/* * Copyright (c) 2003 Matteo Frigo * Copyright (c) 2003 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * */ /* This file was automatically generated --- DO NOT EDIT */ /* Generated on Sat Jul 5 21:56:49 EDT 2003 */ #include "codelet-rdft.h" /* Generated by: /homee/stevenj/cvs/fftw3.0.1/genfft/gen_r2hc_noinline -compact -variables 4 -n 64 -name mr2hc_64 -include r2hc.h */ /* * This function contains 394 FP additions, 124 FP multiplications, * (or, 342 additions, 72 multiplications, 52 fused multiply/add), * 105 stack variables, and 128 memory accesses */ /* * Generator Id's : * $Id: mr2hc_64.c,v 1.1 2008/10/17 06:12:34 scuri Exp $ * $Id: mr2hc_64.c,v 1.1 2008/10/17 06:12:34 scuri Exp $ * $Id: mr2hc_64.c,v 1.1 2008/10/17 06:12:34 scuri Exp $ */ #include "r2hc.h" static void mr2hc_64_0(const R *I, R *ro, R *io, stride is, stride ros, stride ios) { DK(KP773010453, +0.773010453362736960810906609758469800971041293); DK(KP634393284, +0.634393284163645498215171613225493370675687095); DK(KP098017140, +0.098017140329560601994195563888641845861136673); DK(KP995184726, +0.995184726672196886244836953109479921575474869); DK(KP290284677, +0.290284677254462367636192375817395274691476278); DK(KP956940335, +0.956940335732208864935797886980269969482849206); DK(KP471396736, +0.471396736825997648556387625905254377657460319); DK(KP881921264, +0.881921264348355029712756863660388349508442621); DK(KP195090322, +0.195090322016128267848284868477022240927691618); DK(KP980785280, +0.980785280403230449126182236134239036973933731); DK(KP555570233, +0.555570233019602224742830813948532874374937191); DK(KP831469612, +0.831469612302545237078788377617905756738560812); DK(KP382683432, +0.382683432365089771728459984030398866761344562); DK(KP923879532, +0.923879532511286756128183189396788286822416626); DK(KP707106781, +0.707106781186547524400844362104849039284835938); { E T4l, T5a, T15, T3n, T2T, T3Q, T7, Te, Tf, T4A, T4L, T1X, T3B, T23, T3y; E T5I, T66, T4R, T52, T2j, T3F, T2H, T3I, T5P, T69, T1i, T3t, T1l, T3u, TZ; E T63, T4v, T58, T1r, T3r, T1u, T3q, TK, T62, T4s, T57, Tm, Tt, Tu, T4o; E T5b, T1c, T3R, T2Q, T3o, T1M, T3z, T5L, T67, T26, T3C, T4H, T4M, T2y, T3J; E T5S, T6a, T2C, T3G, T4Y, T53; { E T3, T11, Td, T13, T6, T2S, Ta, T12, T14, T2R; { E T1, T2, Tb, Tc; T1 = I[0]; T2 = I[WS(is, 32)]; T3 = T1 + T2; T11 = T1 - T2; Tb = I[WS(is, 56)]; Tc = I[WS(is, 24)]; Td = Tb + Tc; T13 = Tb - Tc; } { E T4, T5, T8, T9; T4 = I[WS(is, 16)]; T5 = I[WS(is, 48)]; T6 = T4 + T5; T2S = T4 - T5; T8 = I[WS(is, 8)]; T9 = I[WS(is, 40)]; Ta = T8 + T9; T12 = T8 - T9; } T4l = T3 - T6; T5a = Td - Ta; T14 = KP707106781 * (T12 + T13); T15 = T11 + T14; T3n = T11 - T14; T2R = KP707106781 * (T13 - T12); T2T = T2R - T2S; T3Q = T2S + T2R; T7 = T3 + T6; Te = Ta + Td; Tf = T7 + Te; } { E T1P, T4J, T21, T4y, T1S, T4K, T1W, T4z; { E T1N, T1O, T1Z, T20; T1N = I[WS(is, 57)]; T1O = I[WS(is, 25)]; T1P = T1N - T1O; T4J = T1N + T1O; T1Z = I[WS(is, 1)]; T20 = I[WS(is, 33)]; T21 = T1Z - T20; T4y = T1Z + T20; } { E T1Q, T1R, T1U, T1V; T1Q = I[WS(is, 9)]; T1R = I[WS(is, 41)]; T1S = T1Q - T1R; T4K = T1Q + T1R; T1U = I[WS(is, 17)]; T1V = I[WS(is, 49)]; T1W = T1U - T1V; T4z = T1U + T1V; } T4A = T4y - T4z; T4L = T4J - T4K; { E T1T, T22, T5G, T5H; T1T = KP707106781 * (T1P - T1S); T1X = T1T - T1W; T3B = T1W + T1T; T22 = KP707106781 * (T1S + T1P); T23 = T21 + T22; T3y = T21 - T22; T5G = T4y + T4z; T5H = T4K + T4J; T5I = T5G + T5H; T66 = T5G - T5H; } } { E T2b, T4P, T2G, T4Q, T2e, T51, T2h, T50; { E T29, T2a, T2E, T2F; T29 = I[WS(is, 63)]; T2a = I[WS(is, 31)]; T2b = T29 - T2a; T4P = T29 + T2a; T2E = I[WS(is, 15)]; T2F = I[WS(is, 47)]; T2G = T2E - T2F; T4Q = T2E + T2F; } { E T2c, T2d, T2f, T2g; T2c = I[WS(is, 7)]; T2d = I[WS(is, 39)]; T2e = T2c - T2d; T51 = T2c + T2d; T2f = I[WS(is, 55)]; T2g = I[WS(is, 23)]; T2h = T2f - T2g; T50 = T2f + T2g; } T4R = T4P - T4Q; T52 = T50 - T51; { E T2i, T2D, T5N, T5O; T2i = KP707106781 * (T2e + T2h); T2j = T2b + T2i; T3F = T2b - T2i; T2D = KP707106781 * (T2h - T2e); T2H = T2D - T2G; T3I = T2G + T2D; T5N = T4P + T4Q; T5O = T51 + T50; T5P = T5N + T5O; T69 = T5N - T5O; } } { E TN, T1e, TX, T1g, TQ, T1k, TU, T1f, T1h, T1j; { E TL, TM, TV, TW; TL = I[WS(is, 62)]; TM = I[WS(is, 30)]; TN = TL + TM; T1e = TL - TM; TV = I[WS(is, 54)]; TW = I[WS(is, 22)]; TX = TV + TW; T1g = TV - TW; } { E TO, TP, TS, TT; TO = I[WS(is, 14)]; TP = I[WS(is, 46)]; TQ = TO + TP; T1k = TO - TP; TS = I[WS(is, 6)]; TT = I[WS(is, 38)]; TU = TS + TT; T1f = TS - TT; } T1h = KP707106781 * (T1f + T1g); T1i = T1e + T1h; T3t = T1e - T1h; T1j = KP707106781 * (T1g - T1f); T1l = T1j - T1k; T3u = T1k + T1j; { E TR, TY, T4t, T4u; TR = TN + TQ; TY = TU + TX; TZ = TR + TY; T63 = TR - TY; T4t = TN - TQ; T4u = TX - TU; T4v = FNMS(KP382683432, T4u, KP923879532 * T4t); T58 = FMA(KP382683432, T4t, KP923879532 * T4u); } } { E Ty, T1s, TI, T1n, TB, T1q, TF, T1o, T1p, T1t; { E Tw, Tx, TG, TH; Tw = I[WS(is, 2)]; Tx = I[WS(is, 34)]; Ty = Tw + Tx; T1s = Tw - Tx; TG = I[WS(is, 58)]; TH = I[WS(is, 26)]; TI = TG + TH; T1n = TG - TH; } { E Tz, TA, TD, TE; Tz = I[WS(is, 18)]; TA = I[WS(is, 50)]; TB = Tz + TA; T1q = Tz - TA; TD = I[WS(is, 10)]; TE = I[WS(is, 42)]; TF = TD + TE; T1o = TD - TE; } T1p = KP707106781 * (T1n - T1o); T1r = T1p - T1q; T3r = T1q + T1p; T1t = KP707106781 * (T1o + T1n); T1u = T1s + T1t; T3q = T1s - T1t; { E TC, TJ, T4q, T4r; TC = Ty + TB; TJ = TF + TI; TK = TC + TJ; T62 = TC - TJ; T4q = Ty - TB; T4r = TI - TF; T4s = FMA(KP923879532, T4q, KP382683432 * T4r); T57 = FNMS(KP382683432, T4q, KP923879532 * T4r); } } { E Ti, T16, Ts, T1a, Tl, T17, Tp, T19, T4m, T4n; { E Tg, Th, Tq, Tr; Tg = I[WS(is, 4)]; Th = I[WS(is, 36)]; Ti = Tg + Th; T16 = Tg - Th; Tq = I[WS(is, 12)]; Tr = I[WS(is, 44)]; Ts = Tq + Tr; T1a = Tq - Tr; } { E Tj, Tk, Tn, To; Tj = I[WS(is, 20)]; Tk = I[WS(is, 52)]; Tl = Tj + Tk; T17 = Tj - Tk; Tn = I[WS(is, 60)]; To = I[WS(is, 28)]; Tp = Tn + To; T19 = Tn - To; } Tm = Ti + Tl; Tt = Tp + Ts; Tu = Tm + Tt; T4m = Ti - Tl; T4n = Tp - Ts; T4o = KP707106781 * (T4m + T4n); T5b = KP707106781 * (T4n - T4m); { E T18, T1b, T2O, T2P; T18 = FNMS(KP382683432, T17, KP923879532 * T16); T1b = FMA(KP923879532, T19, KP382683432 * T1a); T1c = T18 + T1b; T3R = T1b - T18; T2O = FNMS(KP923879532, T1a, KP382683432 * T19); T2P = FMA(KP382683432, T16, KP923879532 * T17); T2Q = T2O - T2P; T3o = T2P + T2O; } } { E T1A, T4E, T1K, T4C, T1D, T4F, T1H, T4B; { E T1y, T1z, T1I, T1J; T1y = I[WS(is, 61)]; T1z = I[WS(is, 29)]; T1A = T1y - T1z; T4E = T1y + T1z; T1I = I[WS(is, 21)]; T1J = I[WS(is, 53)]; T1K = T1I - T1J; T4C = T1I + T1J; } { E T1B, T1C, T1F, T1G; T1B = I[WS(is, 13)]; T1C = I[WS(is, 45)]; T1D = T1B - T1C; T4F = T1B + T1C; T1F = I[WS(is, 5)]; T1G = I[WS(is, 37)]; T1H = T1F - T1G; T4B = T1F + T1G; } { E T1E, T1L, T5J, T5K; T1E = FNMS(KP923879532, T1D, KP382683432 * T1A); T1L = FMA(KP382683432, T1H, KP923879532 * T1K); T1M = T1E - T1L; T3z = T1L + T1E; T5J = T4B + T4C; T5K = T4E + T4F; T5L = T5J + T5K; T67 = T5K - T5J; } { E T24, T25, T4D, T4G; T24 = FNMS(KP382683432, T1K, KP923879532 * T1H); T25 = FMA(KP923879532, T1A, KP382683432 * T1D); T26 = T24 + T25; T3C = T25 - T24; T4D = T4B - T4C; T4G = T4E - T4F; T4H = KP707106781 * (T4D + T4G); T4M = KP707106781 * (T4G - T4D); } } { E T2m, T4S, T2w, T4W, T2p, T4T, T2t, T4V; { E T2k, T2l, T2u, T2v; T2k = I[WS(is, 3)]; T2l = I[WS(is, 35)]; T2m = T2k - T2l; T4S = T2k + T2l; T2u = I[WS(is, 11)]; T2v = I[WS(is, 43)]; T2w = T2u - T2v; T4W = T2u + T2v; } { E T2n, T2o, T2r, T2s; T2n = I[WS(is, 19)]; T2o = I[WS(is, 51)]; T2p = T2n - T2o; T4T = T2n + T2o; T2r = I[WS(is, 59)]; T2s = I[WS(is, 27)]; T2t = T2r - T2s; T4V = T2r + T2s; } { E T2q, T2x, T5Q, T5R; T2q = FNMS(KP382683432, T2p, KP923879532 * T2m); T2x = FMA(KP923879532, T2t, KP382683432 * T2w); T2y = T2q + T2x; T3J = T2x - T2q; T5Q = T4S + T4T; T5R = T4V + T4W; T5S = T5Q + T5R; T6a = T5R - T5Q; } { E T2A, T2B, T4U, T4X; T2A = FNMS(KP923879532, T2w, KP382683432 * T2t); T2B = FMA(KP382683432, T2m, KP923879532 * T2p); T2C = T2A - T2B; T3G = T2B + T2A; T4U = T4S - T4T; T4X = T4V - T4W; T4Y = KP707106781 * (T4U + T4X); T53 = KP707106781 * (T4X - T4U); } } { E Tv, T10, T5X, T5Y, T5Z, T60; Tv = Tf + Tu; T10 = TK + TZ; T5X = Tv + T10; T5Y = T5I + T5L; T5Z = T5P + T5S; T60 = T5Y + T5Z; ro[WS(ros, 16)] = Tv - T10; io[WS(ios, 16)] = T5Z - T5Y; ro[WS(ros, 32)] = T5X - T60; ro[0] = T5X + T60; } { E T5F, T5V, T5U, T5W, T5M, T5T; T5F = Tf - Tu; T5V = TZ - TK; T5M = T5I - T5L; T5T = T5P - T5S; T5U = KP707106781 * (T5M + T5T); T5W = KP707106781 * (T5T - T5M); ro[WS(ros, 24)] = T5F - T5U; io[WS(ios, 24)] = T5W - T5V; ro[WS(ros, 8)] = T5F + T5U; io[WS(ios, 8)] = T5V + T5W; } { E T65, T6l, T6k, T6m, T6c, T6g, T6f, T6h; { E T61, T64, T6i, T6j; T61 = T7 - Te; T64 = KP707106781 * (T62 + T63); T65 = T61 + T64; T6l = T61 - T64; T6i = FNMS(KP382683432, T66, KP923879532 * T67); T6j = FMA(KP382683432, T69, KP923879532 * T6a); T6k = T6i + T6j; T6m = T6j - T6i; } { E T68, T6b, T6d, T6e; T68 = FMA(KP923879532, T66, KP382683432 * T67); T6b = FNMS(KP382683432, T6a, KP923879532 * T69); T6c = T68 + T6b; T6g = T6b - T68; T6d = KP707106781 * (T63 - T62); T6e = Tt - Tm; T6f = T6d - T6e; T6h = T6e + T6d; } ro[WS(ros, 28)] = T65 - T6c; io[WS(ios, 28)] = T6k - T6h; ro[WS(ros, 4)] = T65 + T6c; io[WS(ios, 4)] = T6h + T6k; io[WS(ios, 12)] = T6f + T6g; ro[WS(ros, 12)] = T6l + T6m; io[WS(ios, 20)] = T6g - T6f; ro[WS(ros, 20)] = T6l - T6m; } { E T5n, T5D, T5x, T5z, T5q, T5A, T5t, T5B; { E T5l, T5m, T5v, T5w; T5l = T4l - T4o; T5m = T58 - T57; T5n = T5l + T5m; T5D = T5l - T5m; T5v = T4v - T4s; T5w = T5b - T5a; T5x = T5v - T5w; T5z = T5w + T5v; } { E T5o, T5p, T5r, T5s; T5o = T4A - T4H; T5p = T4M - T4L; T5q = FMA(KP831469612, T5o, KP555570233 * T5p); T5A = FNMS(KP555570233, T5o, KP831469612 * T5p); T5r = T4R - T4Y; T5s = T53 - T52; T5t = FNMS(KP555570233, T5s, KP831469612 * T5r); T5B = FMA(KP555570233, T5r, KP831469612 * T5s); } { E T5u, T5C, T5y, T5E; T5u = T5q + T5t; ro[WS(ros, 26)] = T5n - T5u; ro[WS(ros, 6)] = T5n + T5u; T5C = T5A + T5B; io[WS(ios, 6)] = T5z + T5C; io[WS(ios, 26)] = T5C - T5z; T5y = T5t - T5q; io[WS(ios, 10)] = T5x + T5y; io[WS(ios, 22)] = T5y - T5x; T5E = T5B - T5A; ro[WS(ros, 22)] = T5D - T5E; ro[WS(ros, 10)] = T5D + T5E; } } { E T4x, T5j, T5d, T5f, T4O, T5g, T55, T5h; { E T4p, T4w, T59, T5c; T4p = T4l + T4o; T4w = T4s + T4v; T4x = T4p + T4w; T5j = T4p - T4w; T59 = T57 + T58; T5c = T5a + T5b; T5d = T59 - T5c; T5f = T5c + T59; } { E T4I, T4N, T4Z, T54; T4I = T4A + T4H; T4N = T4L + T4M; T4O = FMA(KP980785280, T4I, KP195090322 * T4N); T5g = FNMS(KP195090322, T4I, KP980785280 * T4N); T4Z = T4R + T4Y; T54 = T52 + T53; T55 = FNMS(KP195090322, T54, KP980785280 * T4Z); T5h = FMA(KP195090322, T4Z, KP980785280 * T54); } { E T56, T5i, T5e, T5k; T56 = T4O + T55; ro[WS(ros, 30)] = T4x - T56; ro[WS(ros, 2)] = T4x + T56; T5i = T5g + T5h; io[WS(ios, 2)] = T5f + T5i; io[WS(ios, 30)] = T5i - T5f; T5e = T55 - T4O; io[WS(ios, 14)] = T5d + T5e; io[WS(ios, 18)] = T5e - T5d; T5k = T5h - T5g; ro[WS(ros, 18)] = T5j - T5k; ro[WS(ros, 14)] = T5j + T5k; } } { E T3p, T41, T4c, T3S, T3w, T4b, T49, T4h, T3P, T42, T3E, T3W, T46, T4g, T3L; E T3X; { E T3s, T3v, T3A, T3D; T3p = T3n + T3o; T41 = T3n - T3o; T4c = T3R - T3Q; T3S = T3Q + T3R; T3s = FMA(KP831469612, T3q, KP555570233 * T3r); T3v = FNMS(KP555570233, T3u, KP831469612 * T3t); T3w = T3s + T3v; T4b = T3v - T3s; { E T47, T48, T3N, T3O; T47 = T3F - T3G; T48 = T3J - T3I; T49 = FNMS(KP471396736, T48, KP881921264 * T47); T4h = FMA(KP471396736, T47, KP881921264 * T48); T3N = FNMS(KP555570233, T3q, KP831469612 * T3r); T3O = FMA(KP555570233, T3t, KP831469612 * T3u); T3P = T3N + T3O; T42 = T3O - T3N; } T3A = T3y + T3z; T3D = T3B + T3C; T3E = FMA(KP956940335, T3A, KP290284677 * T3D); T3W = FNMS(KP290284677, T3A, KP956940335 * T3D); { E T44, T45, T3H, T3K; T44 = T3y - T3z; T45 = T3C - T3B; T46 = FMA(KP881921264, T44, KP471396736 * T45); T4g = FNMS(KP471396736, T44, KP881921264 * T45); T3H = T3F + T3G; T3K = T3I + T3J; T3L = FNMS(KP290284677, T3K, KP956940335 * T3H); T3X = FMA(KP290284677, T3H, KP956940335 * T3K); } } { E T3x, T3M, T3V, T3Y; T3x = T3p + T3w; T3M = T3E + T3L; ro[WS(ros, 29)] = T3x - T3M; ro[WS(ros, 3)] = T3x + T3M; T3V = T3S + T3P; T3Y = T3W + T3X; io[WS(ios, 3)] = T3V + T3Y; io[WS(ios, 29)] = T3Y - T3V; } { E T3T, T3U, T3Z, T40; T3T = T3P - T3S; T3U = T3L - T3E; io[WS(ios, 13)] = T3T + T3U; io[WS(ios, 19)] = T3U - T3T; T3Z = T3p - T3w; T40 = T3X - T3W; ro[WS(ros, 19)] = T3Z - T40; ro[WS(ros, 13)] = T3Z + T40; } { E T43, T4a, T4f, T4i; T43 = T41 + T42; T4a = T46 + T49; ro[WS(ros, 27)] = T43 - T4a; ro[WS(ros, 5)] = T43 + T4a; T4f = T4c + T4b; T4i = T4g + T4h; io[WS(ios, 5)] = T4f + T4i; io[WS(ios, 27)] = T4i - T4f; } { E T4d, T4e, T4j, T4k; T4d = T4b - T4c; T4e = T49 - T46; io[WS(ios, 11)] = T4d + T4e; io[WS(ios, 21)] = T4e - T4d; T4j = T41 - T42; T4k = T4h - T4g; ro[WS(ros, 21)] = T4j - T4k; ro[WS(ros, 11)] = T4j + T4k; } } { E T1d, T33, T3e, T2U, T1w, T3d, T3b, T3j, T2N, T34, T28, T2Y, T38, T3i, T2J; E T2Z; { E T1m, T1v, T1Y, T27; T1d = T15 - T1c; T33 = T15 + T1c; T3e = T2T + T2Q; T2U = T2Q - T2T; T1m = FMA(KP195090322, T1i, KP980785280 * T1l); T1v = FNMS(KP195090322, T1u, KP980785280 * T1r); T1w = T1m - T1v; T3d = T1v + T1m; { E T39, T3a, T2L, T2M; T39 = T2j + T2y; T3a = T2H + T2C; T3b = FNMS(KP098017140, T3a, KP995184726 * T39); T3j = FMA(KP995184726, T3a, KP098017140 * T39); T2L = FNMS(KP195090322, T1l, KP980785280 * T1i); T2M = FMA(KP980785280, T1u, KP195090322 * T1r); T2N = T2L - T2M; T34 = T2M + T2L; } T1Y = T1M - T1X; T27 = T23 - T26; T28 = FMA(KP634393284, T1Y, KP773010453 * T27); T2Y = FNMS(KP634393284, T27, KP773010453 * T1Y); { E T36, T37, T2z, T2I; T36 = T1X + T1M; T37 = T23 + T26; T38 = FMA(KP098017140, T36, KP995184726 * T37); T3i = FNMS(KP098017140, T37, KP995184726 * T36); T2z = T2j - T2y; T2I = T2C - T2H; T2J = FNMS(KP634393284, T2I, KP773010453 * T2z); T2Z = FMA(KP773010453, T2I, KP634393284 * T2z); } } { E T1x, T2K, T2X, T30; T1x = T1d + T1w; T2K = T28 + T2J; ro[WS(ros, 25)] = T1x - T2K; ro[WS(ros, 7)] = T1x + T2K; T2X = T2U + T2N; T30 = T2Y + T2Z; io[WS(ios, 7)] = T2X + T30; io[WS(ios, 25)] = T30 - T2X; } { E T2V, T2W, T31, T32; T2V = T2N - T2U; T2W = T2J - T28; io[WS(ios, 9)] = T2V + T2W; io[WS(ios, 23)] = T2W - T2V; T31 = T1d - T1w; T32 = T2Z - T2Y; ro[WS(ros, 23)] = T31 - T32; ro[WS(ros, 9)] = T31 + T32; } { E T35, T3c, T3h, T3k; T35 = T33 + T34; T3c = T38 + T3b; ro[WS(ros, 31)] = T35 - T3c; ro[WS(ros, 1)] = T35 + T3c; T3h = T3e + T3d; T3k = T3i + T3j; io[WS(ios, 1)] = T3h + T3k; io[WS(ios, 31)] = T3k - T3h; } { E T3f, T3g, T3l, T3m; T3f = T3d - T3e; T3g = T3b - T38; io[WS(ios, 15)] = T3f + T3g; io[WS(ios, 17)] = T3g - T3f; T3l = T33 - T34; T3m = T3j - T3i; ro[WS(ros, 17)] = T3l - T3m; ro[WS(ros, 15)] = T3l + T3m; } } } } static void mr2hc_64(const R *I, R *ro, R *io, stride is, stride ros, stride ios, int v, int ivs, int ovs) { int i; for (i = v; i > 0; --i) { mr2hc_64_0(I, ro, io, is, ros, ios); I += ivs; ro += ovs; io += ovs; } } static const kr2hc_desc desc = { 64, "mr2hc_64", {342, 72, 52, 0}, &GENUS, 0, 0, 0, 0, 0 }; void X(codelet_mr2hc_64) (planner *p) { X(kr2hc_register) (p, mr2hc_64, &desc); }