/* * Copyright (c) 2003 Matteo Frigo * Copyright (c) 2003 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * */ /* $Id: hc2hc-buf.c,v 1.1 2008/10/17 06:11:29 scuri Exp $ */ /* decimation in time Cooley-Tukey */ #include "rdft.h" #include "hc2hc.h" /* Copy A -> B, where A and B are n0 x n1 complex matrices such that the (i0, i1) element has index (i0 * s0 + i1 * s1). The imaginary strides are of opposite signs to the real strides. */ static void cpy(int n0, int n1, const R *rA, const R *iA, int sa0, int sa1, R *rB, R *iB, int sb0, int sb1) { int i0, i1; for (i0 = 0; i0 < n0; ++i0) { const R *pra, *pia; R *prb, *pib; pra = rA; rA += sa0; pia = iA; iA -= sa0; prb = rB; rB += sb0; pib = iB; iB -= sb0; for (i1 = 0; i1 < n1; ++i1) { R xr, xi; xr = *pra; pra += sa1; xi = *pia; pia -= sa1; *prb = xr; prb += sb1; *pib = xi; pib -= sb1; } } } static const R *doit(khc2hc k, R *rA, R *iA, const R *W, int ios, int dist, int r, int batchsz, R *buf, stride bufstride) { cpy(r, batchsz, rA, iA, ios, dist, buf, buf + 2*batchsz*r-1, 1, r); W = k(buf, buf + 2*batchsz*r-1, W, bufstride, 2*batchsz + 1, r); cpy(r, batchsz, buf, buf + 2*batchsz*r-1, 1, r, rA, iA, ios, dist); return W; } #define BATCHSZ 4 /* FIXME: parametrize? */ static void apply_dit(const plan *ego_, R *I, R *O) { const plan_hc2hc *ego = (const plan_hc2hc *) ego_; /* two-dimensional r x vl sub-transform: */ { plan_rdft *cld = (plan_rdft *) ego->cld; cld->apply((plan *) cld, I, O); } { plan_rdft *cld0 = (plan_rdft *) ego->cld0; plan_rdft *cldm = (plan_rdft *) ego->cldm; int i, j, r = ego->r, m = ego->m, vl = ego->vl; int os = ego->os, ovs = ego->ovs, ios = ego->iios; R *buf; STACK_MALLOC(R *, buf, r * BATCHSZ * 2 * sizeof(R)); for (i = 0; i < vl; ++i, O += ovs) { R *rA, *iA; const R *W; cld0->apply((plan *) cld0, O, O); rA = O + os; iA = O + (r * m - 1) * os; W = ego->W; for (j = (m-1)/2; j >= BATCHSZ; j -= BATCHSZ) { W = doit(ego->k, rA, iA, W, ios, os, r, BATCHSZ, buf, ego->vs); rA += os * (int)BATCHSZ; iA -= os * (int)BATCHSZ; } /* do remaining j calls, if any */ if (j > 0) doit(ego->k, rA, iA, W, ios, os, r, j, buf, ego->vs); cldm->apply((plan *) cldm, O + os*(m/2), O + os*(m/2)); } STACK_FREE(buf); } } static void apply_dif(const plan *ego_, R *I, R *O) { const plan_hc2hc *ego = (const plan_hc2hc *) ego_; R *I0 = I; { plan_rdft *cld0 = (plan_rdft *) ego->cld0; plan_rdft *cldm = (plan_rdft *) ego->cldm; int i, j, r = ego->r, m = ego->m, vl = ego->vl; int is = ego->is, ivs = ego->ivs, ios = ego->iios; R *buf; STACK_MALLOC(R *, buf, r * BATCHSZ * 2 * sizeof(R)); for (i = 0; i < vl; ++i, I += ivs) { R *rA, *iA; const R *W; cld0->apply((plan *) cld0, I, I); rA = I + is; iA = I + (r * m - 1) * is; W = ego->W; for (j = (m-1)/2; j >= BATCHSZ; j -= BATCHSZ) { W = doit(ego->k, rA, iA, W, ios, is, r, BATCHSZ, buf, ego->vs); rA += is * (int)BATCHSZ; iA -= is * (int)BATCHSZ; } /* do remaining j calls, if any */ if (j > 0) doit(ego->k, rA, iA, W, ios, is, r, j, buf, ego->vs); cldm->apply((plan *) cldm, I + is*(m/2), I + is*(m/2)); } STACK_FREE(buf); } /* two-dimensional r x vl sub-transform: */ { plan_rdft *cld = (plan_rdft *) ego->cld; cld->apply((plan *) cld, I0, O); } } static int applicable0(const solver_hc2hc *ego, const problem *p_, const planner *plnr) { if (X(rdft_hc2hc_applicable)(ego, p_)) { const hc2hc_desc *e = ego->desc; const problem_rdft *p = (const problem_rdft *) p_; iodim *d = p->sz->dims; int r = e->radix, m = d[0].n / e->radix; return (1 && (p->kind[0]==R2HC || p->I == p->O || DESTROY_INPUTP(plnr)) /* check both batch size and remainder */ && (m < BATCHSZ || (e->genus->okp(e, 0, ((const R *)0)+2*BATCHSZ*r-1, 1,0, 2*BATCHSZ + 1, r))) && (m < BATCHSZ || (e->genus->okp(e, 0, ((const R *)0) + 2*(((m-1)/2) % BATCHSZ)*r-1, 1, 0, 2*(((m-1)/2) % BATCHSZ) + 1, r))) ); } return 0; } static int applicable(const solver_hc2hc *ego, const problem *p_, const planner *plnr) { const problem_rdft *p; if (!applicable0(ego, p_, plnr)) return 0; p = (const problem_rdft *) p_; /* emulate fftw2 behavior */ if (NO_VRECURSEP(plnr) && (p->vecsz->rnk > 0)) return 0; if (NO_UGLYP(plnr) && X(ct_uglyp)(512, p->sz->dims[0].n, ego->desc->radix)) return 0; return 1; } static void finish(plan_hc2hc *ego) { const hc2hc_desc *d = ego->slv->desc; opcnt t; ego->iios = ego->m * (R2HC_KINDP(d->genus->kind) ? ego->os : ego->is); ego->vs = X(mkstride)(ego->r, 1); X(ops_add)(&ego->cld0->ops, &ego->cldm->ops, &t); X(ops_madd)(ego->vl, &t, &ego->cld->ops, &ego->super.super.ops); ego->super.super.ops.other += 4 * ego->r * ((ego->m - 1)/2) * ego->vl; X(ops_madd2)(ego->vl * ((ego->m - 1)/2) / d->genus->vl, &d->ops, &ego->super.super.ops); } static plan *mkplan_ditbuf(const solver *ego, const problem *p, planner *plnr) { static const hc2hcadt adt = { sizeof(plan_hc2hc), X(rdft_mkcldrn_dit), finish, applicable, apply_dit }; return X(mkplan_rdft_hc2hc)((const solver_hc2hc *) ego, p, plnr, &adt); } solver *X(mksolver_rdft_hc2hc_ditbuf)(khc2hc codelet, const hc2hc_desc *desc) { static const solver_adt sadt = { mkplan_ditbuf }; static const char name[] = "rdft-ditbuf"; return X(mksolver_rdft_hc2hc)(codelet, desc, name, &sadt); } static plan *mkplan_difbuf(const solver *ego, const problem *p, planner *plnr) { static const hc2hcadt adt = { sizeof(plan_hc2hc), X(rdft_mkcldrn_dif), finish, applicable, apply_dif }; return X(mkplan_rdft_hc2hc)((const solver_hc2hc *) ego, p, plnr, &adt); } solver *X(mksolver_rdft_hc2hc_difbuf)(khc2hc codelet, const hc2hc_desc *desc) { static const solver_adt sadt = { mkplan_difbuf }; static const char name[] = "rdft-difbuf"; return X(mksolver_rdft_hc2hc)(codelet, desc, name, &sadt); }