/* * Copyright (c) 2003 Matteo Frigo * Copyright (c) 2003 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * */ /* $Id: hc2hc-dif.c,v 1.1 2008/10/17 06:11:29 scuri Exp $ */ /* decimation in frequency Cooley-Tukey */ #include "rdft.h" #include "hc2hc.h" static void apply(const plan *ego_, R *I, R *O) { const plan_hc2hc *ego = (const plan_hc2hc *) ego_; R *I0 = I; { plan_rdft *cld0 = (plan_rdft *) ego->cld0; plan_rdft *cldm = (plan_rdft *) ego->cldm; int i, r = ego->r, m = ego->m, vl = ego->vl; int is = ego->is, ivs = ego->ivs; for (i = 0; i < vl; ++i, I += ivs) { cld0->apply((plan *) cld0, I, I); ego->k(I + is, I + (r * m - 1) * is, ego->W, ego->ios, m, is); cldm->apply((plan *) cldm, I + is*(m/2), I + is*(m/2)); } } /* two-dimensional r x vl sub-transform: */ { plan_rdft *cld = (plan_rdft *) ego->cld; cld->apply((plan *) cld, I0, O); } } static int applicable0(const solver_hc2hc *ego, const problem *p_, const planner *plnr) { if (X(rdft_hc2hc_applicable)(ego, p_)) { int ivs, ovs; int vl; const hc2hc_desc *e = ego->desc; const problem_rdft *p = (const problem_rdft *) p_; iodim *d = p->sz->dims; int m = d[0].n / e->radix; X(tensor_tornk1)(p->vecsz, &vl, &ivs, &ovs); return (1 && (p->I == p->O || DESTROY_INPUTP(plnr)) && (e->genus->okp(e, p->I + d[0].is, p->I + (e->radix * m - 1) * d[0].is, (int)m * d[0].is, 0, m, d[0].is)) && (e->genus->okp(e, p->I + ivs + d[0].is, p->I + ivs + (e->radix * m - 1) * d[0].is, (int)m * d[0].is, 0, m, d[0].is)) ); } return 0; } static int applicable(const solver_hc2hc *ego, const problem *p_, const planner *plnr) { const problem_rdft *p; if (!applicable0(ego, p_, plnr)) return 0; p = (const problem_rdft *) p_; /* emulate fftw2 behavior */ if (NO_VRECURSEP(plnr) && (p->vecsz->rnk > 0)) return 0; if (NO_UGLYP(plnr)) { if (X(ct_uglyp)(16, p->sz->dims[0].n, ego->desc->radix)) return 0; if (NONTHREADED_ICKYP(plnr)) return 0; /* prefer threaded version */ } return 1; } static void finish(plan_hc2hc *ego) { const hc2hc_desc *d = ego->slv->desc; opcnt t; ego->ios = X(mkstride)(ego->r, ego->m * ego->is); X(ops_add)(&ego->cld0->ops, &ego->cldm->ops, &t); X(ops_madd)(ego->vl, &t, &ego->cld->ops, &ego->super.super.ops); X(ops_madd2)(ego->vl * ((ego->m - 1)/2) / d->genus->vl, &d->ops, &ego->super.super.ops); } static plan *mkplan(const solver *ego, const problem *p, planner *plnr) { static const hc2hcadt adt = { sizeof(plan_hc2hc), X(rdft_mkcldrn_dif), finish, applicable, apply }; return X(mkplan_rdft_hc2hc)((const solver_hc2hc *) ego, p, plnr, &adt); } solver *X(mksolver_rdft_hc2hc_dif)(khc2hc codelet, const hc2hc_desc *desc) { static const solver_adt sadt = { mkplan }; static const char name[] = "rdft-dif"; return X(mksolver_rdft_hc2hc)(codelet, desc, name, &sadt); }