1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
|
/** \file
* \brief Unary Arithmetic Operations
*
* See Copyright Notice in im_lib.h
* $Id: im_arithmetic_un.cpp,v 1.1 2008/10/17 06:16:33 scuri Exp $
*/
#include <im.h>
#include <im_util.h>
#include <im_math.h>
#include <im_complex.h>
#include "im_process_pon.h"
#include "im_math_op.h"
#include <stdlib.h>
#include <memory.h>
// Fake complex operations for real types
static inline imbyte conj_op(const imbyte& v) {return v;}
static inline imushort conj_op(const imushort& v) {return v;}
static inline int conj_op(const int& v) {return v;}
static inline float conj_op(const float& v) {return v;}
static inline imbyte cpxnorm_op(const imbyte& v) {return v;}
static inline imushort cpxnorm_op(const imushort& v) {return v;}
static inline int cpxnorm_op(const int& v) {return v;}
static inline float cpxnorm_op(const float& v) {return v;}
static inline imcfloat conj_op(const imcfloat& v)
{
imcfloat r;
r.real = v.real;
r.imag = -v.imag;
return r;
}
static inline imcfloat cpxnorm_op(const imcfloat& v)
{
imcfloat r;
float rmag = cpxmag(v);
if (rmag != 0.0f)
{
r.real = v.real/rmag;
r.imag = v.imag/rmag;
}
else
{
r.real = 0.0f;
r.imag = 0.0f;
}
return r;
}
template <class T1, class T2>
static void DoUnaryOp(T1 *map, T2 *new_map, int count, int op)
{
int i;
switch(op)
{
case IM_UN_ABS:
for (i = 0; i < count; i++)
new_map[i] = abs_op((T2)map[i]);
break;
case IM_UN_INV:
for (i = 0; i < count; i++)
new_map[i] = inv_op((T2)map[i]);
break;
case IM_UN_EQL:
for (i = 0; i < count; i++)
new_map[i] = (T2)map[i];
break;
case IM_UN_INC:
for (i = 0; i < count; i++)
new_map[i] = (T2)(new_map[i] + map[i]);
break;
case IM_UN_LESS:
for (i = 0; i < count; i++)
new_map[i] = less_op((T2)map[i]);
break;
case IM_UN_SQR:
for (i = 0; i < count; i++)
new_map[i] = sqr_op((T2)map[i]);
break;
case IM_UN_SQRT:
for (i = 0; i < count; i++)
new_map[i] = (T2)sqrt_op(map[i]);
break;
case IM_UN_LOG:
for (i = 0; i < count; i++)
new_map[i] = log_op((T2)map[i]);
break;
case IM_UN_SIN:
for (i = 0; i < count; i++)
new_map[i] = sin_op((T2)map[i]);
break;
case IM_UN_COS:
for (i = 0; i < count; i++)
new_map[i] = cos_op((T2)map[i]);
break;
case IM_UN_EXP:
for (i = 0; i < count; i++)
new_map[i] = exp_op((T2)map[i]);
break;
case IM_UN_CONJ:
for (i = 0; i < count; i++)
new_map[i] = conj_op((T2)map[i]);
break;
case IM_UN_CPXNORM:
for (i = 0; i < count; i++)
new_map[i] = cpxnorm_op((T2)map[i]);
break;
}
}
void imProcessUnArithmeticOp(const imImage* src_image, imImage* dst_image, int op)
{
int total_count = src_image->count * src_image->depth;
switch(src_image->data_type)
{
case IM_BYTE:
if (dst_image->data_type == IM_FLOAT)
DoUnaryOp((imbyte*)src_image->data[0], (float*)dst_image->data[0], total_count, op);
else if (dst_image->data_type == IM_INT)
DoUnaryOp((imbyte*)src_image->data[0], (int*)dst_image->data[0], total_count, op);
else if (dst_image->data_type == IM_USHORT)
DoUnaryOp((imbyte*)src_image->data[0], (imushort*)dst_image->data[0], total_count, op);
else
DoUnaryOp((imbyte*)src_image->data[0], (imbyte*)dst_image->data[0], total_count, op);
break;
case IM_USHORT:
if (dst_image->data_type == IM_BYTE)
DoUnaryOp((imushort*)src_image->data[0], (imbyte*)dst_image->data[0], total_count, op);
else if (dst_image->data_type == IM_INT)
DoUnaryOp((imushort*)src_image->data[0], (int*)dst_image->data[0], total_count, op);
else if (dst_image->data_type == IM_FLOAT)
DoUnaryOp((imushort*)src_image->data[0], (float*)dst_image->data[0], total_count, op);
else
DoUnaryOp((imushort*)src_image->data[0], (imushort*)dst_image->data[0], total_count, op);
break;
case IM_INT:
if (dst_image->data_type == IM_BYTE)
DoUnaryOp((int*)src_image->data[0], (imbyte*)dst_image->data[0], total_count, op);
else if (dst_image->data_type == IM_USHORT)
DoUnaryOp((int*)src_image->data[0], (imushort*)dst_image->data[0], total_count, op);
else if (dst_image->data_type == IM_FLOAT)
DoUnaryOp((int*)src_image->data[0], (float*)dst_image->data[0], total_count, op);
else
DoUnaryOp((int*)src_image->data[0], (int*)dst_image->data[0], total_count, op);
break;
case IM_FLOAT:
DoUnaryOp((float*)src_image->data[0], (float*)dst_image->data[0], total_count, op);
break;
case IM_CFLOAT:
DoUnaryOp((imcfloat*)src_image->data[0], (imcfloat*)dst_image->data[0], total_count, op);
break;
}
}
void imProcessSplitComplex(const imImage* image, imImage* NewImage1, imImage* NewImage2, int polar)
{
int total_count = image->count*image->depth;
imcfloat* map = (imcfloat*)image->data[0];
float* map1 = (float*)NewImage1->data[0];
float* map2 = (float*)NewImage2->data[0];
for (int i = 0; i < total_count; i++)
{
if (polar)
{
map1[i] = cpxmag(map[i]);
map2[i] = cpxphase(map[i]);
}
else
{
map1[i] = map[i].real;
map2[i] = map[i].imag;
}
}
}
void imProcessMergeComplex(const imImage* image1, const imImage* image2, imImage* NewImage, int polar)
{
int total_count = image1->count*image1->depth;
imcfloat* map = (imcfloat*)NewImage->data[0];
float* map1 = (float*)image1->data[0];
float* map2 = (float*)image2->data[0];
for (int i = 0; i < total_count; i++)
{
if (polar)
{
float phase = map2[i];
if (phase > 180) phase -= 360;
phase /= 57.2957795f;
map[i].real = (float)(map1[i] * cos(phase));
map[i].imag = (float)(map1[i] * sin(phase));
}
else
{
map[i].real = map1[i];
map[i].imag = map2[i];
}
}
}
|