/* * libev simple C++ wrapper classes * * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> * All rights reserved. * * Redistribution and use in source and binary forms, with or without modifica- * tion, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER- * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE- * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH- * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED * OF THE POSSIBILITY OF SUCH DAMAGE. * * Alternatively, the contents of this file may be used under the terms of * the GNU General Public License ("GPL") version 2 or any later version, * in which case the provisions of the GPL are applicable instead of * the above. If you wish to allow the use of your version of this file * only under the terms of the GPL and not to allow others to use your * version of this file under the BSD license, indicate your decision * by deleting the provisions above and replace them with the notice * and other provisions required by the GPL. If you do not delete the * provisions above, a recipient may use your version of this file under * either the BSD or the GPL. */ #ifndef EVPP_H__ #define EVPP_H__ #ifdef EV_H # include EV_H #else # include "ev.h" #endif #ifndef EV_USE_STDEXCEPT # define EV_USE_STDEXCEPT 1 #endif #if EV_USE_STDEXCEPT # include <stdexcept> #endif namespace ev { typedef ev_tstamp tstamp; enum { UNDEF = EV_UNDEF, NONE = EV_NONE, READ = EV_READ, WRITE = EV_WRITE, TIMEOUT = EV_TIMEOUT, PERIODIC = EV_PERIODIC, SIGNAL = EV_SIGNAL, CHILD = EV_CHILD, STAT = EV_STAT, IDLE = EV_IDLE, CHECK = EV_CHECK, PREPARE = EV_PREPARE, FORK = EV_FORK, ASYNC = EV_ASYNC, EMBED = EV_EMBED, # undef ERROR // some systems stupidly #define ERROR ERROR = EV_ERROR, }; enum { AUTO = EVFLAG_AUTO, NOENV = EVFLAG_NOENV, FORKCHECK = EVFLAG_FORKCHECK, SELECT = EVBACKEND_SELECT, POLL = EVBACKEND_POLL, EPOLL = EVBACKEND_EPOLL, KQUEUE = EVBACKEND_KQUEUE, DEVPOLL = EVBACKEND_DEVPOLL, PORT = EVBACKEND_PORT }; enum { NONBLOCK = EVLOOP_NONBLOCK, ONESHOT = EVLOOP_ONESHOT }; enum how_t { ONE = EVUNLOOP_ONE, ALL = EVUNLOOP_ALL }; struct bad_loop #if EV_USE_STDEXCEPT : std::runtime_error #endif { #if EV_USE_STDEXCEPT bad_loop () : std::runtime_error ("libev event loop cannot be initialized, bad value of LIBEV_FLAGS?") { } #endif }; #ifdef EV_AX # undef EV_AX #endif #ifdef EV_AX_ # undef EV_AX_ #endif #if EV_MULTIPLICITY # define EV_AX raw_loop # define EV_AX_ raw_loop, #else # define EV_AX # define EV_AX_ #endif struct loop_ref { loop_ref (EV_P) throw () #if EV_MULTIPLICITY : EV_AX (EV_A) #endif { } bool operator == (const loop_ref &other) const throw () { #if EV_MULTIPLICITY return EV_AX == other.EV_AX; #else return true; #endif } bool operator != (const loop_ref &other) const throw () { #if EV_MULTIPLICITY return ! (*this == other); #else return false; #endif } #if EV_MULTIPLICITY bool operator == (const EV_P) const throw () { return this->EV_AX == EV_A; } bool operator != (const EV_P) const throw () { return (*this == EV_A); } operator struct ev_loop * () const throw () { return EV_AX; } operator const struct ev_loop * () const throw () { return EV_AX; } bool is_default () const throw () { return EV_AX == ev_default_loop (0); } #endif void loop (int flags = 0) { ev_loop (EV_AX_ flags); } void unloop (how_t how = ONE) throw () { ev_unloop (EV_AX_ how); } void post_fork () throw () { #if EV_MULTIPLICITY ev_loop_fork (EV_AX); #else ev_default_fork (); #endif } unsigned int backend () const throw () { return ev_backend (EV_AX); } tstamp now () const throw () { return ev_now (EV_AX); } void ref () throw () { ev_ref (EV_AX); } void unref () throw () { ev_unref (EV_AX); } #if EV_MINIMAL < 2 unsigned int count () const throw () { return ev_loop_count (EV_AX); } unsigned int depth () const throw () { return ev_loop_depth (EV_AX); } void set_io_collect_interval (tstamp interval) throw () { ev_set_io_collect_interval (EV_AX_ interval); } void set_timeout_collect_interval (tstamp interval) throw () { ev_set_timeout_collect_interval (EV_AX_ interval); } #endif // function callback void once (int fd, int events, tstamp timeout, void (*cb)(int, void *), void *arg = 0) throw () { ev_once (EV_AX_ fd, events, timeout, cb, arg); } // method callback template<class K, void (K::*method)(int)> void once (int fd, int events, tstamp timeout, K *object) throw () { once (fd, events, timeout, method_thunk<K, method>, object); } // default method == operator () template<class K> void once (int fd, int events, tstamp timeout, K *object) throw () { once (fd, events, timeout, method_thunk<K, &K::operator ()>, object); } template<class K, void (K::*method)(int)> static void method_thunk (int revents, void *arg) { static_cast<K *>(arg)->*method (revents); } // no-argument method callback template<class K, void (K::*method)()> void once (int fd, int events, tstamp timeout, K *object) throw () { once (fd, events, timeout, method_noargs_thunk<K, method>, object); } template<class K, void (K::*method)()> static void method_noargs_thunk (int revents, void *arg) { static_cast<K *>(arg)->*method (); } // simpler function callback template<void (*cb)(int)> void once (int fd, int events, tstamp timeout) throw () { once (fd, events, timeout, simpler_func_thunk<cb>); } template<void (*cb)(int)> static void simpler_func_thunk (int revents, void *arg) { (*cb) (revents); } // simplest function callback template<void (*cb)()> void once (int fd, int events, tstamp timeout) throw () { once (fd, events, timeout, simplest_func_thunk<cb>); } template<void (*cb)()> static void simplest_func_thunk (int revents, void *arg) { (*cb) (); } void feed_fd_event (int fd, int revents) throw () { ev_feed_fd_event (EV_AX_ fd, revents); } void feed_signal_event (int signum) throw () { ev_feed_signal_event (EV_AX_ signum); } #if EV_MULTIPLICITY struct ev_loop* EV_AX; #endif }; #if EV_MULTIPLICITY struct dynamic_loop : loop_ref { dynamic_loop (unsigned int flags = AUTO) throw (bad_loop) : loop_ref (ev_loop_new (flags)) { if (!EV_AX) throw bad_loop (); } ~dynamic_loop () throw () { ev_loop_destroy (EV_AX); EV_AX = 0; } private: dynamic_loop (const dynamic_loop &); dynamic_loop & operator= (const dynamic_loop &); }; #endif struct default_loop : loop_ref { default_loop (unsigned int flags = AUTO) throw (bad_loop) #if EV_MULTIPLICITY : loop_ref (ev_default_loop (flags)) #endif { if ( #if EV_MULTIPLICITY !EV_AX #else !ev_default_loop (flags) #endif ) throw bad_loop (); } ~default_loop () throw () { ev_default_destroy (); } private: default_loop (const default_loop &); default_loop &operator = (const default_loop &); }; inline loop_ref get_default_loop () throw () { #if EV_MULTIPLICITY return ev_default_loop (0); #else return loop_ref (); #endif } #undef EV_AX #undef EV_AX_ #undef EV_PX #undef EV_PX_ #if EV_MULTIPLICITY # define EV_PX loop_ref EV_A # define EV_PX_ loop_ref EV_A_ #else # define EV_PX # define EV_PX_ #endif template<class ev_watcher, class watcher> struct base : ev_watcher { #if EV_MULTIPLICITY EV_PX; void set (EV_P) throw () { this->EV_A = EV_A; } #endif base (EV_PX) throw () #if EV_MULTIPLICITY : EV_A (EV_A) #endif { ev_init (this, 0); } void set_ (const void *data, void (*cb)(EV_P_ ev_watcher *w, int revents)) throw () { this->data = (void *)data; ev_set_cb (static_cast<ev_watcher *>(this), cb); } // function callback template<void (*function)(watcher &w, int)> void set (void *data = 0) throw () { set_ (data, function_thunk<function>); } template<void (*function)(watcher &w, int)> static void function_thunk (EV_P_ ev_watcher *w, int revents) { function (*static_cast<watcher *>(w), revents); } // method callback template<class K, void (K::*method)(watcher &w, int)> void set (K *object) throw () { set_ (object, method_thunk<K, method>); } // default method == operator () template<class K> void set (K *object) throw () { set_ (object, method_thunk<K, &K::operator ()>); } template<class K, void (K::*method)(watcher &w, int)> static void method_thunk (EV_P_ ev_watcher *w, int revents) { (static_cast<K *>(w->data)->*method) (*static_cast<watcher *>(w), revents); } // no-argument callback template<class K, void (K::*method)()> void set (K *object) throw () { set_ (object, method_noargs_thunk<K, method>); } template<class K, void (K::*method)()> static void method_noargs_thunk (EV_P_ ev_watcher *w, int revents) { static_cast<K *>(w->data)->*method (); } void operator ()(int events = EV_UNDEF) { return ev_cb (static_cast<ev_watcher *>(this)) (static_cast<ev_watcher *>(this), events); } bool is_active () const throw () { return ev_is_active (static_cast<const ev_watcher *>(this)); } bool is_pending () const throw () { return ev_is_pending (static_cast<const ev_watcher *>(this)); } void feed_event (int revents) throw () { ev_feed_event (EV_A_ static_cast<const ev_watcher *>(this), revents); } }; inline tstamp now () throw () { return ev_time (); } inline void delay (tstamp interval) throw () { ev_sleep (interval); } inline int version_major () throw () { return ev_version_major (); } inline int version_minor () throw () { return ev_version_minor (); } inline unsigned int supported_backends () throw () { return ev_supported_backends (); } inline unsigned int recommended_backends () throw () { return ev_recommended_backends (); } inline unsigned int embeddable_backends () throw () { return ev_embeddable_backends (); } inline void set_allocator (void *(*cb)(void *ptr, long size)) throw () { ev_set_allocator (cb); } inline void set_syserr_cb (void (*cb)(const char *msg)) throw () { ev_set_syserr_cb (cb); } #if EV_MULTIPLICITY #define EV_CONSTRUCT(cppstem,cstem) \ (EV_PX = get_default_loop ()) throw () \ : base<ev_ ## cstem, cppstem> (EV_A) \ { \ } #else #define EV_CONSTRUCT(cppstem,cstem) \ () throw () \ { \ } #endif /* using a template here would require quite a bit more lines, * so a macro solution was chosen */ #define EV_BEGIN_WATCHER(cppstem,cstem) \ \ struct cppstem : base<ev_ ## cstem, cppstem> \ { \ void start () throw () \ { \ ev_ ## cstem ## _start (EV_A_ static_cast<ev_ ## cstem *>(this)); \ } \ \ void stop () throw () \ { \ ev_ ## cstem ## _stop (EV_A_ static_cast<ev_ ## cstem *>(this)); \ } \ \ cppstem EV_CONSTRUCT(cppstem,cstem) \ \ ~cppstem () throw () \ { \ stop (); \ } \ \ using base<ev_ ## cstem, cppstem>::set; \ \ private: \ \ cppstem (const cppstem &o); \ \ cppstem &operator =(const cppstem &o); \ \ public: #define EV_END_WATCHER(cppstem,cstem) \ }; EV_BEGIN_WATCHER (io, io) void set (int fd, int events) throw () { int active = is_active (); if (active) stop (); ev_io_set (static_cast<ev_io *>(this), fd, events); if (active) start (); } void set (int events) throw () { int active = is_active (); if (active) stop (); ev_io_set (static_cast<ev_io *>(this), fd, events); if (active) start (); } void start (int fd, int events) throw () { set (fd, events); start (); } EV_END_WATCHER (io, io) EV_BEGIN_WATCHER (timer, timer) void set (ev_tstamp after, ev_tstamp repeat = 0.) throw () { int active = is_active (); if (active) stop (); ev_timer_set (static_cast<ev_timer *>(this), after, repeat); if (active) start (); } void start (ev_tstamp after, ev_tstamp repeat = 0.) throw () { set (after, repeat); start (); } void again () throw () { ev_timer_again (EV_A_ static_cast<ev_timer *>(this)); } EV_END_WATCHER (timer, timer) #if EV_PERIODIC_ENABLE EV_BEGIN_WATCHER (periodic, periodic) void set (ev_tstamp at, ev_tstamp interval = 0.) throw () { int active = is_active (); if (active) stop (); ev_periodic_set (static_cast<ev_periodic *>(this), at, interval, 0); if (active) start (); } void start (ev_tstamp at, ev_tstamp interval = 0.) throw () { set (at, interval); start (); } void again () throw () { ev_periodic_again (EV_A_ static_cast<ev_periodic *>(this)); } EV_END_WATCHER (periodic, periodic) #endif EV_BEGIN_WATCHER (sig, signal) void set (int signum) throw () { int active = is_active (); if (active) stop (); ev_signal_set (static_cast<ev_signal *>(this), signum); if (active) start (); } void start (int signum) throw () { set (signum); start (); } EV_END_WATCHER (sig, signal) EV_BEGIN_WATCHER (child, child) void set (int pid, int trace = 0) throw () { int active = is_active (); if (active) stop (); ev_child_set (static_cast<ev_child *>(this), pid, trace); if (active) start (); } void start (int pid, int trace = 0) throw () { set (pid, trace); start (); } EV_END_WATCHER (child, child) #if EV_STAT_ENABLE EV_BEGIN_WATCHER (stat, stat) void set (const char *path, ev_tstamp interval = 0.) throw () { int active = is_active (); if (active) stop (); ev_stat_set (static_cast<ev_stat *>(this), path, interval); if (active) start (); } void start (const char *path, ev_tstamp interval = 0.) throw () { stop (); set (path, interval); start (); } void update () throw () { ev_stat_stat (EV_A_ static_cast<ev_stat *>(this)); } EV_END_WATCHER (stat, stat) #endif EV_BEGIN_WATCHER (idle, idle) void set () throw () { } EV_END_WATCHER (idle, idle) EV_BEGIN_WATCHER (prepare, prepare) void set () throw () { } EV_END_WATCHER (prepare, prepare) EV_BEGIN_WATCHER (check, check) void set () throw () { } EV_END_WATCHER (check, check) #if EV_EMBED_ENABLE EV_BEGIN_WATCHER (embed, embed) void set (struct ev_loop *embedded_loop) throw () { int active = is_active (); if (active) stop (); ev_embed_set (static_cast<ev_embed *>(this), embedded_loop); if (active) start (); } void start (struct ev_loop *embedded_loop) throw () { set (embedded_loop); start (); } void sweep () { ev_embed_sweep (EV_A_ static_cast<ev_embed *>(this)); } EV_END_WATCHER (embed, embed) #endif #if EV_FORK_ENABLE EV_BEGIN_WATCHER (fork, fork) void set () throw () { } EV_END_WATCHER (fork, fork) #endif #if EV_ASYNC_ENABLE EV_BEGIN_WATCHER (async, async) void set () throw () { } void send () throw () { ev_async_send (EV_A_ static_cast<ev_async *>(this)); } bool async_pending () throw () { return ev_async_pending (static_cast<ev_async *>(this)); } EV_END_WATCHER (async, async) #endif #undef EV_PX #undef EV_PX_ #undef EV_CONSTRUCT #undef EV_BEGIN_WATCHER #undef EV_END_WATCHER } #endif