/* * Copyright (c) 2003 Matteo Frigo * Copyright (c) 2003 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * */ /* $Id: rdft2-radix2.c,v 1.1 2008/10/17 06:11:29 scuri Exp $ */ /* Compute RDFT2 of even size via either a DFT or a vector RDFT of size n/2. This file is meant as a temporary hack until we do the right thing. The right thing is: 1) get rid of reduction to DFT, and 2) implement arbitrary even-radix reduction to RDFT. We currently reduce to DFT so as to exploit the SIMD code. We currently do only radix-2 in order to avoid generating yet another set of codelets. */ #include "rdft.h" #include "dft.h" typedef struct { int (*applicable) (const problem *p_, const planner *plnr); void (*apply) (const plan *ego_, R *r, R *rio, R *iio); problem *(*mkcld) (const problem_rdft2 *p); opcnt ops; const char *nam; } madt; typedef struct { solver super; const madt *adt; } S; typedef struct { plan_dft super; plan *cld; twid *td; int is, os, ivs, ovs; int n, vl; const S *slv; } P; /* common applicability function of forward problems */ static int applicable_f(const problem *p_, const planner *plnr) { UNUSED(plnr); if (RDFT2P(p_)) { const problem_rdft2 *p = (const problem_rdft2 *) p_; return (1 && p->kind == R2HC && p->vecsz->rnk <= 1 && p->sz->rnk == 1 && (p->sz->dims[0].n % 2) == 0 ); } return 0; } static int applicable_f_dft(const problem *p_, const planner *plnr) { UNUSED(plnr); if (applicable_f(p_, plnr)) { const problem_rdft2 *p = (const problem_rdft2 *) p_; return(p->r != p->rio || (p->iio == p->rio + p->sz->dims[0].is && p->sz->dims[0].os == 2 * p->sz->dims[0].is)); } return 0; } /* common applicability function of backward problems */ static int applicable_b(const problem *p_, const planner *plnr) { if (RDFT2P(p_)) { const problem_rdft2 *p = (const problem_rdft2 *) p_; return (1 && p->kind == HC2R && (p->r == p->rio || DESTROY_INPUTP(plnr)) && p->vecsz->rnk <= 1 && p->sz->rnk == 1 && (p->sz->dims[0].n % 2) == 0 ); } return 0; } static int applicable_b_dft(const problem *p_, const planner *plnr) { UNUSED(plnr); if (applicable_b(p_, plnr)) { const problem_rdft2 *p = (const problem_rdft2 *) p_; return(p->r != p->rio || (p->iio == p->rio + p->sz->dims[0].os && p->sz->dims[0].is == 2 * p->sz->dims[0].os)); } return 0; } /* * forward rdft2 via dft */ static void k_f_dft(R *rio, R *iio, const R *W, int n, int dist) { int i; R *pp = rio, *pm = rio + n * dist; int im = iio - rio; /* i = 0 and i = n */ { E rop = pp[0], iop = pp[im]; pp[0] = rop + iop; pm[0] = rop - iop; pp[im] = K(0.0); pm[im] = K(0.0); pp += dist; pm -= dist; } /* middle elements */ for (W += 2, i = 2; i < n; i += 2, W += 2) { E rop = pp[0], iop = pp[im], rom = pm[0], iom = pm[im]; E wr = W[0], wi = W[1]; E re = rop + rom; E ie = iop - iom; E rd = rom - rop; E id = iop + iom; E tr = rd * wr - id * wi; E ti = id * wr + rd * wi; pp[0] = K(0.5) * (re + ti); pp[im] = K(0.5) * (ie + tr); pm[0] = K(0.5) * (re - ti); pm[im] = K(0.5) * (tr - ie); pp += dist; pm -= dist; } /* i = n/2 when n is even */ if (!(n & 1)) pp[im] = -pp[im]; } static void apply_f_dft(const plan *ego_, R *r, R *rio, R *iio) { const P *ego = (const P *) ego_; { /* transform input as a vector of complex numbers */ plan_dft *cld = (plan_dft *) ego->cld; cld->apply((plan *) cld, r, r + ego->is, rio, iio); } { int i, vl = ego->vl, n2 = ego->n / 2; int ovs = ego->ovs, os = ego->os; const R *W = ego->td->W; for (i = 0; i < vl; ++i, rio += ovs, iio += ovs) k_f_dft(rio, iio, W, n2, os); } } static problem *mkcld_f_dft(const problem_rdft2 *p) { const iodim *d = p->sz->dims; return X(mkproblem_dft_d) ( X(mktensor_1d)(d[0].n / 2, d[0].is * 2, d[0].os), X(tensor_copy)(p->vecsz), p->r, p->r + d[0].is, p->rio, p->iio); } static const madt adt_f_dft = { applicable_f_dft, apply_f_dft, mkcld_f_dft, {10, 8, 0, 0}, "r2hc2-dft" }; /* * forward rdft2 via rdft */ static void k_f_rdft(R *rio, R *iio, const R *W, int n, int dist) { int i; R *pp = rio, *pm = rio + n * dist; int im = iio - rio; /* i = 0 and i = n */ { E rop = pp[0], iop = pp[im]; pp[0] = rop + iop; pm[0] = rop - iop; pp[im] = K(0.0); pm[im] = K(0.0); pp += dist; pm -= dist; } /* middle elements */ for (W += 2, i = 2; i < n; i += 2, W += 2) { E r0 = pp[0], r1 = pp[im], i0 = pm[0], i1 = pm[im]; E wr = W[0], wi = W[1]; E tr = r1 * wr + i1 * wi; E ti = i1 * wr - r1 * wi; pp[0] = r0 + tr; pp[im] = i0 + ti; pm[0] = r0 - tr; pm[im] = ti - i0; pp += dist; pm -= dist; } /* i = n/2 when n is even */ if (!(n & 1)) pp[im] = -pp[im]; } static void apply_f_rdft(const plan *ego_, R *r, R *rio, R *iio) { const P *ego = (const P *) ego_; { plan_rdft *cld = (plan_rdft *) ego->cld; cld->apply((plan *) cld, r, rio); } { int i, vl = ego->vl, n2 = ego->n / 2; int ovs = ego->ovs, os = ego->os; const R *W = ego->td->W; for (i = 0; i < vl; ++i, rio += ovs, iio += ovs) k_f_rdft(rio, iio, W, n2, os); } } static problem *mkcld_f_rdft(const problem_rdft2 *p) { const iodim *d = p->sz->dims; tensor *radix = X(mktensor_1d)(2, d[0].is, p->iio - p->rio); tensor *cld_vec = X(tensor_append)(radix, p->vecsz); X(tensor_destroy)(radix); return X(mkproblem_rdft_1_d) ( X(mktensor_1d)(d[0].n / 2, 2 * d[0].is, d[0].os), cld_vec, p->r, p->rio, R2HC); } static const madt adt_f_rdft = { applicable_f, apply_f_rdft, mkcld_f_rdft, {6, 4, 0, 0}, "r2hc2-rdft" }; /* * backward rdft2 via dft */ static void k_b_dft(R *rio, R *iio, const R *W, int n, int dist) { int i; R *pp = rio, *pm = rio + n * dist; int im = iio - rio; /* i = 0 and i = n */ { E rop = pp[0], iop = pm[0]; pp[0] = rop + iop; pp[im] = rop - iop; pp += dist; pm -= dist; } /* middle elements */ for (W += 2, i = 2; i < n; i += 2, W += 2) { E a = pp[0], b = pp[im], c = pm[0], d = pm[im]; E wr = W[0], wi = W[1]; E re = a + c, ti = a - c, ie = b - d, tr = b + d; E rd = tr * wr + ti * wi; E id = ti * wr - tr * wi; pp[0] = re - rd; pp[im] = ie + id; pm[0] = re + rd; pm[im] = id - ie; pp += dist; pm -= dist; } /* i = n/2 when n is even */ if (!(n & 1)) { pp[0] *= K(2.0); pp[im] *= -K(2.0); } } static void apply_b_dft(const plan *ego_, R *r, R *rio, R *iio) { const P *ego = (const P *) ego_; { int i, vl = ego->vl, n2 = ego->n / 2; int ivs = ego->ivs, is = ego->is; const R *W = ego->td->W; R *rio1 = rio, *iio1 = iio; for (i = 0; i < vl; ++i, rio1 += ivs, iio1 += ivs) k_b_dft(rio1, iio1, W, n2, is); } { plan_dft *cld = (plan_dft *) ego->cld; /* swap r/i because of backward transform */ cld->apply((plan *) cld, iio, rio, r + ego->os, r); } } static problem *mkcld_b_dft(const problem_rdft2 *p) { const iodim *d = p->sz->dims; return X(mkproblem_dft_d) ( X(mktensor_1d)(d[0].n / 2, d[0].is, 2 * d[0].os), X(tensor_copy)(p->vecsz), p->iio, p->rio, p->r + d[0].os, p->r); } static const madt adt_b_dft = { applicable_b_dft, apply_b_dft, mkcld_b_dft, {10, 8, 0, 0}, "hc2r2-dft" }; /* * backward rdft2 via backward rdft */ static void k_b_rdft(R *rio, R *iio, const R *W, int n, int dist) { int i; R *pp = rio, *pm = rio + n * dist; int im = iio - rio; /* i = 0 and i = n */ { E rop = pp[0], iop = pm[0]; pp[0] = rop + iop; pp[im] = rop - iop; pp += dist; pm -= dist; } /* middle elements */ for (W += 2, i = 2; i < n; i += 2, W += 2) { E a = pp[0], b = pp[im], c = pm[0], d = pm[im]; E wr = W[0], wi = W[1]; E r0 = a + c, r1 = a - c, i0 = b - d, i1 = b + d; pp[0] = r0; pm[0] = i0; pp[im] = r1 * wr - i1 * wi; pm[im] = i1 * wr + r1 * wi; pp += dist; pm -= dist; } /* i = n/2 when n is even */ if (!(n & 1)) { pp[0] *= K(2.0); pp[im] *= -K(2.0); } } static void apply_b_rdft(const plan *ego_, R *r, R *rio, R *iio) { const P *ego = (const P *) ego_; { int i, vl = ego->vl, n2 = ego->n / 2; int ivs = ego->ivs, is = ego->is; const R *W = ego->td->W; R *rio1 = rio, *iio1 = iio; for (i = 0; i < vl; ++i, rio1 += ivs, iio1 += ivs) k_b_rdft(rio1, iio1, W, n2, is); } { plan_rdft *cld = (plan_rdft *) ego->cld; cld->apply((plan *) cld, rio, r); } } static problem *mkcld_b_rdft(const problem_rdft2 *p) { const iodim *d = p->sz->dims; tensor *radix = X(mktensor_1d)(2, p->iio - p->rio, d[0].os); tensor *cld_vec = X(tensor_append)(radix, p->vecsz); X(tensor_destroy)(radix); return X(mkproblem_rdft_1_d) ( X(mktensor_1d)(d[0].n / 2, d[0].is, 2 * d[0].os), cld_vec, p->rio, p->r, HC2R); } static const madt adt_b_rdft = { applicable_b, apply_b_rdft, mkcld_b_rdft, {6, 4, 0, 0}, "hc2r2-rdft" }; /* * common stuff */ static void awake(plan *ego_, int flg) { P *ego = (P *) ego_; static const tw_instr twinstr[] = { {TW_FULL, 0, 2}, {TW_NEXT, 1, 0} }; AWAKE(ego->cld, flg); X(twiddle_awake)(flg, &ego->td, twinstr, ego->n, 2, (ego->n / 2 + 1) / 2); } static void destroy(plan *ego_) { P *ego = (P *) ego_; X(plan_destroy_internal) (ego->cld); } static void print(const plan *ego_, printer * p) { const P *ego = (const P *) ego_; p->print(p, "(%s-%d%v%(%p%))", ego->slv->adt->nam, ego->n, ego->vl, ego->cld); } static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr) { const S *ego = (const S *) ego_; P *pln; const problem_rdft2 *p; plan *cld; const iodim *d; static const plan_adt padt = { X(rdft2_solve), awake, print, destroy }; if (!ego->adt->applicable(p_, plnr)) return (plan *) 0; p = (const problem_rdft2 *) p_; cld = X(mkplan_d)(plnr, ego->adt->mkcld(p)); if (!cld) return (plan *) 0; pln = MKPLAN_RDFT2(P, &padt, ego->adt->apply); d = p->sz->dims; pln->n = d[0].n; pln->os = d[0].os; pln->is = d[0].is; X(tensor_tornk1) (p->vecsz, &pln->vl, &pln->ivs, &pln->ovs); pln->cld = cld; pln->td = 0; pln->slv = ego; /* approximately */ X(ops_madd)(pln->vl * ((pln->n/2 + 1) / 2), &ego->adt->ops, &cld->ops, &pln->super.super.ops); return &(pln->super.super); } static solver *mksolver(const madt *adt) { static const solver_adt sadt = { mkplan }; S *slv = MKSOLVER(S, &sadt); slv->adt = adt; return &(slv->super); } void X(rdft2_radix2_register)(planner *p) { unsigned i; static const madt *const adts[] = { &adt_f_dft, &adt_f_rdft, &adt_b_dft, &adt_b_rdft }; for (i = 0; i < sizeof(adts) / sizeof(adts[0]); ++i) REGISTER_SOLVER(p, mksolver(adts[i])); }