/* * Copyright (c) 2003 Matteo Frigo * Copyright (c) 2003 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * */ /* This file was automatically generated --- DO NOT EDIT */ /* Generated on Sat Jul 5 21:56:41 EDT 2003 */ #include "codelet-rdft.h" /* Generated by: /homee/stevenj/cvs/fftw3.0.1/genfft/gen_r2hc -compact -variables 4 -n 13 -name r2hc_13 -include r2hc.h */ /* * This function contains 76 FP additions, 34 FP multiplications, * (or, 57 additions, 15 multiplications, 19 fused multiply/add), * 55 stack variables, and 26 memory accesses */ /* * Generator Id's : * $Id: r2hc_13.c,v 1.1 2008/10/17 06:12:34 scuri Exp $ * $Id: r2hc_13.c,v 1.1 2008/10/17 06:12:34 scuri Exp $ * $Id: r2hc_13.c,v 1.1 2008/10/17 06:12:34 scuri Exp $ */ #include "r2hc.h" static void r2hc_13(const R *I, R *ro, R *io, stride is, stride ros, stride ios, int v, int ivs, int ovs) { DK(KP083333333, +0.083333333333333333333333333333333333333333333); DK(KP075902986, +0.075902986037193865983102897245103540356428373); DK(KP251768516, +0.251768516431883313623436926934233488546674281); DK(KP503537032, +0.503537032863766627246873853868466977093348562); DK(KP113854479, +0.113854479055790798974654345867655310534642560); DK(KP265966249, +0.265966249214837287587521063842185948798330267); DK(KP387390585, +0.387390585467617292130675966426762851778775217); DK(KP300462606, +0.300462606288665774426601772289207995520941381); DK(KP132983124, +0.132983124607418643793760531921092974399165133); DK(KP258260390, +0.258260390311744861420450644284508567852516811); DK(KP2_000000000, +2.000000000000000000000000000000000000000000000); DK(KP1_732050807, +1.732050807568877293527446341505872366942805254); DK(KP300238635, +0.300238635966332641462884626667381504676006424); DK(KP011599105, +0.011599105605768290721655456654083252189827041); DK(KP156891391, +0.156891391051584611046832726756003269660212636); DK(KP256247671, +0.256247671582936600958684654061725059144125175); DK(KP174138601, +0.174138601152135905005660794929264742616964676); DK(KP575140729, +0.575140729474003121368385547455453388461001608); DK(KP866025403, +0.866025403784438646763723170752936183471402627); DK(KP500000000, +0.500000000000000000000000000000000000000000000); int i; for (i = v; i > 0; i = i - 1, I = I + ivs, ro = ro + ovs, io = io + ovs) { E T13, Tb, Tm, TW, TX, T14, TU, T10, Tz, TB, Tu, TC, TR, T11; T13 = I[0]; { E Te, TO, Ta, Tv, To, T5, Tw, Tp, Th, Tr, Tk, Ts, Tl, TP, Tc; E Td; Tc = I[WS(is, 8)]; Td = I[WS(is, 5)]; Te = Tc - Td; TO = Tc + Td; { E T6, T7, T8, T9; T6 = I[WS(is, 1)]; T7 = I[WS(is, 3)]; T8 = I[WS(is, 9)]; T9 = T7 + T8; Ta = T6 + T9; Tv = T7 - T8; To = FNMS(KP500000000, T9, T6); } { E T1, T2, T3, T4; T1 = I[WS(is, 12)]; T2 = I[WS(is, 10)]; T3 = I[WS(is, 4)]; T4 = T2 + T3; T5 = T1 + T4; Tw = T2 - T3; Tp = FNMS(KP500000000, T4, T1); } { E Tf, Tg, Ti, Tj; Tf = I[WS(is, 11)]; Tg = I[WS(is, 6)]; Th = Tf - Tg; Tr = Tf + Tg; Ti = I[WS(is, 7)]; Tj = I[WS(is, 2)]; Tk = Ti - Tj; Ts = Ti + Tj; } Tl = Th + Tk; TP = Tr + Ts; Tb = T5 - Ta; Tm = Te + Tl; TW = Ta + T5; TX = TO + TP; T14 = TW + TX; { E TS, TT, Tx, Ty; TS = Tv + Tw; TT = Th - Tk; TU = TS - TT; T10 = TS + TT; Tx = KP866025403 * (Tv - Tw); Ty = FNMS(KP500000000, Tl, Te); Tz = Tx + Ty; TB = Ty - Tx; } { E Tq, Tt, TN, TQ; Tq = To - Tp; Tt = KP866025403 * (Tr - Ts); Tu = Tq - Tt; TC = Tq + Tt; TN = To + Tp; TQ = FNMS(KP500000000, TP, TO); TR = TN - TQ; T11 = TN + TQ; } } ro[0] = T13 + T14; { E Tn, TG, TE, TF, TJ, TM, TK, TL; Tn = FNMS(KP174138601, Tm, KP575140729 * Tb); TG = FMA(KP174138601, Tb, KP575140729 * Tm); { E TA, TD, TH, TI; TA = FNMS(KP156891391, Tz, KP256247671 * Tu); TD = FNMS(KP300238635, TC, KP011599105 * TB); TE = TA + TD; TF = KP1_732050807 * (TD - TA); TH = FMA(KP300238635, TB, KP011599105 * TC); TI = FMA(KP256247671, Tz, KP156891391 * Tu); TJ = TH - TI; TM = KP1_732050807 * (TI + TH); } io[WS(ios, 5)] = FMA(KP2_000000000, TE, Tn); io[WS(ios, 1)] = FMA(KP2_000000000, TJ, TG); TK = TG - TJ; io[WS(ios, 4)] = TF - TK; io[WS(ios, 3)] = TF + TK; TL = Tn - TE; io[WS(ios, 2)] = TL - TM; io[WS(ios, 6)] = TL + TM; } { E TZ, T1b, T19, T1e, T16, T1a, TV, TY, T1c, T1d; TV = FNMS(KP132983124, TU, KP258260390 * TR); TY = KP300462606 * (TW - TX); TZ = FMA(KP2_000000000, TV, TY); T1b = TY - TV; { E T17, T18, T12, T15; T17 = FMA(KP387390585, TU, KP265966249 * TR); T18 = FNMS(KP503537032, T11, KP113854479 * T10); T19 = T17 - T18; T1e = T17 + T18; T12 = FMA(KP251768516, T10, KP075902986 * T11); T15 = FNMS(KP083333333, T14, T13); T16 = FMA(KP2_000000000, T12, T15); T1a = T15 - T12; } ro[WS(ros, 1)] = TZ + T16; ro[WS(ros, 5)] = T16 - TZ; T1c = T1a - T1b; ro[WS(ros, 2)] = T19 + T1c; ro[WS(ros, 6)] = T1c - T19; T1d = T1b + T1a; ro[WS(ros, 3)] = T1d - T1e; ro[WS(ros, 4)] = T1e + T1d; } } } static const kr2hc_desc desc = { 13, "r2hc_13", {57, 15, 19, 0}, &GENUS, 0, 0, 0, 0, 0 }; void X(codelet_r2hc_13) (planner *p) { X(kr2hc_register) (p, r2hc_13, &desc); }