1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
|
/*
* Copyright (c) 2003 Matteo Frigo
* Copyright (c) 2003 Massachusetts Institute of Technology
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
/* $Id: reodft11e-r2hc.c,v 1.1 2008/10/17 06:13:18 scuri Exp $ */
/* Do an R{E,O}DFT11 problem via an R2HC problem, with some
pre/post-processing ala FFTPACK. Use a trick from:
S. C. Chan and K. L. Ho, "Direct methods for computing discrete
sinusoidal transforms," IEE Proceedings F 137 (6), 433--442 (1990).
to re-express as an REDFT01 (DCT-III) problem.
NOTE: We no longer use this algorithm, because it turns out to suffer
a catastrophic loss of accuracy for certain inputs, apparently because
its post-processing multiplies the output by a cosine. Near the zero
of the cosine, the REDFT01 must produce a near-singular output.
*/
#include "reodft.h"
typedef struct {
solver super;
} S;
typedef struct {
plan_rdft super;
plan *cld;
twid *td, *td2;
int is, os;
int n;
int vl;
int ivs, ovs;
rdft_kind kind;
} P;
static void apply_re11(const plan *ego_, R *I, R *O)
{
const P *ego = (const P *) ego_;
int is = ego->is, os = ego->os;
int i, n = ego->n;
int iv, vl = ego->vl;
int ivs = ego->ivs, ovs = ego->ovs;
R *W;
R *buf;
E cur;
buf = (R *) MALLOC(sizeof(R) * n, BUFFERS);
for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) {
/* I wish that this didn't require an extra pass. */
/* FIXME: use recursive/cascade summation for better stability? */
buf[n - 1] = cur = K(2.0) * I[is * (n - 1)];
for (i = n - 1; i > 0; --i) {
E curnew;
buf[(i - 1)] = curnew = K(2.0) * I[is * (i - 1)] - cur;
cur = curnew;
}
W = ego->td->W;
for (i = 1; i < n - i; ++i) {
E a, b, apb, amb, wa, wb;
a = buf[i];
b = buf[n - i];
apb = a + b;
amb = a - b;
wa = W[2*i];
wb = W[2*i + 1];
buf[i] = wa * amb + wb * apb;
buf[n - i] = wa * apb - wb * amb;
}
if (i == n - i) {
buf[i] = K(2.0) * buf[i] * W[2*i];
}
{
plan_rdft *cld = (plan_rdft *) ego->cld;
cld->apply((plan *) cld, buf, buf);
}
W = ego->td2->W;
O[0] = W[0] * buf[0];
for (i = 1; i < n - i; ++i) {
E a, b;
int k;
a = buf[i];
b = buf[n - i];
k = i + i;
O[os * (k - 1)] = W[k - 1] * (a - b);
O[os * k] = W[k] * (a + b);
}
if (i == n - i) {
O[os * (n - 1)] = W[n - 1] * buf[i];
}
}
X(ifree)(buf);
}
/* like for rodft01, rodft11 is obtained from redft11 by
reversing the input and flipping the sign of every other output. */
static void apply_ro11(const plan *ego_, R *I, R *O)
{
const P *ego = (const P *) ego_;
int is = ego->is, os = ego->os;
int i, n = ego->n;
int iv, vl = ego->vl;
int ivs = ego->ivs, ovs = ego->ovs;
R *W;
R *buf;
E cur;
buf = (R *) MALLOC(sizeof(R) * n, BUFFERS);
for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) {
/* I wish that this didn't require an extra pass. */
/* FIXME: use recursive/cascade summation for better stability? */
buf[n - 1] = cur = K(2.0) * I[0];
for (i = n - 1; i > 0; --i) {
E curnew;
buf[(i - 1)] = curnew = K(2.0) * I[is * (n - i)] - cur;
cur = curnew;
}
W = ego->td->W;
for (i = 1; i < n - i; ++i) {
E a, b, apb, amb, wa, wb;
a = buf[i];
b = buf[n - i];
apb = a + b;
amb = a - b;
wa = W[2*i];
wb = W[2*i + 1];
buf[i] = wa * amb + wb * apb;
buf[n - i] = wa * apb - wb * amb;
}
if (i == n - i) {
buf[i] = K(2.0) * buf[i] * W[2*i];
}
{
plan_rdft *cld = (plan_rdft *) ego->cld;
cld->apply((plan *) cld, buf, buf);
}
W = ego->td2->W;
O[0] = W[0] * buf[0];
for (i = 1; i < n - i; ++i) {
E a, b;
int k;
a = buf[i];
b = buf[n - i];
k = i + i;
O[os * (k - 1)] = W[k - 1] * (b - a);
O[os * k] = W[k] * (a + b);
}
if (i == n - i) {
O[os * (n - 1)] = -W[n - 1] * buf[i];
}
}
X(ifree)(buf);
}
static void awake(plan *ego_, int flg)
{
P *ego = (P *) ego_;
static const tw_instr reodft010e_tw[] = {
{ TW_COS, 0, 1 },
{ TW_SIN, 0, 1 },
{ TW_NEXT, 1, 0 }
};
static const tw_instr reodft11e_tw[] = {
{ TW_COS, 1, 1 },
{ TW_NEXT, 2, 0 }
};
AWAKE(ego->cld, flg);
X(twiddle_awake)(flg, &ego->td, reodft010e_tw, 4*ego->n, 1, ego->n/2+1);
X(twiddle_awake)(flg, &ego->td2, reodft11e_tw, 8*ego->n, 1, ego->n * 2);
}
static void destroy(plan *ego_)
{
P *ego = (P *) ego_;
X(plan_destroy_internal)(ego->cld);
}
static void print(const plan *ego_, printer *p)
{
const P *ego = (const P *) ego_;
p->print(p, "(%se-r2hc-%d%v%(%p%))",
X(rdft_kind_str)(ego->kind), ego->n, ego->vl, ego->cld);
}
static int applicable0(const solver *ego_, const problem *p_)
{
UNUSED(ego_);
if (RDFTP(p_)) {
const problem_rdft *p = (const problem_rdft *) p_;
return (1
&& p->sz->rnk == 1
&& p->vecsz->rnk <= 1
&& (p->kind[0] == REDFT11 || p->kind[0] == RODFT11)
);
}
return 0;
}
static int applicable(const solver *ego, const problem *p, const planner *plnr)
{
return (!NO_UGLYP(plnr) && applicable0(ego, p));
}
static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
{
P *pln;
const problem_rdft *p;
plan *cld;
R *buf;
int n;
opcnt ops;
static const plan_adt padt = {
X(rdft_solve), awake, print, destroy
};
if (!applicable(ego_, p_, plnr))
return (plan *)0;
p = (const problem_rdft *) p_;
n = p->sz->dims[0].n;
buf = (R *) MALLOC(sizeof(R) * n, BUFFERS);
cld = X(mkplan_d)(plnr, X(mkproblem_rdft_1_d)(X(mktensor_1d)(n, 1, 1),
X(mktensor_0d)(),
buf, buf, R2HC));
X(ifree)(buf);
if (!cld)
return (plan *)0;
pln = MKPLAN_RDFT(P, &padt, p->kind[0]==REDFT11 ? apply_re11:apply_ro11);
pln->n = n;
pln->is = p->sz->dims[0].is;
pln->os = p->sz->dims[0].os;
pln->cld = cld;
pln->td = pln->td2 = 0;
pln->kind = p->kind[0];
X(tensor_tornk1)(p->vecsz, &pln->vl, &pln->ivs, &pln->ovs);
X(ops_zero)(&ops);
ops.other = 5 + (n-1) * 2 + (n-1)/2 * 12 + (1 - n % 2) * 6;
ops.add = (n - 1) * 1 + (n-1)/2 * 6;
ops.mul = 2 + (n-1) * 1 + (n-1)/2 * 6 + (1 - n % 2) * 3;
X(ops_zero)(&pln->super.super.ops);
X(ops_madd2)(pln->vl, &ops, &pln->super.super.ops);
X(ops_madd2)(pln->vl, &cld->ops, &pln->super.super.ops);
return &(pln->super.super);
}
/* constructor */
static solver *mksolver(void)
{
static const solver_adt sadt = { mkplan };
S *slv = MKSOLVER(S, &sadt);
return &(slv->super);
}
void X(reodft11e_r2hc_register)(planner *p)
{
REGISTER_SOLVER(p, mksolver());
}
|