/* * Copyright (c) 2003 Matteo Frigo * Copyright (c) 2003 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * */ /* This file was automatically generated --- DO NOT EDIT */ /* Generated on Sat Jul 5 21:58:28 EDT 2003 */ #include "codelet-rdft.h" /* Generated by: /homee/stevenj/cvs/fftw3.0.1/genfft/gen_r2hc -compact -variables 4 -n 32 -name r2hcII_32 -dft-II -include r2hcII.h */ /* * This function contains 174 FP additions, 82 FP multiplications, * (or, 138 additions, 46 multiplications, 36 fused multiply/add), * 62 stack variables, and 64 memory accesses */ /* * Generator Id's : * $Id: r2hcII_32.c,v 1.1 2008/10/17 06:12:34 scuri Exp $ * $Id: r2hcII_32.c,v 1.1 2008/10/17 06:12:34 scuri Exp $ * $Id: r2hcII_32.c,v 1.1 2008/10/17 06:12:34 scuri Exp $ */ #include "r2hcII.h" static void r2hcII_32(const R *I, R *ro, R *io, stride is, stride ros, stride ios, int v, int ivs, int ovs) { DK(KP471396736, +0.471396736825997648556387625905254377657460319); DK(KP881921264, +0.881921264348355029712756863660388349508442621); DK(KP634393284, +0.634393284163645498215171613225493370675687095); DK(KP773010453, +0.773010453362736960810906609758469800971041293); DK(KP290284677, +0.290284677254462367636192375817395274691476278); DK(KP956940335, +0.956940335732208864935797886980269969482849206); DK(KP995184726, +0.995184726672196886244836953109479921575474869); DK(KP098017140, +0.098017140329560601994195563888641845861136673); DK(KP555570233, +0.555570233019602224742830813948532874374937191); DK(KP831469612, +0.831469612302545237078788377617905756738560812); DK(KP195090322, +0.195090322016128267848284868477022240927691618); DK(KP980785280, +0.980785280403230449126182236134239036973933731); DK(KP382683432, +0.382683432365089771728459984030398866761344562); DK(KP923879532, +0.923879532511286756128183189396788286822416626); DK(KP707106781, +0.707106781186547524400844362104849039284835938); int i; for (i = v; i > 0; i = i - 1, I = I + ivs, ro = ro + ovs, io = io + ovs) { E T5, T2D, T1z, T2q, Tc, T2C, T1C, T2n, Tm, T1k, T1J, T26, Tv, T1l, T1G; E T27, T15, T1r, T1Y, T2e, T1c, T1s, T1V, T2d, TK, T1o, T1R, T2b, TR, T1p; E T1O, T2a; { E T1, T2p, T4, T2o, T2, T3; T1 = I[0]; T2p = I[WS(is, 16)]; T2 = I[WS(is, 8)]; T3 = I[WS(is, 24)]; T4 = KP707106781 * (T2 - T3); T2o = KP707106781 * (T2 + T3); T5 = T1 + T4; T2D = T2p - T2o; T1z = T1 - T4; T2q = T2o + T2p; } { E T8, T1A, Tb, T1B; { E T6, T7, T9, Ta; T6 = I[WS(is, 4)]; T7 = I[WS(is, 20)]; T8 = FNMS(KP382683432, T7, KP923879532 * T6); T1A = FMA(KP382683432, T6, KP923879532 * T7); T9 = I[WS(is, 12)]; Ta = I[WS(is, 28)]; Tb = FNMS(KP923879532, Ta, KP382683432 * T9); T1B = FMA(KP923879532, T9, KP382683432 * Ta); } Tc = T8 + Tb; T2C = Tb - T8; T1C = T1A - T1B; T2n = T1A + T1B; } { E Te, Tk, Th, Tj, Tf, Tg; Te = I[WS(is, 2)]; Tk = I[WS(is, 18)]; Tf = I[WS(is, 10)]; Tg = I[WS(is, 26)]; Th = KP707106781 * (Tf - Tg); Tj = KP707106781 * (Tf + Tg); { E Ti, Tl, T1H, T1I; Ti = Te + Th; Tl = Tj + Tk; Tm = FNMS(KP195090322, Tl, KP980785280 * Ti); T1k = FMA(KP195090322, Ti, KP980785280 * Tl); T1H = Tk - Tj; T1I = Te - Th; T1J = FNMS(KP555570233, T1I, KP831469612 * T1H); T26 = FMA(KP831469612, T1I, KP555570233 * T1H); } } { E Tq, Tt, Tp, Ts, Tn, To; Tq = I[WS(is, 30)]; Tt = I[WS(is, 14)]; Tn = I[WS(is, 6)]; To = I[WS(is, 22)]; Tp = KP707106781 * (Tn - To); Ts = KP707106781 * (Tn + To); { E Tr, Tu, T1E, T1F; Tr = Tp - Tq; Tu = Ts + Tt; Tv = FMA(KP980785280, Tr, KP195090322 * Tu); T1l = FNMS(KP980785280, Tu, KP195090322 * Tr); T1E = Tt - Ts; T1F = Tp + Tq; T1G = FNMS(KP555570233, T1F, KP831469612 * T1E); T27 = FMA(KP831469612, T1F, KP555570233 * T1E); } } { E TW, T1a, TV, T19, T10, T16, T13, T17, TT, TU; TW = I[WS(is, 31)]; T1a = I[WS(is, 15)]; TT = I[WS(is, 7)]; TU = I[WS(is, 23)]; TV = KP707106781 * (TT - TU); T19 = KP707106781 * (TT + TU); { E TY, TZ, T11, T12; TY = I[WS(is, 3)]; TZ = I[WS(is, 19)]; T10 = FNMS(KP382683432, TZ, KP923879532 * TY); T16 = FMA(KP382683432, TY, KP923879532 * TZ); T11 = I[WS(is, 11)]; T12 = I[WS(is, 27)]; T13 = FNMS(KP923879532, T12, KP382683432 * T11); T17 = FMA(KP923879532, T11, KP382683432 * T12); } { E TX, T14, T1W, T1X; TX = TV - TW; T14 = T10 + T13; T15 = TX + T14; T1r = TX - T14; T1W = T13 - T10; T1X = T1a - T19; T1Y = T1W - T1X; T2e = T1W + T1X; } { E T18, T1b, T1T, T1U; T18 = T16 + T17; T1b = T19 + T1a; T1c = T18 + T1b; T1s = T1b - T18; T1T = TV + TW; T1U = T16 - T17; T1V = T1T + T1U; T2d = T1U - T1T; } } { E Ty, TP, TB, TO, TF, TL, TI, TM, Tz, TA; Ty = I[WS(is, 1)]; TP = I[WS(is, 17)]; Tz = I[WS(is, 9)]; TA = I[WS(is, 25)]; TB = KP707106781 * (Tz - TA); TO = KP707106781 * (Tz + TA); { E TD, TE, TG, TH; TD = I[WS(is, 5)]; TE = I[WS(is, 21)]; TF = FNMS(KP382683432, TE, KP923879532 * TD); TL = FMA(KP382683432, TD, KP923879532 * TE); TG = I[WS(is, 13)]; TH = I[WS(is, 29)]; TI = FNMS(KP923879532, TH, KP382683432 * TG); TM = FMA(KP923879532, TG, KP382683432 * TH); } { E TC, TJ, T1P, T1Q; TC = Ty + TB; TJ = TF + TI; TK = TC + TJ; T1o = TC - TJ; T1P = TI - TF; T1Q = TP - TO; T1R = T1P - T1Q; T2b = T1P + T1Q; } { E TN, TQ, T1M, T1N; TN = TL + TM; TQ = TO + TP; TR = TN + TQ; T1p = TQ - TN; T1M = Ty - TB; T1N = TL - TM; T1O = T1M - T1N; T2a = T1M + T1N; } } { E Tx, T1f, T2s, T2u, T1e, T2l, T1i, T2t; { E Td, Tw, T2m, T2r; Td = T5 + Tc; Tw = Tm + Tv; Tx = Td - Tw; T1f = Td + Tw; T2m = T1l - T1k; T2r = T2n + T2q; T2s = T2m - T2r; T2u = T2m + T2r; } { E TS, T1d, T1g, T1h; TS = FMA(KP098017140, TK, KP995184726 * TR); T1d = FNMS(KP995184726, T1c, KP098017140 * T15); T1e = TS + T1d; T2l = T1d - TS; T1g = FNMS(KP098017140, TR, KP995184726 * TK); T1h = FMA(KP995184726, T15, KP098017140 * T1c); T1i = T1g + T1h; T2t = T1h - T1g; } ro[WS(ros, 8)] = Tx - T1e; io[WS(ios, 8)] = T2t - T2u; ro[WS(ros, 7)] = Tx + T1e; io[WS(ios, 7)] = T2t + T2u; ro[WS(ros, 15)] = T1f - T1i; io[WS(ios, 15)] = T2l - T2s; ro[0] = T1f + T1i; io[0] = T2l + T2s; } { E T29, T2h, T2M, T2O, T2g, T2J, T2k, T2N; { E T25, T28, T2K, T2L; T25 = T1z + T1C; T28 = T26 - T27; T29 = T25 + T28; T2h = T25 - T28; T2K = T1J + T1G; T2L = T2C + T2D; T2M = T2K - T2L; T2O = T2K + T2L; } { E T2c, T2f, T2i, T2j; T2c = FMA(KP956940335, T2a, KP290284677 * T2b); T2f = FNMS(KP290284677, T2e, KP956940335 * T2d); T2g = T2c + T2f; T2J = T2f - T2c; T2i = FMA(KP290284677, T2d, KP956940335 * T2e); T2j = FNMS(KP290284677, T2a, KP956940335 * T2b); T2k = T2i - T2j; T2N = T2j + T2i; } ro[WS(ros, 14)] = T29 - T2g; io[WS(ios, 14)] = T2N - T2O; ro[WS(ros, 1)] = T29 + T2g; io[WS(ios, 1)] = T2N + T2O; ro[WS(ros, 9)] = T2h - T2k; io[WS(ios, 9)] = T2J - T2M; ro[WS(ros, 6)] = T2h + T2k; io[WS(ios, 6)] = T2J + T2M; } { E T1n, T1v, T2y, T2A, T1u, T2v, T1y, T2z; { E T1j, T1m, T2w, T2x; T1j = T5 - Tc; T1m = T1k + T1l; T1n = T1j + T1m; T1v = T1j - T1m; T2w = Tv - Tm; T2x = T2q - T2n; T2y = T2w - T2x; T2A = T2w + T2x; } { E T1q, T1t, T1w, T1x; T1q = FMA(KP773010453, T1o, KP634393284 * T1p); T1t = FNMS(KP634393284, T1s, KP773010453 * T1r); T1u = T1q + T1t; T2v = T1t - T1q; T1w = FMA(KP634393284, T1r, KP773010453 * T1s); T1x = FNMS(KP634393284, T1o, KP773010453 * T1p); T1y = T1w - T1x; T2z = T1x + T1w; } ro[WS(ros, 12)] = T1n - T1u; io[WS(ios, 12)] = T2z - T2A; ro[WS(ros, 3)] = T1n + T1u; io[WS(ios, 3)] = T2z + T2A; ro[WS(ros, 11)] = T1v - T1y; io[WS(ios, 11)] = T2v - T2y; ro[WS(ros, 4)] = T1v + T1y; io[WS(ios, 4)] = T2v + T2y; } { E T1L, T21, T2G, T2I, T20, T2H, T24, T2B; { E T1D, T1K, T2E, T2F; T1D = T1z - T1C; T1K = T1G - T1J; T1L = T1D + T1K; T21 = T1D - T1K; T2E = T2C - T2D; T2F = T26 + T27; T2G = T2E - T2F; T2I = T2F + T2E; } { E T1S, T1Z, T22, T23; T1S = FMA(KP881921264, T1O, KP471396736 * T1R); T1Z = FMA(KP881921264, T1V, KP471396736 * T1Y); T20 = T1S - T1Z; T2H = T1S + T1Z; T22 = FNMS(KP471396736, T1V, KP881921264 * T1Y); T23 = FNMS(KP471396736, T1O, KP881921264 * T1R); T24 = T22 - T23; T2B = T23 + T22; } ro[WS(ros, 13)] = T1L - T20; io[WS(ios, 13)] = T2B - T2G; ro[WS(ros, 2)] = T1L + T20; io[WS(ios, 2)] = T2B + T2G; ro[WS(ros, 10)] = T21 - T24; io[WS(ios, 10)] = T2I - T2H; ro[WS(ros, 5)] = T21 + T24; io[WS(ios, 5)] = -(T2H + T2I); } } } static const kr2hc_desc desc = { 32, "r2hcII_32", {138, 46, 36, 0}, &GENUS, 0, 0, 0, 0, 0 }; void X(codelet_r2hcII_32) (planner *p) { X(kr2hcII_register) (p, r2hcII_32, &desc); }