/* * Copyright (c) 2003 Matteo Frigo * Copyright (c) 2003 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * */ #include "rdft.h" /* * Compute DHTs of prime sizes using Rader's trick: turn them * into convolutions of size n - 1, which we then perform via a pair * of FFTs. (We can then do prime real FFTs via rdft-dht.c.) */ typedef struct { solver super; } S; typedef struct { plan_rdft super; plan *cld1, *cld2; R *omega; int n, g, ginv; int is, os; plan *cld_omega; } P; static rader_tl *omegas = 0; /***************************************************************************/ /* If R2HC_ONLY_CONV is 1, we use a trick to perform the convolution purely in terms of R2HC transforms, as opposed to R2HC followed by H2RC. This requires a few more operations, but allows us to share the same plan/codelets for both Rader children. */ #define R2HC_ONLY_CONV 1 static void apply(const plan *ego_, R *I, R *O) { const P *ego = (const P *) ego_; int r = ego->n; int is = ego->is, os; int k, gpower, g; R *buf, *omega; R r0; buf = (R *) MALLOC(sizeof(R) * (r - 1), BUFFERS); /* First, permute the input, storing in buf: */ g = ego->g; for (gpower = 1, k = 0; k < r - 1; ++k, gpower = MULMOD(gpower, g, r)) { buf[k] = I[gpower * is]; } /* gpower == g^(r-1) mod r == 1 */; os = ego->os; /* compute RDFT of buf, storing in output (except DC): */ { plan_rdft *cld = (plan_rdft *) ego->cld1; cld->apply((plan *) cld, buf, O + os); } /* set output DC component: */ O[0] = (r0 = I[0]) + O[os]; /* now, multiply by omega: */ omega = ego->omega; O[(0 + 1) * os] *= omega[0]; #if R2HC_ONLY_CONV for (k = 1; k < (r - 1)/2; ++k) { E rB, iB, rW, iW, a, b; rW = omega[k]; iW = omega[(r-1) - k]; rB = O[(k + 1) * os]; iB = O[((r-1) - k + 1) * os]; a = rW * rB - iW * iB; b = rW * iB + iW * rB; O[(k + 1) * os] = a + b; O[((r-1) - k + 1) * os] = a - b; } #else for (k = 1; k < (r - 1)/2; ++k) { E rB, iB, rW, iW; rW = omega[k]; iW = omega[(r-1) - k]; rB = O[(k + 1) * os]; iB = O[((r-1) - k + 1) * os]; O[(k + 1) * os] = rW * rB - iW * iB; O[((r-1) - k + 1) * os] = rW * iB + iW * rB; } #endif /* Nyquist component: */ O[(k + 1) * os] *= omega[k]; /* k == (r-1)/2, since r-1 is even */ /* this will add input[0] to all of the outputs after the ifft */ O[os] += r0; /* inverse FFT: */ { plan_rdft *cld = (plan_rdft *) ego->cld2; cld->apply((plan *) cld, O + os, buf); } /* do inverse permutation to unshuffle the output: */ A(gpower == 1); #if R2HC_ONLY_CONV O[os] = buf[0]; gpower = g = ego->ginv; for (k = 1; k < (r - 1)/2; ++k, gpower = MULMOD(gpower, g, r)) { O[gpower * os] = buf[k] + buf[r - 1 - k]; } O[gpower * os] = buf[k]; ++k, gpower = MULMOD(gpower, g, r); for (; k < r - 1; ++k, gpower = MULMOD(gpower, g, r)) { O[gpower * os] = buf[r - 1 - k] - buf[k]; } #else g = ego->ginv; for (k = 0; k < r - 1; ++k, gpower = MULMOD(gpower, g, r)) { O[gpower * os] = buf[k]; } #endif A(gpower == 1); X(ifree)(buf); } static R *mkomega(plan *p_, int n, int ginv) { plan_rdft *p = (plan_rdft *) p_; R *omega; int i, gpower; trigreal scale; if ((omega = X(rader_tl_find)(n, n, ginv, omegas))) return omega; omega = (R *)MALLOC(sizeof(R) * (n - 1), TWIDDLES); scale = n - 1.0; /* normalization for convolution */ for (i = 0, gpower = 1; i < n-1; ++i, gpower = MULMOD(gpower, ginv, n)) { omega[i] = (X(cos2pi)(gpower, n) + X(sin2pi)(gpower, n)) / scale; } A(gpower == 1); AWAKE(p_, 1); p->apply(p_, omega, omega); AWAKE(p_, 0); X(rader_tl_insert)(n, n, ginv, omega, &omegas); return omega; } static void free_omega(R *omega) { X(rader_tl_delete)(omega, &omegas); } /***************************************************************************/ static void awake(plan *ego_, int flg) { P *ego = (P *) ego_; AWAKE(ego->cld1, flg); AWAKE(ego->cld2, flg); if (flg) { if (!ego->omega) ego->omega = mkomega(ego->cld_omega,ego->n,ego->ginv); } else { free_omega(ego->omega); ego->omega = 0; } } static void destroy(plan *ego_) { P *ego = (P *) ego_; X(plan_destroy_internal)(ego->cld_omega); X(plan_destroy_internal)(ego->cld2); X(plan_destroy_internal)(ego->cld1); } static void print(const plan *ego_, printer *p) { const P *ego = (const P *) ego_; p->print(p, "(dht-rader-%d%ois=%oos=%(%p%)", ego->n, ego->is, ego->os, ego->cld1); if (ego->cld2 != ego->cld1) p->print(p, "%(%p%)", ego->cld2); if (ego->cld_omega != ego->cld1 && ego->cld_omega != ego->cld2) p->print(p, "%(%p%)", ego->cld_omega); p->putchr(p, ')'); } static int applicable0(const problem *p_) { if (RDFTP(p_)) { const problem_rdft *p = (const problem_rdft *) p_; return (1 && p->sz->rnk == 1 && p->vecsz->rnk == 0 && p->kind[0] == DHT && X(is_prime)(p->sz->dims[0].n) && p->sz->dims[0].n > 2 ); } return 0; } static int applicable(const solver *ego, const problem *p, const planner *plnr) { UNUSED(ego); return (!NO_UGLYP(plnr) && applicable0(p)); } static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr) { const problem_rdft *p = (const problem_rdft *) p_; P *pln; int n; int is, os; plan *cld1 = (plan *) 0; plan *cld2 = (plan *) 0; plan *cld_omega = (plan *) 0; R *buf = (R *) 0; R *O; problem *cldp; static const plan_adt padt = { X(rdft_solve), awake, print, destroy }; if (!applicable(ego_, p_, plnr)) return (plan *) 0; n = p->sz->dims[0].n; is = p->sz->dims[0].is; os = p->sz->dims[0].os; O = p->O; /* initial allocation for the purpose of planning */ buf = (R *) MALLOC(sizeof(R) * (n - 1), BUFFERS); cld1 = X(mkplan_d)(plnr, X(mkproblem_rdft_1_d)(X(mktensor_1d)(n - 1, 1, os), X(mktensor_1d)(1, 0, 0), buf, O + os, R2HC)); if (!cld1) goto nada; cldp = X(mkproblem_rdft_1_d)( X(mktensor_1d)(n - 1, os, 1), X(mktensor_1d)(1, 0, 0), O + os, buf, #if R2HC_ONLY_CONV R2HC #else HC2R #endif ); if (!(cld2 = X(mkplan_d)(plnr, cldp))) goto nada; /* plan for omega */ plnr->planner_flags |= ESTIMATE; cld_omega = X(mkplan_d)(plnr, X(mkproblem_rdft_1_d)(X(mktensor_1d)(n - 1, 1, 1), X(mktensor_1d)(1, 0, 0), buf, buf, R2HC)); if (!cld_omega) goto nada; /* deallocate buffers; let awake() or apply() allocate them for real */ X(ifree)(buf); buf = 0; pln = MKPLAN_RDFT(P, &padt, apply); pln->cld1 = cld1; pln->cld2 = cld2; pln->cld_omega = cld_omega; pln->omega = 0; pln->n = n; pln->is = is; pln->os = os; pln->g = X(find_generator)(n); pln->ginv = X(power_mod)(pln->g, n - 2, n); A(MULMOD(pln->g, pln->ginv, n) == 1); X(ops_add)(&cld1->ops, &cld2->ops, &pln->super.super.ops); pln->super.super.ops.other += (n - 3) * 3 + (n - 2) * 2 + 5; pln->super.super.ops.add += (n - 3) * 1; pln->super.super.ops.mul += (n - 3) * 2 + 2; #if R2HC_ONLY_CONV pln->super.super.ops.other += (n - 2) + 4; pln->super.super.ops.add += (n - 3) * 1 + (n - 2) * 1; #endif return &(pln->super.super); nada: X(ifree0)(buf); X(plan_destroy_internal)(cld_omega); X(plan_destroy_internal)(cld2); X(plan_destroy_internal)(cld1); return 0; } /* constructors */ static solver *mksolver(void) { static const solver_adt sadt = { mkplan }; S *slv = MKSOLVER(S, &sadt); return &(slv->super); } void X(dht_rader_register)(planner *p) { REGISTER_SOLVER(p, mksolver()); }