T7P = FNMS(KP290284677, T7O, KP956940335 * T7L); T7Q = T7I + T7P; T8X = T7P - T7I; T8A = T8y + T8z; T8D = T8B + T8C; T8E = T8A + T8D; T8Y = T8D - T8A; } T8v = FNMS(KP290284677, T7E, KP956940335 * T7H); T8w = FMA(KP290284677, T7L, KP956940335 * T7O); T8x = T8v + T8w; T8O = T8w - T8v; { E T8l, T8T, T8s, T8U, T8k, T8r; T8k = T8g + T8j; T8l = T8d + T8k; T8T = T8d - T8k; T8r = T8p + T8q; T8s = T8o + T8r; T8U = T8r - T8o; T8t = FNMS(KP146730474, T8s, KP989176509 * T8l); T93 = FMA(KP595699304, T8T, KP803207531 * T8U); T8J = FMA(KP146730474, T8l, KP989176509 * T8s); T8V = FNMS(KP595699304, T8U, KP803207531 * T8T); } { E T82, T8Q, T89, T8R, T81, T88; T81 = T7X + T80; T82 = T7U + T81; T8Q = T7U - T81; T88 = T86 + T87; T89 = T85 + T88; T8R = T88 - T85; T8a = FMA(KP989176509, T82, KP146730474 * T89); T92 = FNMS(KP595699304, T8Q, KP803207531 * T8R); T8I = FNMS(KP146730474, T82, KP989176509 * T89); T8S = FMA(KP803207531, T8Q, KP595699304 * T8R); } } { E T7R, T8u, T8H, T8K; T7R = T7B + T7Q; T8u = T8a + T8t; ro[WS(ros, 61)] = T7R - T8u; ro[WS(ros, 3)] = T7R + T8u; T8H = T8E + T8x; T8K = T8I + T8J; io[WS(ios, 3)] = T8H + T8K; io[WS(ios, 61)] = T8K - T8H; } { E T8F, T8G, T8L, T8M; T8F = T8x - T8E; T8G = T8t - T8a; io[WS(ios, 29)] = T8F + T8G; io[WS(ios, 35)] = T8G - T8F; T8L = T7B - T7Q; T8M = T8J - T8I; ro[WS(ros, 35)] = T8L - T8M; ro[WS(ros, 29)] = T8L + T8M; } { E T8P, T8W, T91, T94; T8P = T8N + T8O; T8W = T8S + T8V; ro[WS(ros, 51)] = T8P - T8W; ro[WS(ros, 13)] = T8P + T8W; T91 = T8Y + T8X; T94 = T92 + T93; io[WS(ios, 13)] = T91 + T94; io[WS(ios, 51)] = T94 - T91; } { E T8Z, T90, T95, T96; T8Z = T8X - T8Y; T90 = T8V - T8S; io[WS(ios, 19)] = T8Z + T90; io[WS(ios, 45)] = T90 - T8Z; T95 = T8N - T8O; T96 = T93 - T92; ro[WS(ros, 45)] = T95 - T96; ro[WS(ros, 19)] = T95 + T96; } } } } static void mr2hc_128(const R *I, R *ro, R *io, stride is, stride ros, stride ios, int v, int ivs, int ovs) { int i; for (i = v; i > 0; --i) { mr2hc_128_0(I, ro, io, is, ros, ios); I += ivs; ro += ovs; io += ovs; } } static const kr2hc_desc desc = { 128, "mr2hc_128", {812, 186, 144, 0}, &GENUS, 0, 0, 0, 0, 0 }; void X(codelet_mr2hc_128) (planner *p) { X(kr2hc_register) (p, mr2hc_128, &desc); }