/* * Copyright (c) 2003 Matteo Frigo * Copyright (c) 2003 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * */ /* $Id: hc2hc.c,v 1.1 2008/10/17 06:11:29 scuri Exp $ */ /* generic Cooley-Tukey routines */ #include "rdft.h" #include "hc2hc.h" static void destroy(plan *ego_) { plan_hc2hc *ego = (plan_hc2hc *) ego_; X(plan_destroy_internal)(ego->cld); X(plan_destroy_internal)(ego->cld0); X(plan_destroy_internal)(ego->cldm); X(stride_destroy)(ego->ios); X(stride_destroy)(ego->vs); } static void awake(plan *ego_, int flg) { plan_hc2hc *ego = (plan_hc2hc *) ego_; AWAKE(ego->cld, flg); AWAKE(ego->cld0, flg); AWAKE(ego->cldm, flg); if (flg) { const tw_instr *tw = ego->slv->desc->tw; X(mktwiddle)(&ego->td, tw, ego->n, ego->r, (ego->m + 1) / 2); /* 0th twiddle is handled by cld0: */ ego->W = ego->td->W + X(twiddle_length)(ego->r, tw); } else { X(twiddle_destroy)(&ego->td); ego->W = 0; } } static void print(const plan *ego_, printer *p) { const plan_hc2hc *ego = (const plan_hc2hc *) ego_; const solver_hc2hc *slv = ego->slv; const hc2hc_desc *e = slv->desc; p->print(p, "(%s-%d/%d%v \"%s\"%(%p%)%(%p%)%(%p%))", slv->nam, ego->r, X(twiddle_length)(ego->r, e->tw), ego->vl, e->nam, ego->cld0, ego->cldm, ego->cld); } #define divides(a, b) (((int)(b) % (int)(a)) == 0) int X(rdft_hc2hc_applicable)(const solver_hc2hc *ego, const problem *p_) { if (RDFTP(p_)) { const problem_rdft *p = (const problem_rdft *) p_; const hc2hc_desc *d = ego->desc; return (1 && p->sz->rnk == 1 && p->vecsz->rnk <= 1 && p->kind[0] == d->genus->kind && divides(d->radix, p->sz->dims[0].n) && d->radix < p->sz->dims[0].n /* avoid inf. loops in cld0 */ ); } return 0; } static const plan_adt padt = { X(rdft_solve), awake, print, destroy }; plan *X(mkplan_rdft_hc2hc)(const solver_hc2hc *ego, const problem *p_, planner *plnr, const hc2hcadt *adt) { plan_hc2hc *pln; plan *cld = 0, *cld0 = 0, *cldm = 0; int n, r, m; problem *cldp = 0, *cld0p = 0, *cldmp = 0; iodim *d; const problem_rdft *p; const hc2hc_desc *e = ego->desc; if (!adt->applicable(ego, p_, plnr)) return (plan *) 0; p = (const problem_rdft *) p_; d = p->sz->dims; n = d[0].n; r = e->radix; m = n / r; adt->mkcldrn(ego, p, &cldp, &cld0p, &cldmp); cld = X(mkplan_d)(plnr, cldp); cldp = 0; if (!cld) goto nada; cld0 = X(mkplan_d)(plnr, cld0p); cld0p = 0; if (!cld0) goto nada; cldm = X(mkplan_d)(plnr, cldmp); cldmp = 0; if (!cldm) goto nada; A(adt->pln_size >= sizeof(plan_hc2hc)); pln = (plan_hc2hc *) X(mkplan_rdft)(adt->pln_size, &padt, adt->apply); pln->slv = ego; pln->cld = cld; pln->cld0 = cld0; pln->cldm = cldm; pln->k = ego->k; pln->n = n; pln->r = r; pln->m = m; pln->is = d[0].is; pln->os = d[0].os; pln->ios = pln->vs = 0; X(tensor_tornk1)(p->vecsz, &pln->vl, &pln->ivs, &pln->ovs); pln->td = 0; adt->finish(pln); return &(pln->super.super); nada: X(problem_destroy)(cldmp); X(problem_destroy)(cld0p); X(problem_destroy)(cldp); X(plan_destroy_internal)(cldm); X(plan_destroy_internal)(cld0); X(plan_destroy_internal)(cld); return (plan *) 0; } solver *X(mksolver_rdft_hc2hc)(khc2hc k, const hc2hc_desc *desc, const char *nam, const solver_adt *adt) { solver_hc2hc *slv; slv = MKSOLVER(solver_hc2hc, adt); slv->desc = desc; slv->k = k; slv->nam = nam; return &(slv->super); } /* routines to create children are shared by many solvers */ void X(rdft_mkcldrn_dit)(const solver_hc2hc *ego, const problem_rdft *p, problem **cldp, problem **cld0p, problem **cldmp) { iodim *d = p->sz->dims; const hc2hc_desc *e = ego->desc; int m = d[0].n / e->radix; int omid = d[0].os * (m/2); tensor *null, *radix = X(mktensor_1d)(e->radix, d[0].is, m * d[0].os); tensor *cld_vec = X(tensor_append)(radix, p->vecsz); X(tensor_destroy)(radix); A(p->kind[0] == R2HC); *cldp = X(mkproblem_rdft_d)(X(mktensor_1d)(m, e->radix*d[0].is, d[0].os), cld_vec, p->I, p->O, p->kind); radix = X(mktensor_1d)(e->radix, m * d[0].os, m * d[0].os); null = X(mktensor_0d)(); *cld0p = X(mkproblem_rdft_1)(radix, null, p->O, p->O, R2HC); *cldmp = X(mkproblem_rdft_1)(m%2 ? null : radix, null, p->O + omid, p->O + omid, R2HCII); X(tensor_destroy2)(null, radix); } void X(rdft_mkcldrn_dif)(const solver_hc2hc *ego, const problem_rdft *p, problem **cldp, problem **cld0p, problem **cldmp) { iodim *d = p->sz->dims; const hc2hc_desc *e = ego->desc; int m = d[0].n / e->radix; int imid = d[0].is * (m/2); tensor *null, *radix = X(mktensor_1d)(e->radix, m * d[0].is, d[0].os); tensor *cld_vec = X(tensor_append)(radix, p->vecsz); X(tensor_destroy)(radix); A(p->kind[0] == HC2R); *cldp = X(mkproblem_rdft_d)(X(mktensor_1d)(m, d[0].is, e->radix*d[0].os), cld_vec, p->I, p->O, p->kind); radix = X(mktensor_1d)(e->radix, m * d[0].is, m * d[0].is); null = X(mktensor_0d)(); *cld0p = X(mkproblem_rdft_1)(radix, null, p->I, p->I, HC2R); *cldmp = X(mkproblem_rdft_1)(m%2 ? null : radix, null, p->I + imid, p->I + imid, HC2RIII); X(tensor_destroy2)(null, radix); }