/* * Copyright (c) 2003 Matteo Frigo * Copyright (c) 2003 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * */ /* This file was automatically generated --- DO NOT EDIT */ /* Generated on Sat Jul 5 21:56:44 EDT 2003 */ #include "codelet-rdft.h" /* Generated by: /homee/stevenj/cvs/fftw3.0.1/genfft/gen_r2hc -compact -variables 4 -n 32 -name r2hc_32 -include r2hc.h */ /* * This function contains 156 FP additions, 42 FP multiplications, * (or, 140 additions, 26 multiplications, 16 fused multiply/add), * 54 stack variables, and 64 memory accesses */ /* * Generator Id's : * $Id: r2hc_32.c,v 1.1 2008/10/17 06:12:34 scuri Exp $ * $Id: r2hc_32.c,v 1.1 2008/10/17 06:12:34 scuri Exp $ * $Id: r2hc_32.c,v 1.1 2008/10/17 06:12:34 scuri Exp $ */ #include "r2hc.h" static void r2hc_32(const R *I, R *ro, R *io, stride is, stride ros, stride ios, int v, int ivs, int ovs) { DK(KP555570233, +0.555570233019602224742830813948532874374937191); DK(KP831469612, +0.831469612302545237078788377617905756738560812); DK(KP195090322, +0.195090322016128267848284868477022240927691618); DK(KP980785280, +0.980785280403230449126182236134239036973933731); DK(KP382683432, +0.382683432365089771728459984030398866761344562); DK(KP923879532, +0.923879532511286756128183189396788286822416626); DK(KP707106781, +0.707106781186547524400844362104849039284835938); int i; for (i = v; i > 0; i = i - 1, I = I + ivs, ro = ro + ovs, io = io + ovs) { E T7, T2b, Tv, T1l, Te, T2o, Ty, T1k, Tt, T2d, TF, T1h, Tm, T2c, TC; E T1i, T1Z, T22, T2k, T2j, T1e, T1C, T19, T1B, T1S, T1V, T2h, T2g, TX, T1z; E TS, T1y; { E T1, T2, T3, T4, T5, T6; T1 = I[0]; T2 = I[WS(is, 16)]; T3 = T1 + T2; T4 = I[WS(is, 8)]; T5 = I[WS(is, 24)]; T6 = T4 + T5; T7 = T3 + T6; T2b = T3 - T6; Tv = T1 - T2; T1l = T4 - T5; } { E Ta, Tw, Td, Tx; { E T8, T9, Tb, Tc; T8 = I[WS(is, 4)]; T9 = I[WS(is, 20)]; Ta = T8 + T9; Tw = T8 - T9; Tb = I[WS(is, 28)]; Tc = I[WS(is, 12)]; Td = Tb + Tc; Tx = Tb - Tc; } Te = Ta + Td; T2o = Td - Ta; Ty = KP707106781 * (Tw + Tx); T1k = KP707106781 * (Tx - Tw); } { E Tp, TD, Ts, TE; { E Tn, To, Tq, Tr; Tn = I[WS(is, 30)]; To = I[WS(is, 14)]; Tp = Tn + To; TD = Tn - To; Tq = I[WS(is, 6)]; Tr = I[WS(is, 22)]; Ts = Tq + Tr; TE = Tq - Tr; } Tt = Tp + Ts; T2d = Tp - Ts; TF = FMA(KP923879532, TD, KP382683432 * TE); T1h = FNMS(KP923879532, TE, KP382683432 * TD); } { E Ti, TA, Tl, TB; { E Tg, Th, Tj, Tk; Tg = I[WS(is, 2)]; Th = I[WS(is, 18)]; Ti = Tg + Th; TA = Tg - Th; Tj = I[WS(is, 10)]; Tk = I[WS(is, 26)]; Tl = Tj + Tk; TB = Tj - Tk; } Tm = Ti + Tl; T2c = Ti - Tl; TC = FNMS(KP382683432, TB, KP923879532 * TA); T1i = FMA(KP382683432, TA, KP923879532 * TB); } { E T11, T1X, T1d, T1Y, T14, T20, T17, T21, T1a, T18; { E TZ, T10, T1b, T1c; TZ = I[WS(is, 31)]; T10 = I[WS(is, 15)]; T11 = TZ - T10; T1X = TZ + T10; T1b = I[WS(is, 7)]; T1c = I[WS(is, 23)]; T1d = T1b - T1c; T1Y = T1b + T1c; } { E T12, T13, T15, T16; T12 = I[WS(is, 3)]; T13 = I[WS(is, 19)]; T14 = T12 - T13; T20 = T12 + T13; T15 = I[WS(is, 27)]; T16 = I[WS(is, 11)]; T17 = T15 - T16; T21 = T15 + T16; } T1Z = T1X + T1Y; T22 = T20 + T21; T2k = T21 - T20; T2j = T1X - T1Y; T1a = KP707106781 * (T17 - T14); T1e = T1a - T1d; T1C = T1d + T1a; T18 = KP707106781 * (T14 + T17); T19 = T11 + T18; T1B = T11 - T18; } { E TK, T1Q, TW, T1R, TN, T1T, TQ, T1U, TT, TR; { E TI, TJ, TU, TV; TI = I[WS(is, 1)]; TJ = I[WS(is, 17)]; TK = TI - TJ; T1Q = TI + TJ; TU = I[WS(is, 9)]; TV = I[WS(is, 25)]; TW = TU - TV; T1R = TU + TV; } { E TL, TM, TO, TP; TL = I[WS(is, 5)]; TM = I[WS(is, 21)]; TN = TL - TM; T1T = TL + TM; TO = I[WS(is, 29)]; TP = I[WS(is, 13)]; TQ = TO - TP; T1U = TO + TP; } T1S = T1Q + T1R; T1V = T1T + T1U; T2h = T1U - T1T; T2g = T1Q - T1R; TT = KP707106781 * (TQ - TN); TX = TT - TW; T1z = TW + TT; TR = KP707106781 * (TN + TQ); TS = TK + TR; T1y = TK - TR; } { E Tf, Tu, T27, T28, T29, T2a; Tf = T7 + Te; Tu = Tm + Tt; T27 = Tf + Tu; T28 = T1S + T1V; T29 = T1Z + T22; T2a = T28 + T29; ro[WS(ros, 8)] = Tf - Tu; io[WS(ios, 8)] = T29 - T28; ro[WS(ros, 16)] = T27 - T2a; ro[0] = T27 + T2a; } { E T1P, T25, T24, T26, T1W, T23; T1P = T7 - Te; T25 = Tt - Tm; T1W = T1S - T1V; T23 = T1Z - T22; T24 = KP707106781 * (T1W + T23); T26 = KP707106781 * (T23 - T1W); ro[WS(ros, 12)] = T1P - T24; io[WS(ios, 12)] = T26 - T25; ro[WS(ros, 4)] = T1P + T24; io[WS(ios, 4)] = T25 + T26; } { E T2f, T2v, T2p, T2r, T2m, T2q, T2u, T2w, T2e, T2n; T2e = KP707106781 * (T2c + T2d); T2f = T2b + T2e; T2v = T2b - T2e; T2n = KP707106781 * (T2d - T2c); T2p = T2n - T2o; T2r = T2o + T2n; { E T2i, T2l, T2s, T2t; T2i = FMA(KP923879532, T2g, KP382683432 * T2h); T2l = FNMS(KP382683432, T2k, KP923879532 * T2j); T2m = T2i + T2l; T2q = T2l - T2i; T2s = FNMS(KP382683432, T2g, KP923879532 * T2h); T2t = FMA(KP382683432, T2j, KP923879532 * T2k); T2u = T2s + T2t; T2w = T2t - T2s; } ro[WS(ros, 14)] = T2f - T2m; io[WS(ios, 14)] = T2u - T2r; ro[WS(ros, 2)] = T2f + T2m; io[WS(ios, 2)] = T2r + T2u; io[WS(ios, 6)] = T2p + T2q; ro[WS(ros, 6)] = T2v + T2w; io[WS(ios, 10)] = T2q - T2p; ro[WS(ros, 10)] = T2v - T2w; } { E TH, T1t, T1s, T1u, T1g, T1o, T1n, T1p; { E Tz, TG, T1q, T1r; Tz = Tv + Ty; TG = TC + TF; TH = Tz + TG; T1t = Tz - TG; T1q = FNMS(KP195090322, TS, KP980785280 * TX); T1r = FMA(KP195090322, T19, KP980785280 * T1e); T1s = T1q + T1r; T1u = T1r - T1q; } { E TY, T1f, T1j, T1m; TY = FMA(KP980785280, TS, KP195090322 * TX); T1f = FNMS(KP195090322, T1e, KP980785280 * T19); T1g = TY + T1f; T1o = T1f - TY; T1j = T1h - T1i; T1m = T1k - T1l; T1n = T1j - T1m; T1p = T1m + T1j; } ro[WS(ros, 15)] = TH - T1g; io[WS(ios, 15)] = T1s - T1p; ro[WS(ros, 1)] = TH + T1g; io[WS(ios, 1)] = T1p + T1s; io[WS(ios, 7)] = T1n + T1o; ro[WS(ros, 7)] = T1t + T1u; io[WS(ios, 9)] = T1o - T1n; ro[WS(ros, 9)] = T1t - T1u; } { E T1x, T1N, T1M, T1O, T1E, T1I, T1H, T1J; { E T1v, T1w, T1K, T1L; T1v = Tv - Ty; T1w = T1i + T1h; T1x = T1v + T1w; T1N = T1v - T1w; T1K = FNMS(KP555570233, T1y, KP831469612 * T1z); T1L = FMA(KP555570233, T1B, KP831469612 * T1C); T1M = T1K + T1L; T1O = T1L - T1K; } { E T1A, T1D, T1F, T1G; T1A = FMA(KP831469612, T1y, KP555570233 * T1z); T1D = FNMS(KP555570233, T1C, KP831469612 * T1B); T1E = T1A + T1D; T1I = T1D - T1A; T1F = TF - TC; T1G = T1l + T1k; T1H = T1F - T1G; T1J = T1G + T1F; } ro[WS(ros, 13)] = T1x - T1E; io[WS(ios, 13)] = T1M - T1J; ro[WS(ros, 3)] = T1x + T1E; io[WS(ios, 3)] = T1J + T1M; io[WS(ios, 5)] = T1H + T1I; ro[WS(ros, 5)] = T1N + T1O; io[WS(ios, 11)] = T1I - T1H; ro[WS(ros, 11)] = T1N - T1O; } } } static const kr2hc_desc desc = { 32, "r2hc_32", {140, 26, 16, 0}, &GENUS, 0, 0, 0, 0, 0 }; void X(codelet_r2hc_32) (planner *p) { X(kr2hc_register) (p, r2hc_32, &desc); }