/*
 * Copyright (c) 2003 Matteo Frigo
 * Copyright (c) 2003 Massachusetts Institute of Technology
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *
 */

/* $Id: hc2hc-buf.c,v 1.1 2008/10/17 06:11:29 scuri Exp $ */

/* decimation in time Cooley-Tukey */
#include "rdft.h"
#include "hc2hc.h"

/*
   Copy A -> B, where A and B are n0 x n1 complex matrices
   such that the (i0, i1) element has index (i0 * s0 + i1 * s1).
   The imaginary strides are of opposite signs to the real strides.
*/
static void cpy(int n0, int n1,
                const R *rA, const R *iA, int sa0, int sa1,
                R *rB, R *iB, int sb0, int sb1)
{
     int i0, i1;

     for (i0 = 0; i0 < n0; ++i0) {
          const R *pra, *pia;
          R *prb, *pib;
          pra = rA; rA += sa0;
          pia = iA; iA -= sa0;
          prb = rB; rB += sb0;
          pib = iB; iB -= sb0;

          for (i1 = 0; i1 < n1; ++i1) {
               R xr, xi;
               xr = *pra; pra += sa1;
               xi = *pia; pia -= sa1;
               *prb = xr; prb += sb1;
               *pib = xi; pib -= sb1;
          }
     }
}

static const R *doit(khc2hc k, R *rA, R *iA, const R *W, int ios, int dist,
                     int r, int batchsz, R *buf, stride bufstride)
{
     cpy(r, batchsz, rA, iA, ios, dist, buf, buf + 2*batchsz*r-1, 1, r);
     W = k(buf, buf + 2*batchsz*r-1, W, bufstride, 2*batchsz + 1, r);
     cpy(r, batchsz, buf, buf + 2*batchsz*r-1, 1, r, rA, iA, ios, dist);
     return W;
}

#define BATCHSZ 4 /* FIXME: parametrize? */

static void apply_dit(const plan *ego_, R *I, R *O)
{
     const plan_hc2hc *ego = (const plan_hc2hc *) ego_;

     /* two-dimensional r x vl sub-transform: */
     {
	  plan_rdft *cld = (plan_rdft *) ego->cld;
	  cld->apply((plan *) cld, I, O);
     }

     {
          plan_rdft *cld0 = (plan_rdft *) ego->cld0;
          plan_rdft *cldm = (plan_rdft *) ego->cldm;
          int i, j, r = ego->r, m = ego->m, vl = ego->vl;
          int os = ego->os, ovs = ego->ovs, ios = ego->iios;
	  R *buf;

	  STACK_MALLOC(R *, buf, r * BATCHSZ * 2 * sizeof(R));

          for (i = 0; i < vl; ++i, O += ovs) {
	       R *rA, *iA;
	       const R *W;

	       cld0->apply((plan *) cld0, O, O);
	       
	       rA = O + os; iA = O + (r * m - 1) * os;
	       W = ego->W;
	       for (j = (m-1)/2; j >= BATCHSZ; j -= BATCHSZ) {
		    W = doit(ego->k, rA, iA, W, ios, os, r, BATCHSZ, buf,
			     ego->vs);
		    rA += os * (int)BATCHSZ;
		    iA -= os * (int)BATCHSZ;
	       }
	       /* do remaining j calls, if any */
               if (j > 0)
                    doit(ego->k, rA, iA, W, ios, os, r, j, buf, ego->vs);

	       cldm->apply((plan *) cldm, O + os*(m/2), O + os*(m/2));
	  }

	  STACK_FREE(buf);
     }
}

static void apply_dif(const plan *ego_, R *I, R *O)
{
     const plan_hc2hc *ego = (const plan_hc2hc *) ego_;
     R *I0 = I;

     {
          plan_rdft *cld0 = (plan_rdft *) ego->cld0;
          plan_rdft *cldm = (plan_rdft *) ego->cldm;
          int i, j, r = ego->r, m = ego->m, vl = ego->vl;
          int is = ego->is, ivs = ego->ivs, ios = ego->iios;
	  R *buf;

	  STACK_MALLOC(R *, buf, r * BATCHSZ * 2 * sizeof(R));

          for (i = 0; i < vl; ++i, I += ivs) {
	       R *rA, *iA;
	       const R *W;

	       cld0->apply((plan *) cld0, I, I);
	       
	       rA = I + is; iA = I + (r * m - 1) * is;
	       W = ego->W;
	       for (j = (m-1)/2; j >= BATCHSZ; j -= BATCHSZ) {
		    W = doit(ego->k, rA, iA, W, ios, is, r, BATCHSZ, buf,
			     ego->vs);
		    rA += is * (int)BATCHSZ;
		    iA -= is * (int)BATCHSZ;
	       }
	       /* do remaining j calls, if any */
               if (j > 0)
                    doit(ego->k, rA, iA, W, ios, is, r, j, buf, ego->vs);

	       cldm->apply((plan *) cldm, I + is*(m/2), I + is*(m/2));
	  }

	  STACK_FREE(buf);
     }

     /* two-dimensional r x vl sub-transform: */
     {
	  plan_rdft *cld = (plan_rdft *) ego->cld;
	  cld->apply((plan *) cld, I0, O);
     }
}

static int applicable0(const solver_hc2hc *ego, const problem *p_,
		       const planner *plnr)
{
     if (X(rdft_hc2hc_applicable)(ego, p_)) {
          const hc2hc_desc *e = ego->desc;
          const problem_rdft *p = (const problem_rdft *) p_;
          iodim *d = p->sz->dims;
	  int r = e->radix, m = d[0].n / e->radix;
          return (1
		  && (p->kind[0]==R2HC || p->I == p->O || DESTROY_INPUTP(plnr))
                  /* check both batch size and remainder */
                  && (m < BATCHSZ ||
                      (e->genus->okp(e, 0, ((const R *)0)+2*BATCHSZ*r-1, 1,0, 
				     2*BATCHSZ + 1, r)))
                  && (m < BATCHSZ ||
                      (e->genus->okp(e, 0, ((const R *)0) 
				     + 2*(((m-1)/2) % BATCHSZ)*r-1, 1, 0, 
				     2*(((m-1)/2) % BATCHSZ) + 1, r)))
	       );
     }
     return 0;
}

static int applicable(const solver_hc2hc *ego, const problem *p_,
		      const planner *plnr)
{
     const problem_rdft *p;

     if (!applicable0(ego, p_, plnr)) return 0;

     p = (const problem_rdft *) p_;

     /* emulate fftw2 behavior */
     if (NO_VRECURSEP(plnr) && (p->vecsz->rnk > 0)) return 0;

     if (NO_UGLYP(plnr) && 
	 X(ct_uglyp)(512, p->sz->dims[0].n, ego->desc->radix))
	  return 0;

     return 1;
}

static void finish(plan_hc2hc *ego)
{
     const hc2hc_desc *d = ego->slv->desc;
     opcnt t;

     ego->iios = ego->m * (R2HC_KINDP(d->genus->kind) ? ego->os : ego->is);
     ego->vs = X(mkstride)(ego->r, 1);

     X(ops_add)(&ego->cld0->ops, &ego->cldm->ops, &t);
     X(ops_madd)(ego->vl, &t, &ego->cld->ops, &ego->super.super.ops);
     ego->super.super.ops.other += 4 * ego->r * ((ego->m - 1)/2) * ego->vl;
     X(ops_madd2)(ego->vl * ((ego->m - 1)/2) / d->genus->vl, &d->ops,
		  &ego->super.super.ops);
}

static plan *mkplan_ditbuf(const solver *ego, const problem *p, planner *plnr)
{
     static const hc2hcadt adt = {
	  sizeof(plan_hc2hc), 
	  X(rdft_mkcldrn_dit), finish, applicable, apply_dit
     };
     return X(mkplan_rdft_hc2hc)((const solver_hc2hc *) ego, p, plnr, &adt);
}

solver *X(mksolver_rdft_hc2hc_ditbuf)(khc2hc codelet, const hc2hc_desc *desc)
{
     static const solver_adt sadt = { mkplan_ditbuf };
     static const char name[] = "rdft-ditbuf";

     return X(mksolver_rdft_hc2hc)(codelet, desc, name, &sadt);
}

static plan *mkplan_difbuf(const solver *ego, const problem *p, planner *plnr)
{
     static const hc2hcadt adt = {
	  sizeof(plan_hc2hc), 
	  X(rdft_mkcldrn_dif), finish, applicable, apply_dif
     };
     return X(mkplan_rdft_hc2hc)((const solver_hc2hc *) ego, p, plnr, &adt);
}

solver *X(mksolver_rdft_hc2hc_difbuf)(khc2hc codelet, const hc2hc_desc *desc)
{
     static const solver_adt sadt = { mkplan_difbuf };
     static const char name[] = "rdft-difbuf";

     return X(mksolver_rdft_hc2hc)(codelet, desc, name, &sadt);
}