/* * Copyright (c) 2003 Matteo Frigo * Copyright (c) 2003 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * */ /* $Id: rrank-geq2.c,v 1.1 2008/10/17 06:11:29 scuri Exp $ */ /* plans for RDFT of rank >= 2 (multidimensional) */ /* FIXME: this solver cannot strictly be applied to multidimensional DHTs, since the latter are not separable...up to rnk-1 additional post-processing passes may be required. See also: R. N. Bracewell, O. Buneman, H. Hao, and J. Villasenor, "Fast two-dimensional Hartley transform," Proc. IEEE 74, 1282-1283 (1986). H. Hao and R. N. Bracewell, "A three-dimensional DFT algorithm using the fast Hartley transform," Proc. IEEE 75(2), 264-266 (1987). */ #include "rdft.h" typedef struct { solver super; int spltrnk; const int *buddies; int nbuddies; } S; typedef struct { plan_rdft super; plan *cld1, *cld2; const S *solver; } P; /* Compute multi-dimensional RDFT by applying the two cld plans (lower-rnk RDFTs). */ static void apply(const plan *ego_, R *I, R *O) { const P *ego = (const P *) ego_; plan_rdft *cld1, *cld2; cld1 = (plan_rdft *) ego->cld1; cld1->apply(ego->cld1, I, O); cld2 = (plan_rdft *) ego->cld2; cld2->apply(ego->cld2, O, O); } static void awake(plan *ego_, int flg) { P *ego = (P *) ego_; AWAKE(ego->cld1, flg); AWAKE(ego->cld2, flg); } static void destroy(plan *ego_) { P *ego = (P *) ego_; X(plan_destroy_internal)(ego->cld2); X(plan_destroy_internal)(ego->cld1); } static void print(const plan *ego_, printer *p) { const P *ego = (const P *) ego_; const S *s = ego->solver; p->print(p, "(rdft-rank>=2/%d%(%p%)%(%p%))", s->spltrnk, ego->cld1, ego->cld2); } static int picksplit(const S *ego, const tensor *sz, int *rp) { A(sz->rnk > 1); /* cannot split rnk <= 1 */ if (!X(pickdim)(ego->spltrnk, ego->buddies, ego->nbuddies, sz, 1, rp)) return 0; *rp += 1; /* convert from dim. index to rank */ if (*rp >= sz->rnk) /* split must reduce rank */ return 0; return 1; } static int applicable0(const solver *ego_, const problem *p_, int *rp) { if (RDFTP(p_)) { const problem_rdft *p = (const problem_rdft *) p_; const S *ego = (const S *)ego_; return (1 && p->sz->rnk >= 2 && picksplit(ego, p->sz, rp) ); } return 0; } /* TODO: revise this. */ static int applicable(const solver *ego_, const problem *p_, const planner *plnr, int *rp) { const S *ego = (const S *)ego_; if (!applicable0(ego_, p_, rp)) return 0; /* fixed spltrnk (unlike fftw2's spltrnk=1, default buddies[0] is spltrnk=0, which is an asymptotic "theoretical optimum" for an ideal cache; it's equivalent to spltrnk=1 for rnk < 4). */ if (NO_RANK_SPLITSP(plnr) && (ego->spltrnk != ego->buddies[0])) return 0; if (NO_UGLYP(plnr)) { /* Heuristic: if the vector stride is greater than the transform sz, don't use (prefer to do the vector loop first with a vrank-geq1 plan). */ const problem_rdft *p = (const problem_rdft *) p_; if (p->vecsz->rnk > 0 && X(tensor_min_stride)(p->vecsz) > X(tensor_max_index)(p->sz)) return 0; } return 1; } static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr) { const S *ego = (const S *) ego_; const problem_rdft *p; P *pln; plan *cld1 = 0, *cld2 = 0; tensor *sz1, *sz2, *vecszi, *sz2i; int spltrnk; static const plan_adt padt = { X(rdft_solve), awake, print, destroy }; if (!applicable(ego_, p_, plnr, &spltrnk)) return (plan *) 0; p = (const problem_rdft *) p_; X(tensor_split)(p->sz, &sz1, spltrnk, &sz2); vecszi = X(tensor_copy_inplace)(p->vecsz, INPLACE_OS); sz2i = X(tensor_copy_inplace)(sz2, INPLACE_OS); cld1 = X(mkplan_d)(plnr, X(mkproblem_rdft_d)(X(tensor_copy)(sz2), X(tensor_append)(p->vecsz, sz1), p->I, p->O, p->kind + spltrnk)); if (!cld1) goto nada; cld2 = X(mkplan_d)(plnr, X(mkproblem_rdft_d)( X(tensor_copy_inplace)(sz1, INPLACE_OS), X(tensor_append)(vecszi, sz2i), p->O, p->O, p->kind)); if (!cld2) goto nada; pln = MKPLAN_RDFT(P, &padt, apply); pln->cld1 = cld1; pln->cld2 = cld2; pln->solver = ego; X(ops_add)(&cld1->ops, &cld2->ops, &pln->super.super.ops); X(tensor_destroy4)(sz2, sz1, vecszi, sz2i); return &(pln->super.super); nada: X(plan_destroy_internal)(cld2); X(plan_destroy_internal)(cld1); X(tensor_destroy4)(sz2, sz1, vecszi, sz2i); return (plan *) 0; } static solver *mksolver(int spltrnk, const int *buddies, int nbuddies) { static const solver_adt sadt = { mkplan }; S *slv = MKSOLVER(S, &sadt); slv->spltrnk = spltrnk; slv->buddies = buddies; slv->nbuddies = nbuddies; return &(slv->super); } void X(rdft_rank_geq2_register)(planner *p) { int i; static const int buddies[] = { 0, 1, -2 }; const int nbuddies = sizeof(buddies) / sizeof(buddies[0]); for (i = 0; i < nbuddies; ++i) REGISTER_SOLVER(p, mksolver(buddies[i], buddies, nbuddies)); /* FIXME: Should we try more buddies? See also dft/rank-geq2. */ }