/* * Copyright (c) 2003 Matteo Frigo * Copyright (c) 2003 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * */ /* $Id: rdirect.c,v 1.1 2008/10/17 06:11:29 scuri Exp $ */ /* direct RDFT R2HC/HC2R solver, if we have a codelet */ #include "rdft.h" typedef union { kr2hc r2hc; khc2r hc2r; kr2r r2r; } kodelet; typedef struct { solver super; union { const kr2hc_desc *r2hc; const khc2r_desc *hc2r; const kr2r_desc *r2r; } desc; kodelet k; int sz; rdft_kind kind; const char *nam; } S; typedef struct { plan_rdft super; stride is, ros, ios; int ioffset; int vl; int ivs, ovs; kodelet k; const S *slv; } P; static void apply_r2hc(const plan *ego_, R *I, R *O) { const P *ego = (const P *) ego_; ASSERT_ALIGNED_DOUBLE; ego->k.r2hc(I, O, O + ego->ioffset, ego->is, ego->ros, ego->ios, ego->vl, ego->ivs, ego->ovs); } static void apply_hc2r(const plan *ego_, R *I, R *O) { const P *ego = (const P *) ego_; ASSERT_ALIGNED_DOUBLE; ego->k.hc2r(I, I + ego->ioffset, O, ego->ros, ego->ios, ego->is, ego->vl, ego->ivs, ego->ovs); } static void apply_r2r(const plan *ego_, R *I, R *O) { const P *ego = (const P *) ego_; ASSERT_ALIGNED_DOUBLE; ego->k.r2r(I, O, ego->is, ego->ros, ego->vl, ego->ivs, ego->ovs); } static void destroy(plan *ego_) { P *ego = (P *) ego_; X(stride_destroy)(ego->is); X(stride_destroy)(ego->ros); if (!R2R_KINDP(ego->slv->kind)) X(stride_destroy)(ego->ios); } static void print(const plan *ego_, printer *p) { const P *ego = (const P *) ego_; const S *s = ego->slv; p->print(p, "(rdft-%s-direct-%d%v \"%s\")", X(rdft_kind_str)(s->kind), s->sz, ego->vl, s->nam); } static int ioffset(rdft_kind kind, int sz, int s) { return(s * ((kind == R2HC || kind == HC2R) ? sz : (sz - 1))); } static int applicable(const solver *ego_, const problem *p_) { if (RDFTP(p_)) { const S *ego = (const S *) ego_; const problem_rdft *p = (const problem_rdft *) p_; int vl; int ivs, ovs; return ( 1 && p->sz->rnk == 1 && p->vecsz->rnk <= 1 && p->sz->dims[0].n == ego->sz && p->kind[0] == ego->kind /* check strides etc */ && X(tensor_tornk1)(p->vecsz, &vl, &ivs, &ovs) && (!R2HC_KINDP(ego->kind) || ego->desc.r2hc->genus->okp(ego->desc.r2hc, p->I, p->O, p->O + ioffset(ego->kind, ego->sz, p->sz->dims[0].os), p->sz->dims[0].is, p->sz->dims[0].os, -p->sz->dims[0].os, vl, ivs, ovs)) && (!HC2R_KINDP(ego->kind) || ego->desc.hc2r->genus->okp(ego->desc.hc2r, p->I, p->I + ioffset(ego->kind, ego->sz, p->sz->dims[0].is), p->O, p->sz->dims[0].is, -p->sz->dims[0].is, p->sz->dims[0].os, vl, ivs, ovs)) && (!R2R_KINDP(ego->kind) || ego->desc.r2r->genus->okp(ego->desc.r2r, p->I, p->O, p->sz->dims[0].is, p->sz->dims[0].os, vl, ivs, ovs)) && (0 /* can operate out-of-place */ || p->I != p->O /* * can compute one transform in-place, no matter * what the strides are. */ || p->vecsz->rnk == 0 /* can operate in-place as long as strides are the same */ || (X(tensor_inplace_strides2)(p->sz, p->vecsz)) ) ); } return 0; } static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr) { const S *ego = (const S *) ego_; P *pln; const problem_rdft *p; iodim *d; int hc2r_kindp, r2r_kindp; static const plan_adt padt = { X(rdft_solve), X(null_awake), print, destroy }; UNUSED(plnr); if (!applicable(ego_, p_)) return (plan *)0; p = (const problem_rdft *) p_; hc2r_kindp = HC2R_KINDP(ego->kind); r2r_kindp = R2R_KINDP(ego->kind); pln = MKPLAN_RDFT(P, &padt, r2r_kindp ? apply_r2r : (hc2r_kindp ? apply_hc2r : apply_r2hc)); d = p->sz->dims; pln->k = ego->k; pln->ioffset = ioffset(ego->kind, d[0].n, hc2r_kindp ? d[0].is : d[0].os); pln->is = X(mkstride)(ego->sz, hc2r_kindp ? d[0].os : d[0].is); if (r2r_kindp) { pln->ros = X(mkstride)(ego->sz, d[0].os); pln->ios = 0; } else { int nr = (ego->kind == R2HC || ego->kind == HC2R) ?(d[0].n + 2) / 2 : /* R2HCII */ (d[0].n + 1) / 2; pln->ros = X(mkstride)(nr, hc2r_kindp ? d[0].is : d[0].os); pln->ios = X(mkstride)(ego->sz - nr + 1, hc2r_kindp ? -d[0].is : -d[0].os); } X(tensor_tornk1)(p->vecsz, &pln->vl, &pln->ivs, &pln->ovs); pln->slv = ego; X(ops_zero)(&pln->super.super.ops); if (r2r_kindp) X(ops_madd2)(pln->vl / ego->desc.r2r->genus->vl, &ego->desc.r2r->ops, &pln->super.super.ops); else if (hc2r_kindp) X(ops_madd2)(pln->vl / ego->desc.hc2r->genus->vl, &ego->desc.hc2r->ops, &pln->super.super.ops); else X(ops_madd2)(pln->vl / ego->desc.r2hc->genus->vl, &ego->desc.r2hc->ops, &pln->super.super.ops); return &(pln->super.super); } /* constructor */ solver *X(mksolver_rdft_r2hc_direct)(kr2hc k, const kr2hc_desc *desc) { static const solver_adt sadt = { mkplan }; S *slv = MKSOLVER(S, &sadt); slv->k.r2hc = k; slv->desc.r2hc = desc; slv->sz = desc->sz; slv->nam = desc->nam; slv->kind = desc->genus->kind; return &(slv->super); } solver *X(mksolver_rdft_hc2r_direct)(khc2r k, const khc2r_desc *desc) { static const solver_adt sadt = { mkplan }; S *slv = MKSOLVER(S, &sadt); slv->k.hc2r = k; slv->desc.hc2r = desc; slv->sz = desc->sz; slv->nam = desc->nam; slv->kind = desc->genus->kind; return &(slv->super); } solver *X(mksolver_rdft_r2r_direct)(kr2r k, const kr2r_desc *desc) { static const solver_adt sadt = { mkplan }; S *slv = MKSOLVER(S, &sadt); slv->k.r2r = k; slv->desc.r2r = desc; slv->sz = desc->sz; slv->nam = desc->nam; slv->kind = desc->kind; return &(slv->super); }