/* * Copyright (c) 2003 Matteo Frigo * Copyright (c) 2003 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * */ /* $Id: rdft-dht.c,v 1.1 2008/10/17 06:11:29 scuri Exp $ */ /* Solve an R2HC/HC2R problem via post/pre processing of a DHT. This is mainly useful because we can use Rader to compute DHTs of prime sizes. It also allows us to express hc2r problems in terms of r2hc (via dht-r2hc), and to do hc2r problems without destroying the input. */ #include "rdft.h" typedef struct { solver super; } S; typedef struct { plan_rdft super; plan *cld; int is, os; int n; } P; static void apply_r2hc(const plan *ego_, R *I, R *O) { const P *ego = (const P *) ego_; int os; int i, n; { plan_rdft *cld = (plan_rdft *) ego->cld; cld->apply((plan *) cld, I, O); } n = ego->n; os = ego->os; for (i = 1; i < n - i; ++i) { E a, b; a = K(0.5) * O[os * i]; b = K(0.5) * O[os * (n - i)]; O[os * i] = a + b; #if FFT_SIGN == -1 O[os * (n - i)] = b - a; #else O[os * (n - i)] = a - b; #endif } } /* hc2r, destroying input as usual */ static void apply_hc2r(const plan *ego_, R *I, R *O) { const P *ego = (const P *) ego_; int is = ego->is; int i, n = ego->n; for (i = 1; i < n - i; ++i) { E a, b; a = I[is * i]; b = I[is * (n - i)]; #if FFT_SIGN == -1 I[is * i] = a - b; I[is * (n - i)] = a + b; #else I[is * i] = a + b; I[is * (n - i)] = a - b; #endif } { plan_rdft *cld = (plan_rdft *) ego->cld; cld->apply((plan *) cld, I, O); } } /* hc2r, without destroying input */ static void apply_hc2r_save(const plan *ego_, R *I, R *O) { const P *ego = (const P *) ego_; int is = ego->is, os = ego->os; int i, n = ego->n; O[0] = I[0]; for (i = 1; i < n - i; ++i) { E a, b; a = I[is * i]; b = I[is * (n - i)]; #if FFT_SIGN == -1 O[os * i] = a - b; O[os * (n - i)] = a + b; #else O[os * i] = a + b; O[os * (n - i)] = a - b; #endif } if (i == n - i) O[os * i] = I[is * i]; { plan_rdft *cld = (plan_rdft *) ego->cld; cld->apply((plan *) cld, O, O); } } static void awake(plan *ego_, int flg) { P *ego = (P *) ego_; AWAKE(ego->cld, flg); } static void destroy(plan *ego_) { P *ego = (P *) ego_; X(plan_destroy_internal)(ego->cld); } static void print(const plan *ego_, printer *p) { const P *ego = (const P *) ego_; p->print(p, "(%s-dht-%d%(%p%))", ego->super.apply == apply_r2hc ? "r2hc" : "hc2r", ego->n, ego->cld); } static int applicable0(const solver *ego_, const problem *p_) { UNUSED(ego_); if (RDFTP(p_)) { const problem_rdft *p = (const problem_rdft *) p_; return (1 && p->sz->rnk == 1 && p->vecsz->rnk == 0 && (p->kind[0] == R2HC || p->kind[0] == HC2R) /* hack: size-2 DHT etc. are defined as being equivalent to size-2 R2HC in problem.c, so we need this to prevent infinite loops for size 2 in EXHAUSTIVE mode: */ && p->sz->dims[0].n > 2 ); } return 0; } static int applicable(const solver *ego, const problem *p_, const planner *plnr) { return (!NO_UGLYP(plnr) && applicable0(ego, p_)); } static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr) { P *pln; const problem_rdft *p; problem *cldp; plan *cld; static const plan_adt padt = { X(rdft_solve), awake, print, destroy }; if (!applicable(ego_, p_, plnr)) return (plan *)0; p = (const problem_rdft *) p_; if (p->kind[0] == R2HC || DESTROY_INPUTP(plnr)) cldp = X(mkproblem_rdft_1)(p->sz, p->vecsz, p->I, p->O, DHT); else { tensor *sz = X(tensor_copy_inplace)(p->sz, INPLACE_OS); cldp = X(mkproblem_rdft_1)(sz, p->vecsz, p->O, p->O, DHT); X(tensor_destroy)(sz); } cld = X(mkplan_d)(plnr, cldp); if (!cld) return (plan *)0; pln = MKPLAN_RDFT(P, &padt, p->kind[0] == R2HC ? apply_r2hc : (DESTROY_INPUTP(plnr) ? apply_hc2r : apply_hc2r_save)); pln->n = p->sz->dims[0].n; pln->is = p->sz->dims[0].is; pln->os = p->sz->dims[0].os; pln->cld = cld; pln->super.super.ops = cld->ops; pln->super.super.ops.other += 4 * ((pln->n - 1)/2); pln->super.super.ops.add += 2 * ((pln->n - 1)/2); if (p->kind[0] == R2HC) pln->super.super.ops.mul += 2 * ((pln->n - 1)/2); if (pln->super.apply == apply_hc2r_save) pln->super.super.ops.other += 2 + (pln->n % 2 ? 0 : 2); return &(pln->super.super); } /* constructor */ static solver *mksolver(void) { static const solver_adt sadt = { mkplan }; S *slv = MKSOLVER(S, &sadt); return &(slv->super); } void X(rdft_dht_register)(planner *p) { REGISTER_SOLVER(p, mksolver()); }