1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
|
/*
* Copyright (c) 2003 Matteo Frigo
* Copyright (c) 2003 Massachusetts Institute of Technology
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
/* $Id: buffered.c,v 1.1 2008/10/17 06:11:08 scuri Exp $ */
#include "dft.h"
typedef struct {
int nbuf;
int maxbufsz;
int skew_alignment;
int skew;
const char *nam;
} bufadt;
typedef struct {
solver super;
const bufadt *adt;
} S;
typedef struct {
plan_dft super;
plan *cld, *cldcpy, *cldrest;
int n, vl, nbuf, bufdist;
int ivs, ovs;
int roffset, ioffset;
const S *slv;
} P;
/* transform a vector input with the help of bufs */
static void apply(const plan *ego_, R *ri, R *ii, R *ro, R *io)
{
const P *ego = (const P *) ego_;
int nbuf = ego->nbuf;
R *bufs = (R *)MALLOC(sizeof(R) * nbuf * ego->bufdist * 2, BUFFERS);
plan_dft *cld = (plan_dft *) ego->cld;
plan_dft *cldcpy = (plan_dft *) ego->cldcpy;
plan_dft *cldrest;
int i, vl = ego->vl;
int ivs = ego->ivs, ovs = ego->ovs;
int roffset = ego->roffset, ioffset = ego->ioffset;
/* note unsigned i: the obvious statement
for (i = 0; i <= vl - nbuf; i += nbuf)
is wrong */
for (i = nbuf; i <= vl; i += nbuf) {
/* transform to bufs: */
cld->apply((plan *) cld, ri, ii, bufs + roffset, bufs + ioffset);
ri += ivs; ii += ivs;
/* copy back */
cldcpy->apply((plan *) cldcpy, bufs+roffset, bufs+ioffset, ro, io);
ro += ovs; io += ovs;
}
/* Do the remaining transforms, if any: */
cldrest = (plan_dft *) ego->cldrest;
cldrest->apply((plan *) cldrest, ri, ii, ro, io);
X(ifree)(bufs);
}
static void awake(plan *ego_, int flg)
{
P *ego = (P *) ego_;
AWAKE(ego->cld, flg);
AWAKE(ego->cldcpy, flg);
AWAKE(ego->cldrest, flg);
}
static void destroy(plan *ego_)
{
P *ego = (P *) ego_;
X(plan_destroy_internal)(ego->cldrest);
X(plan_destroy_internal)(ego->cldcpy);
X(plan_destroy_internal)(ego->cld);
}
static void print(const plan *ego_, printer *p)
{
const P *ego = (const P *) ego_;
p->print(p, "(%s-%d%v/%d-%d%(%p%)%(%p%)%(%p%))",
ego->slv->adt->nam,
ego->n, ego->nbuf,
ego->vl, ego->bufdist % ego->n,
ego->cld, ego->cldcpy, ego->cldrest);
}
static int compute_nbuf(int n, int vl, const S *ego)
{
return X(compute_nbuf)(n, vl, ego->adt->nbuf, ego->adt->maxbufsz);
}
static int toobig(int n, const S *ego)
{
return (n > ego->adt->maxbufsz);
}
static int applicable0(const problem *p_, const S *ego, const planner *plnr)
{
if (DFTP(p_)) {
const problem_dft *p = (const problem_dft *) p_;
const iodim *d = p->sz->dims;
if (1
&& p->vecsz->rnk <= 1
&& p->sz->rnk == 1
) {
if (toobig(p->sz->dims[0].n, ego) && CONSERVE_MEMORYP(plnr))
return 0;
/*
In principle, the buffered transforms might be useful
when working out of place. However, in order to
prevent infinite loops in the planner, we require
that the output stride of the buffered transforms be
greater than 2.
*/
if (p->ri != p->ro)
return (d[0].os > 2);
/* We can always do a single transform in-place */
if (p->vecsz->rnk == 0)
return 1;
/*
* If the problem is in place, the input/output strides must
* be the same or the whole thing must fit in the buffer.
*/
return ((X(tensor_inplace_strides2)(p->sz, p->vecsz))
|| (compute_nbuf(d[0].n, p->vecsz->dims[0].n, ego)
== p->vecsz->dims[0].n));
}
}
return 0;
}
static int applicable(const problem *p_, const S *ego, const planner *plnr)
{
if (NO_BUFFERINGP(plnr)) return 0;
if (!applicable0(p_, ego, plnr)) return 0;
if (NO_UGLYP(plnr)) {
const problem_dft *p = (const problem_dft *) p_;
if (p->ri != p->ro) return 0;
if (toobig(p->sz->dims[0].n, ego)) return 0;
}
return 1;
}
static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
{
const S *ego = (const S *) ego_;
const bufadt *adt = ego->adt;
P *pln;
plan *cld = (plan *) 0;
plan *cldcpy = (plan *) 0;
plan *cldrest = (plan *) 0;
const problem_dft *p = (const problem_dft *) p_;
R *bufs = (R *) 0;
int nbuf = 0, bufdist, n, vl;
int ivs, ovs, roffset, ioffset;
static const plan_adt padt = {
X(dft_solve), awake, print, destroy
};
if (!applicable(p_, ego, plnr))
goto nada;
n = X(tensor_sz)(p->sz);
X(tensor_tornk1)(p->vecsz, &vl, &ivs, &ovs);
nbuf = compute_nbuf(n, vl, ego);
A(nbuf > 0);
/*
* Determine BUFDIST, the offset between successive array bufs.
* bufdist = n + skew, where skew is chosen such that bufdist %
* skew_alignment = skew.
*/
if (vl == 1) {
bufdist = n;
} else {
bufdist =
n + ((adt->skew_alignment + adt->skew - n % adt->skew_alignment)
% adt->skew_alignment);
A(p->vecsz->rnk == 1);
}
/* attempt to keep real and imaginary part in the same order,
so as to allow optimizations in the the copy plan */
roffset = (p->ri - p->ii > 0) ? 1 : 0;
ioffset = 1 - roffset;
/* initial allocation for the purpose of planning */
bufs = (R *) MALLOC(sizeof(R) * nbuf * bufdist * 2, BUFFERS);
cld = X(mkplan_d)(plnr,
X(mkproblem_dft_d)(
X(mktensor_1d)(n, p->sz->dims[0].is, 2),
X(mktensor_1d)(nbuf, ivs, bufdist * 2),
TAINT(p->ri, ivs * nbuf),
TAINT(p->ii, ivs * nbuf),
bufs + roffset,
bufs + ioffset));
if (!cld)
goto nada;
/* copying back from the buffer is a rank-0 transform: */
cldcpy = X(mkplan_d)(plnr,
X(mkproblem_dft_d)(
X(mktensor_0d)(),
X(mktensor_2d)(nbuf, bufdist * 2, ovs,
n, 2, p->sz->dims[0].os),
bufs + roffset,
bufs + ioffset,
TAINT(p->ro, ovs * nbuf),
TAINT(p->io, ovs * nbuf)));
if (!cldcpy)
goto nada;
/* deallocate buffers, let apply() allocate them for real */
X(ifree)(bufs);
bufs = 0;
/* plan the leftover transforms (cldrest): */
{
int id = ivs * (nbuf * (vl / nbuf));
int od = ovs * (nbuf * (vl / nbuf));
cldrest = X(mkplan_d)(plnr,
X(mkproblem_dft_d)(
X(tensor_copy)(p->sz),
X(mktensor_1d)(vl % nbuf, ivs, ovs),
p->ri+id, p->ii+id, p->ro+od, p->io+od));
}
if (!cldrest)
goto nada;
pln = MKPLAN_DFT(P, &padt, apply);
pln->cld = cld;
pln->cldcpy = cldcpy;
pln->cldrest = cldrest;
pln->slv = ego;
pln->n = n;
pln->vl = vl;
pln->ivs = ivs * nbuf;
pln->ovs = ovs * nbuf;
pln->roffset = roffset;
pln->ioffset = ioffset;
pln->nbuf = nbuf;
pln->bufdist = bufdist;
{
opcnt t;
X(ops_add)(&cld->ops, &cldcpy->ops, &t);
X(ops_madd)(vl / nbuf, &t, &cldrest->ops, &pln->super.super.ops);
}
return &(pln->super.super);
nada:
X(ifree0)(bufs);
X(plan_destroy_internal)(cldrest);
X(plan_destroy_internal)(cldcpy);
X(plan_destroy_internal)(cld);
return (plan *) 0;
}
static solver *mksolver(const bufadt *adt)
{
static const solver_adt sadt = { mkplan };
S *slv = MKSOLVER(S, &sadt);
slv->adt = adt;
return &(slv->super);
}
void X(dft_buffered_register)(planner *p)
{
/* FIXME: what are good defaults? */
static const bufadt adt = {
/* nbuf */ 8,
/* maxbufsz */ (65536 / sizeof(R)),
/* skew_alignment */ 8,
#if HAVE_SIMD /* 5 is odd and screws up the alignment. */
/* skew */ 6,
#else
/* skew */ 5,
#endif
/* nam */ "dft-buffered"
};
REGISTER_SOLVER(p, mksolver(&adt));
}
|