1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
|
/*
* Copyright (c) 2003 Matteo Frigo
* Copyright (c) 2003 Massachusetts Institute of Technology
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
/* $Id: reodft11e-r2hc-odd.c,v 1.1 2008/10/17 06:13:18 scuri Exp $ */
/* Do an R{E,O}DFT11 problem via an R2HC problem of the same *odd* size,
with some permutations and post-processing, as described in:
S. C. Chan and K. L. Ho, "Fast algorithms for computing the
discrete cosine transform," IEEE Trans. Circuits Systems II:
Analog & Digital Sig. Proc. 39 (3), 185--190 (1992).
(For even sizes, see reodft11e-radix2.c.)
This algorithm is related to the 8 x n prime-factor-algorithm (PFA)
decomposition of the size 8n "logical" DFT corresponding to the
R{EO}DFT11.
Aside from very confusing notation (several symbols are redefined
from one line to the next), be aware that this paper has some
errors. In particular, the signs are wrong in Eqs. (34-35). Also,
Eqs. (36-37) should be simply C(k) = C(2k + 1 mod N), and similarly
for S (or, equivalently, the second cases should have 2*N - 2*k - 1
instead of N - k - 1). Note also that in their definition of the
DFT, similarly to FFTW's, the exponent's sign is -1, but they
forgot to correspondingly multiply S (the sine terms) by -1.
*/
#include "reodft.h"
typedef struct {
solver super;
} S;
typedef struct {
plan_rdft super;
plan *cld;
int is, os;
int n;
int vl;
int ivs, ovs;
rdft_kind kind;
} P;
static DK(SQRT2, +1.4142135623730950488016887242096980785696718753769);
#define SGN_SET(x, i) ((i) % 2 ? -(x) : (x))
static void apply_re11(const plan *ego_, R *I, R *O)
{
const P *ego = (const P *) ego_;
int is = ego->is, os = ego->os;
int i, n = ego->n, n2 = n/2;
int iv, vl = ego->vl;
int ivs = ego->ivs, ovs = ego->ovs;
R *buf;
buf = (R *) MALLOC(sizeof(R) * n, BUFFERS);
for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) {
{
int m;
for (i = 0, m = n2; m < n; ++i, m += 4)
buf[i] = I[is * m];
for (; m < 2 * n; ++i, m += 4)
buf[i] = -I[is * (2*n - m - 1)];
for (; m < 3 * n; ++i, m += 4)
buf[i] = -I[is * (m - 2*n)];
for (; m < 4 * n; ++i, m += 4)
buf[i] = I[is * (4*n - m - 1)];
m -= 4 * n;
for (; i < n; ++i, m += 4)
buf[i] = I[is * m];
}
{ /* child plan: R2HC of size n */
plan_rdft *cld = (plan_rdft *) ego->cld;
cld->apply((plan *) cld, buf, buf);
}
/* FIXME: strength-reduce loop by 4 to eliminate ugly sgn_set? */
for (i = 0; i + i + 1 < n2; ++i) {
int k = i + i + 1;
E c1, s1;
E c2, s2;
c1 = buf[k];
c2 = buf[k + 1];
s2 = buf[n - (k + 1)];
s1 = buf[n - k];
O[os * i] = SQRT2 * (SGN_SET(c1, (i+1)/2) +
SGN_SET(s1, i/2));
O[os * (n - (i+1))] = SQRT2 * (SGN_SET(c1, (n-i)/2) -
SGN_SET(s1, (n-(i+1))/2));
O[os * (n2 - (i+1))] = SQRT2 * (SGN_SET(c2, (n2-i)/2) -
SGN_SET(s2, (n2-(i+1))/2));
O[os * (n2 + (i+1))] = SQRT2 * (SGN_SET(c2, (n2+i+2)/2) +
SGN_SET(s2, (n2+(i+1))/2));
}
if (i + i + 1 == n2) {
E c, s;
c = buf[n2];
s = buf[n - n2];
O[os * i] = SQRT2 * (SGN_SET(c, (i+1)/2) +
SGN_SET(s, i/2));
O[os * (n - (i+1))] = SQRT2 * (SGN_SET(c, (i+2)/2) +
SGN_SET(s, (i+1)/2));
}
O[os * n2] = SQRT2 * SGN_SET(buf[0], (n2+1)/2);
}
X(ifree)(buf);
}
/* like for rodft01, rodft11 is obtained from redft11 by
reversing the input and flipping the sign of every other output. */
static void apply_ro11(const plan *ego_, R *I, R *O)
{
const P *ego = (const P *) ego_;
int is = ego->is, os = ego->os;
int i, n = ego->n, n2 = n/2;
int iv, vl = ego->vl;
int ivs = ego->ivs, ovs = ego->ovs;
R *buf;
buf = (R *) MALLOC(sizeof(R) * n, BUFFERS);
for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) {
{
int m;
for (i = 0, m = n2; m < n; ++i, m += 4)
buf[i] = I[is * (n - 1 - m)];
for (; m < 2 * n; ++i, m += 4)
buf[i] = -I[is * (m - n)];
for (; m < 3 * n; ++i, m += 4)
buf[i] = -I[is * (3*n - 1 - m)];
for (; m < 4 * n; ++i, m += 4)
buf[i] = I[is * (m - 3*n)];
m -= 4 * n;
for (; i < n; ++i, m += 4)
buf[i] = I[is * (n - 1 - m)];
}
{ /* child plan: R2HC of size n */
plan_rdft *cld = (plan_rdft *) ego->cld;
cld->apply((plan *) cld, buf, buf);
}
/* FIXME: strength-reduce loop by 4 to eliminate ugly sgn_set? */
for (i = 0; i + i + 1 < n2; ++i) {
int k = i + i + 1;
int j;
E c1, s1;
E c2, s2;
c1 = buf[k];
c2 = buf[k + 1];
s2 = buf[n - (k + 1)];
s1 = buf[n - k];
O[os * i] = SQRT2 * (SGN_SET(c1, (i+1)/2 + i) +
SGN_SET(s1, i/2 + i));
O[os * (n - (i+1))] = SQRT2 * (SGN_SET(c1, (n-i)/2 + i) -
SGN_SET(s1, (n-(i+1))/2 + i));
j = n2 - (i+1);
O[os * j] = SQRT2 * (SGN_SET(c2, (n2-i)/2 + j) -
SGN_SET(s2, (n2-(i+1))/2 + j));
O[os * (n2 + (i+1))] = SQRT2 * (SGN_SET(c2, (n2+i+2)/2 + j) +
SGN_SET(s2, (n2+(i+1))/2 + j));
}
if (i + i + 1 == n2) {
E c, s;
c = buf[n2];
s = buf[n - n2];
O[os * i] = SQRT2 * (SGN_SET(c, (i+1)/2 + i) +
SGN_SET(s, i/2 + i));
O[os * (n - (i+1))] = SQRT2 * (SGN_SET(c, (i+2)/2 + i) +
SGN_SET(s, (i+1)/2 + i));
}
O[os * n2] = SQRT2 * SGN_SET(buf[0], (n2+1)/2 + n2);
}
X(ifree)(buf);
}
static void awake(plan *ego_, int flg)
{
P *ego = (P *) ego_;
AWAKE(ego->cld, flg);
}
static void destroy(plan *ego_)
{
P *ego = (P *) ego_;
X(plan_destroy_internal)(ego->cld);
}
static void print(const plan *ego_, printer *p)
{
const P *ego = (const P *) ego_;
p->print(p, "(%se-r2hc-odd-%d%v%(%p%))",
X(rdft_kind_str)(ego->kind), ego->n, ego->vl, ego->cld);
}
static int applicable0(const solver *ego_, const problem *p_)
{
UNUSED(ego_);
if (RDFTP(p_)) {
const problem_rdft *p = (const problem_rdft *) p_;
return (1
&& p->sz->rnk == 1
&& p->vecsz->rnk <= 1
&& p->sz->dims[0].n % 2 == 1
&& (p->kind[0] == REDFT11 || p->kind[0] == RODFT11)
);
}
return 0;
}
static int applicable(const solver *ego, const problem *p, const planner *plnr)
{
return (!NO_UGLYP(plnr) && applicable0(ego, p));
}
static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
{
P *pln;
const problem_rdft *p;
plan *cld;
R *buf;
int n;
opcnt ops;
static const plan_adt padt = {
X(rdft_solve), awake, print, destroy
};
if (!applicable(ego_, p_, plnr))
return (plan *)0;
p = (const problem_rdft *) p_;
n = p->sz->dims[0].n;
buf = (R *) MALLOC(sizeof(R) * n, BUFFERS);
cld = X(mkplan_d)(plnr, X(mkproblem_rdft_1_d)(X(mktensor_1d)(n, 1, 1),
X(mktensor_0d)(),
buf, buf, R2HC));
X(ifree)(buf);
if (!cld)
return (plan *)0;
pln = MKPLAN_RDFT(P, &padt, p->kind[0]==REDFT11 ? apply_re11:apply_ro11);
pln->n = n;
pln->is = p->sz->dims[0].is;
pln->os = p->sz->dims[0].os;
pln->cld = cld;
pln->kind = p->kind[0];
X(tensor_tornk1)(p->vecsz, &pln->vl, &pln->ivs, &pln->ovs);
X(ops_zero)(&ops);
ops.add = n - 1;
ops.mul = n;
ops.other = 4*n;
X(ops_zero)(&pln->super.super.ops);
X(ops_madd2)(pln->vl, &ops, &pln->super.super.ops);
X(ops_madd2)(pln->vl, &cld->ops, &pln->super.super.ops);
return &(pln->super.super);
}
/* constructor */
static solver *mksolver(void)
{
static const solver_adt sadt = { mkplan };
S *slv = MKSOLVER(S, &sadt);
return &(slv->super);
}
void X(reodft11e_r2hc_odd_register)(planner *p)
{
REGISTER_SOLVER(p, mksolver());
}
|