/* * Copyright (c) 2003 Matteo Frigo * Copyright (c) 2003 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * */ #include "rdft.h" typedef struct { solver super; rdft_kind kind; } S; typedef struct { plan_rdft super; plan *cld; twid *td; int os; int r, m; rdft_kind kind; } P; /***************************************************************************/ static void apply_dit(const plan *ego_, R *I, R *O) { const P *ego = (const P *) ego_; int n, m, r; int i, j, k; int os, osm; E *buf; const R *W; R *X, *YO, *YI; E rsum, isum; int wp, wincr; { plan_rdft *cld = (plan_rdft *) ego->cld; cld->apply((plan *) cld, I, O); } r = ego->r; STACK_MALLOC(E *, buf, r * 2 * sizeof(E)); osm = (m = ego->m) * (os = ego->os); n = m * r; W = ego->td->W; X = O; YO = O + r * osm; YI = O + osm; /* compute the transform of the r 0th elements (which are real) */ for (i = 0; i + i < r; ++i) { rsum = K(0.0); isum = K(0.0); wincr = m * i; for (j = 0, wp = 0; j < r; ++j) { E tw_r = W[2*wp]; E tw_i = W[2*wp+1] ; E re = X[j * osm]; rsum += re * tw_r; isum += re * tw_i; wp += wincr; if (wp >= n) wp -= n; } buf[2*i] = rsum; buf[2*i+1] = isum; } /* store the transform back onto the A array */ X[0] = buf[0]; for (i = 1; i + i < r; ++i) { X[i * osm] = buf[2*i]; YO[-i * osm] = buf[2*i+1]; } X += os; YI -= os; YO -= os; /* compute the transform of the middle elements (which are complex) */ for (k = 1; k + k < m; ++k, X += os, YI -= os, YO -= os) { for (i = 0; i < r; ++i) { rsum = K(0.0); isum = K(0.0); wincr = k + m * i; for (j = 0, wp = 0; j < r; ++j) { E tw_r = W[2*wp]; E tw_i = W[2*wp+1] ; E re = X[j * osm]; E im = YI[j * osm]; rsum += re * tw_r - im * tw_i; isum += re * tw_i + im * tw_r; wp += wincr; if (wp >= n) wp -= n; } buf[2*i] = rsum; buf[2*i+1] = isum; } /* store the transform back onto the A array */ for (i = 0; i + i < r; ++i) { X[i * osm] = buf[2*i]; YO[-i * osm] = buf[2*i+1]; } for (; i < r; ++i) { X[i * osm] = -buf[2*i+1]; YO[-i * osm] = buf[2*i]; } } /* no final element, since m is odd */ STACK_FREE(buf); } static void apply_dif(const plan *ego_, R *I, R *O) { const P *ego = (const P *) ego_; int n, m, r; int i, j, k; int is, ism; E *buf; const R *W; R *X, *YO, *YI; E rsum, isum; int wp, wincr; r = ego->r; STACK_MALLOC(E *, buf, r * 2 * sizeof(E)); ism = (m = ego->m) * (is = ego->os); n = m * r; W = ego->td->W; X = I; YI = I + r * ism; YO = I + ism; /* * compute the transform of the r 0th elements (which are halfcomplex) * yielding real numbers */ /* copy the input into the temporary array */ buf[0] = X[0]; for (i = 1; i + i < r; ++i) { buf[2*i] = X[i * ism]; buf[2*i+1] = YI[-i * ism]; } for (i = 0; i < r; ++i) { rsum = K(0.0); wincr = m * i; for (j = 1, wp = wincr; j + j < r; ++j) { E tw_r = W[2*wp]; E tw_i = W[2*wp+1]; E re = buf[2*j]; E im = buf[2*j+1]; rsum += re * tw_r + im * tw_i; wp += wincr; if (wp >= n) wp -= n; } X[i * ism] = K(2.0) * rsum + buf[0]; } X += is; YI -= is; YO -= is; /* compute the transform of the middle elements (which are complex) */ for (k = 1; k + k < m; ++k, X += is, YI -= is, YO -= is) { /* copy the input into the temporary array */ for (i = 0; i + i < r; ++i) { buf[2*i] = X[i * ism]; buf[2*i+1] = YI[-i * ism]; } for (; i < r; ++i) { buf[2*i+1] = -X[i * ism]; buf[2*i] = YI[-i * ism]; } for (i = 0; i < r; ++i) { rsum = K(0.0); isum = K(0.0); wincr = m * i; for (j = 0, wp = k * i; j < r; ++j) { E tw_r = W[2*wp]; E tw_i = W[2*wp+1]; E re = buf[2*j]; E im = buf[2*j+1]; rsum += re * tw_r + im * tw_i; isum += im * tw_r - re * tw_i; wp += wincr; if (wp >= n) wp -= n; } X[i * ism] = rsum; YO[i * ism] = isum; } } /* no final element, since m is odd */ STACK_FREE(buf); { plan_rdft *cld = (plan_rdft *) ego->cld; cld->apply((plan *) cld, I, O); } } /***************************************************************************/ static void awake(plan *ego_, int flg) { P *ego = (P *) ego_; static const tw_instr generic_tw[] = { { TW_GENERIC, 0, 0 }, { TW_NEXT, 1, 0 } }; AWAKE(ego->cld, flg); /* FIXME: can we get away with fewer twiddles? */ X(twiddle_awake)(flg, &ego->td, generic_tw, ego->r * ego->m, ego->r, ego->m); } static void destroy(plan *ego_) { P *ego = (P *) ego_; X(plan_destroy_internal)(ego->cld); } static void print(const plan *ego_, printer *p) { const P *ego = (const P *) ego_; p->print(p, "(rdft-generic-%s-%d%(%p%))", ego->kind == R2HC ? "r2hc-dit" : "hc2r-dif", ego->r, ego->cld); } static int applicable0(const solver *ego_, const problem *p_) { if (RDFTP(p_)) { const S *ego = (const S *) ego_; const problem_rdft *p = (const problem_rdft *) p_; return (1 && p->sz->rnk == 1 && p->vecsz->rnk == 0 && p->sz->dims[0].n > 1 && p->sz->dims[0].n % 2 /* ensure r and n/r odd */ && p->kind[0] == ego->kind ); } return 0; } static int applicable(const solver *ego_, const problem *p_, const planner *plnr) { if (NO_UGLYP(plnr)) return 0; /* always ugly */ if (!applicable0(ego_, p_)) return 0; if (NO_LARGE_GENERICP(plnr)) { const problem_rdft *p = (const problem_rdft *) p_; if (X(first_divisor)(p->sz->dims[0].n) >= GENERIC_MIN_BAD) return 0; } return 1; } static plan *mkplan(const solver *ego, const problem *p_, planner *plnr) { const problem_rdft *p = (const problem_rdft *) p_; P *pln = 0; int n, r, m; int is, os; plan *cld = (plan *) 0; problem *cldp; static const plan_adt padt = { X(rdft_solve), awake, print, destroy }; if (!applicable(ego, p_, plnr)) goto nada; n = p->sz->dims[0].n; is = p->sz->dims[0].is; os = p->sz->dims[0].os; r = X(first_divisor)(n); m = n / r; if (R2HC_KINDP(p->kind[0])) { cldp = X(mkproblem_rdft_d)(X(mktensor_1d)(m, r * is, os), X(mktensor_1d)(r, is, m * os), p->I, p->O, p->kind); } else { cldp = X(mkproblem_rdft_d)(X(mktensor_1d)(m, is, r * os), X(mktensor_1d)(r, m * is, os), p->I, p->O, p->kind); } if (!(cld = X(mkplan_d)(plnr, cldp))) goto nada; pln = MKPLAN_RDFT(P, &padt, R2HC_KINDP(p->kind[0]) ? apply_dit:apply_dif); pln->os = R2HC_KINDP(p->kind[0]) ? os : is; pln->r = r; pln->m = m; pln->cld = cld; pln->td = 0; pln->kind = p->kind[0]; X(ops_zero)(&pln->super.super.ops); pln->super.super.ops.add = 4 * r * r; pln->super.super.ops.mul = 4 * r * r; /* loads + stores, minus loads + stores for all DIT codelets */ pln->super.super.ops.other = 4 * r + 4 * r * r - (6*r - 2); X(ops_madd)((m - 1)/2, &pln->super.super.ops, &cld->ops, &pln->super.super.ops); pln->super.super.ops.add += 2 * r * r; pln->super.super.ops.mul += 2 * r * r; pln->super.super.ops.other += 3 * r + 3 * r * r - 2*r; return &(pln->super.super); nada: X(plan_destroy_internal)(cld); X(ifree0)(pln); return (plan *) 0; } /* constructors */ static solver *mksolver(rdft_kind kind) { static const solver_adt sadt = { mkplan }; S *slv = MKSOLVER(S, &sadt); slv->kind = kind; return &(slv->super); } void X(rdft_generic_register)(planner *p) { REGISTER_SOLVER(p, mksolver(R2HC)); REGISTER_SOLVER(p, mksolver(HC2R)); }