/* * libev event processing core, watcher management * * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> * All rights reserved. * * Redistribution and use in source and binary forms, with or without modifica- * tion, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER- * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE- * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH- * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED * OF THE POSSIBILITY OF SUCH DAMAGE. * * Alternatively, the contents of this file may be used under the terms of * the GNU General Public License ("GPL") version 2 or any later version, * in which case the provisions of the GPL are applicable instead of * the above. If you wish to allow the use of your version of this file * only under the terms of the GPL and not to allow others to use your * version of this file under the BSD license, indicate your decision * by deleting the provisions above and replace them with the notice * and other provisions required by the GPL. If you do not delete the * provisions above, a recipient may use your version of this file under * either the BSD or the GPL. */ #ifdef __cplusplus extern "C" { #endif /* this big block deduces configuration from config.h */ #ifndef EV_STANDALONE # ifdef EV_CONFIG_H # include EV_CONFIG_H # else # include "config.h" # endif # if HAVE_CLOCK_GETTIME # ifndef EV_USE_MONOTONIC # define EV_USE_MONOTONIC 1 # endif # ifndef EV_USE_REALTIME # define EV_USE_REALTIME 1 # endif # else # ifndef EV_USE_MONOTONIC # define EV_USE_MONOTONIC 0 # endif # ifndef EV_USE_REALTIME # define EV_USE_REALTIME 0 # endif # endif # ifndef EV_USE_NANOSLEEP # if HAVE_NANOSLEEP # define EV_USE_NANOSLEEP 1 # else # define EV_USE_NANOSLEEP 0 # endif # endif # ifndef EV_USE_SELECT # if HAVE_SELECT && HAVE_SYS_SELECT_H # define EV_USE_SELECT 1 # else # define EV_USE_SELECT 0 # endif # endif # ifndef EV_USE_POLL # if HAVE_POLL && HAVE_POLL_H # define EV_USE_POLL 1 # else # define EV_USE_POLL 0 # endif # endif # ifndef EV_USE_EPOLL # if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H # define EV_USE_EPOLL 1 # else # define EV_USE_EPOLL 0 # endif # endif # ifndef EV_USE_KQUEUE # if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H # define EV_USE_KQUEUE 1 # else # define EV_USE_KQUEUE 0 # endif # endif # ifndef EV_USE_PORT # if HAVE_PORT_H && HAVE_PORT_CREATE # define EV_USE_PORT 1 # else # define EV_USE_PORT 0 # endif # endif # ifndef EV_USE_INOTIFY # if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H # define EV_USE_INOTIFY 1 # else # define EV_USE_INOTIFY 0 # endif # endif # ifndef EV_USE_EVENTFD # if HAVE_EVENTFD # define EV_USE_EVENTFD 1 # else # define EV_USE_EVENTFD 0 # endif # endif #endif #include <math.h> #include <stdlib.h> #include <fcntl.h> #include <stddef.h> #include <stdio.h> #include <assert.h> #include <errno.h> #include <sys/types.h> #include <time.h> #include <signal.h> #ifdef EV_H # include EV_H #else # include "ev.h" #endif #ifndef _WIN32 # include <sys/time.h> # include <sys/wait.h> # include <unistd.h> #else # include <io.h> # define WIN32_LEAN_AND_MEAN # include <windows.h> # ifndef EV_SELECT_IS_WINSOCKET # define EV_SELECT_IS_WINSOCKET 1 # endif #endif /* this block tries to deduce configuration from header-defined symbols and defaults */ #ifndef EV_USE_MONOTONIC # if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0 # define EV_USE_MONOTONIC 1 # else # define EV_USE_MONOTONIC 0 # endif #endif #ifndef EV_USE_REALTIME # define EV_USE_REALTIME 0 #endif #ifndef EV_USE_NANOSLEEP # if _POSIX_C_SOURCE >= 199309L # define EV_USE_NANOSLEEP 1 # else # define EV_USE_NANOSLEEP 0 # endif #endif #ifndef EV_USE_SELECT # define EV_USE_SELECT 1 #endif #ifndef EV_USE_POLL # ifdef _WIN32 # define EV_USE_POLL 0 # else # define EV_USE_POLL 1 # endif #endif #ifndef EV_USE_EPOLL # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) # define EV_USE_EPOLL 1 # else # define EV_USE_EPOLL 0 # endif #endif #ifndef EV_USE_KQUEUE # define EV_USE_KQUEUE 0 #endif #ifndef EV_USE_PORT # define EV_USE_PORT 0 #endif #ifndef EV_USE_INOTIFY # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) # define EV_USE_INOTIFY 1 # else # define EV_USE_INOTIFY 0 # endif #endif #ifndef EV_PID_HASHSIZE # if EV_MINIMAL # define EV_PID_HASHSIZE 1 # else # define EV_PID_HASHSIZE 16 # endif #endif #ifndef EV_INOTIFY_HASHSIZE # if EV_MINIMAL # define EV_INOTIFY_HASHSIZE 1 # else # define EV_INOTIFY_HASHSIZE 16 # endif #endif #ifndef EV_USE_EVENTFD # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7)) # define EV_USE_EVENTFD 1 # else # define EV_USE_EVENTFD 0 # endif #endif #if 0 /* debugging */ # define EV_VERIFY 3 # define EV_USE_4HEAP 1 # define EV_HEAP_CACHE_AT 1 #endif #ifndef EV_VERIFY # define EV_VERIFY !EV_MINIMAL #endif #ifndef EV_USE_4HEAP # define EV_USE_4HEAP !EV_MINIMAL #endif #ifndef EV_HEAP_CACHE_AT # define EV_HEAP_CACHE_AT !EV_MINIMAL #endif /* this block fixes any misconfiguration where we know we run into trouble otherwise */ #ifndef CLOCK_MONOTONIC # undef EV_USE_MONOTONIC # define EV_USE_MONOTONIC 0 #endif #ifndef CLOCK_REALTIME # undef EV_USE_REALTIME # define EV_USE_REALTIME 0 #endif #if !EV_STAT_ENABLE # undef EV_USE_INOTIFY # define EV_USE_INOTIFY 0 #endif #if !EV_USE_NANOSLEEP # ifndef _WIN32 # include <sys/select.h> # endif #endif #if EV_USE_INOTIFY # include <sys/inotify.h> #endif #if EV_SELECT_IS_WINSOCKET # include <winsock.h> #endif #if EV_USE_EVENTFD /* our minimum requirement is glibc 2.7 which has the stub, but not the header */ # include <stdint.h> # ifdef __cplusplus extern "C" { # endif int eventfd (unsigned int initval, int flags); # ifdef __cplusplus } # endif #endif /**/ #if EV_VERIFY >= 3 # define EV_FREQUENT_CHECK ev_loop_verify (EV_A) #else # define EV_FREQUENT_CHECK do { } while (0) #endif /* * This is used to avoid floating point rounding problems. * It is added to ev_rt_now when scheduling periodics * to ensure progress, time-wise, even when rounding * errors are against us. * This value is good at least till the year 4000. * Better solutions welcome. */ #define TIME_EPSILON 0.0001220703125 /* 1/8192 */ #define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ #define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ /*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */ #if __GNUC__ >= 4 # define expect(expr,value) __builtin_expect ((expr),(value)) # define noinline __attribute__ ((noinline)) #else # define expect(expr,value) (expr) # define noinline # if __STDC_VERSION__ < 199901L && __GNUC__ < 2 # define inline # endif #endif #define expect_false(expr) expect ((expr) != 0, 0) #define expect_true(expr) expect ((expr) != 0, 1) #define inline_size static inline #if EV_MINIMAL # define inline_speed static noinline #else # define inline_speed static inline #endif #define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) #define ABSPRI(w) (((W)w)->priority - EV_MINPRI) #define EMPTY /* required for microsofts broken pseudo-c compiler */ #define EMPTY2(a,b) /* used to suppress some warnings */ typedef ev_watcher *W; typedef ev_watcher_list *WL; typedef ev_watcher_time *WT; #define ev_active(w) ((W)(w))->active #define ev_at(w) ((WT)(w))->at #if EV_USE_MONOTONIC /* sig_atomic_t is used to avoid per-thread variables or locking but still */ /* giving it a reasonably high chance of working on typical architetcures */ static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ #endif #ifdef _WIN32 # include "ev_win32.c" #endif /*****************************************************************************/ static void (*syserr_cb)(const char *msg); void ev_set_syserr_cb (void (*cb)(const char *msg)) { syserr_cb = cb; } static void noinline syserr (const char *msg) { if (!msg) msg = "(libev) system error"; if (syserr_cb) syserr_cb (msg); else { perror (msg); abort (); } } static void * ev_realloc_emul (void *ptr, long size) { /* some systems, notably openbsd and darwin, fail to properly * implement realloc (x, 0) (as required by both ansi c-98 and * the single unix specification, so work around them here. */ if (size) return realloc (ptr, size); free (ptr); return 0; } static void *(*alloc)(void *ptr, long size) = ev_realloc_emul; void ev_set_allocator (void *(*cb)(void *ptr, long size)) { alloc = cb; } inline_speed void * ev_realloc (void *ptr, long size) { ptr = alloc (ptr, size); if (!ptr && size) { fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); abort (); } return ptr; } #define ev_malloc(size) ev_realloc (0, (size)) #define ev_free(ptr) ev_realloc ((ptr), 0) /*****************************************************************************/ typedef struct { WL head; unsigned char events; unsigned char reify; #if EV_SELECT_IS_WINSOCKET SOCKET handle; #endif } ANFD; typedef struct { W w; int events; } ANPENDING; #if EV_USE_INOTIFY /* hash table entry per inotify-id */ typedef struct { WL head; } ANFS; #endif /* Heap Entry */ #if EV_HEAP_CACHE_AT typedef struct { ev_tstamp at; WT w; } ANHE; #define ANHE_w(he) (he).w /* access watcher, read-write */ #define ANHE_at(he) (he).at /* access cached at, read-only */ #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */ #else typedef WT ANHE; #define ANHE_w(he) (he) #define ANHE_at(he) (he)->at #define ANHE_at_cache(he) #endif #if EV_MULTIPLICITY struct ev_loop { ev_tstamp ev_rt_now; #define ev_rt_now ((loop)->ev_rt_now) #define VAR(name,decl) decl; #include "ev_vars.h" #undef VAR }; #include "ev_wrap.h" static struct ev_loop default_loop_struct; struct ev_loop *ev_default_loop_ptr; #else ev_tstamp ev_rt_now; #define VAR(name,decl) static decl; #include "ev_vars.h" #undef VAR static int ev_default_loop_ptr; #endif /*****************************************************************************/ ev_tstamp ev_time (void) { #if EV_USE_REALTIME struct timespec ts; clock_gettime (CLOCK_REALTIME, &ts); return ts.tv_sec + ts.tv_nsec * 1e-9; #else struct timeval tv; gettimeofday (&tv, 0); return tv.tv_sec + tv.tv_usec * 1e-6; #endif } ev_tstamp inline_size get_clock (void) { #if EV_USE_MONOTONIC if (expect_true (have_monotonic)) { struct timespec ts; clock_gettime (CLOCK_MONOTONIC, &ts); return ts.tv_sec + ts.tv_nsec * 1e-9; } #endif return ev_time (); } #if EV_MULTIPLICITY ev_tstamp ev_now (EV_P) { return ev_rt_now; } #endif void ev_sleep (ev_tstamp delay) { if (delay > 0.) { #if EV_USE_NANOSLEEP struct timespec ts; ts.tv_sec = (time_t)delay; ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9); nanosleep (&ts, 0); #elif defined(_WIN32) Sleep ((unsigned long)(delay * 1e3)); #else struct timeval tv; tv.tv_sec = (time_t)delay; tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */ /* somehting nto guaranteed by newer posix versions, but guaranteed */ /* by older ones */ select (0, 0, 0, 0, &tv); #endif } } /*****************************************************************************/ #define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ int inline_size array_nextsize (int elem, int cur, int cnt) { int ncur = cur + 1; do ncur <<= 1; while (cnt > ncur); /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */ if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4) { ncur *= elem; ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1); ncur = ncur - sizeof (void *) * 4; ncur /= elem; } return ncur; } static noinline void * array_realloc (int elem, void *base, int *cur, int cnt) { *cur = array_nextsize (elem, *cur, cnt); return ev_realloc (base, elem * *cur); } #define array_needsize(type,base,cur,cnt,init) \ if (expect_false ((cnt) > (cur))) \ { \ int ocur_ = (cur); \ (base) = (type *)array_realloc \ (sizeof (type), (base), &(cur), (cnt)); \ init ((base) + (ocur_), (cur) - ocur_); \ } #if 0 #define array_slim(type,stem) \ if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ { \ stem ## max = array_roundsize (stem ## cnt >> 1); \ base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ } #endif #define array_free(stem, idx) \ ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; /*****************************************************************************/ void noinline ev_feed_event (EV_P_ void *w, int revents) { W w_ = (W)w; int pri = ABSPRI (w_); if (expect_false (w_->pending)) pendings [pri][w_->pending - 1].events |= revents; else { w_->pending = ++pendingcnt [pri]; array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2); pendings [pri][w_->pending - 1].w = w_; pendings [pri][w_->pending - 1].events = revents; } } void inline_speed queue_events (EV_P_ W *events, int eventcnt, int type) { int i; for (i = 0; i < eventcnt; ++i) ev_feed_event (EV_A_ events [i], type); } /*****************************************************************************/ void inline_size anfds_init (ANFD *base, int count) { while (count--) { base->head = 0; base->events = EV_NONE; base->reify = 0; ++base; } } void inline_speed fd_event (EV_P_ int fd, int revents) { ANFD *anfd = anfds + fd; ev_io *w; for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) { int ev = w->events & revents; if (ev) ev_feed_event (EV_A_ (W)w, ev); } } void ev_feed_fd_event (EV_P_ int fd, int revents) { if (fd >= 0 && fd < anfdmax) fd_event (EV_A_ fd, revents); } void inline_size fd_reify (EV_P) { int i; for (i = 0; i < fdchangecnt; ++i) { int fd = fdchanges [i]; ANFD *anfd = anfds + fd; ev_io *w; unsigned char events = 0; for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) events |= (unsigned char)w->events; #if EV_SELECT_IS_WINSOCKET if (events) { unsigned long arg; #ifdef EV_FD_TO_WIN32_HANDLE anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); #else anfd->handle = _get_osfhandle (fd); #endif assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0)); } #endif { unsigned char o_events = anfd->events; unsigned char o_reify = anfd->reify; anfd->reify = 0; anfd->events = events; if (o_events != events || o_reify & EV_IOFDSET) backend_modify (EV_A_ fd, o_events, events); } } fdchangecnt = 0; } void inline_size fd_change (EV_P_ int fd, int flags) { unsigned char reify = anfds [fd].reify; anfds [fd].reify |= flags; if (expect_true (!reify)) { ++fdchangecnt; array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); fdchanges [fdchangecnt - 1] = fd; } } void inline_speed fd_kill (EV_P_ int fd) { ev_io *w; while ((w = (ev_io *)anfds [fd].head)) { ev_io_stop (EV_A_ w); ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); } } int inline_size fd_valid (int fd) { #ifdef _WIN32 return _get_osfhandle (fd) != -1; #else return fcntl (fd, F_GETFD) != -1; #endif } /* called on EBADF to verify fds */ static void noinline fd_ebadf (EV_P) { int fd; for (fd = 0; fd < anfdmax; ++fd) if (anfds [fd].events) if (!fd_valid (fd) && errno == EBADF) fd_kill (EV_A_ fd); } /* called on ENOMEM in select/poll to kill some fds and retry */ static void noinline fd_enomem (EV_P) { int fd; for (fd = anfdmax; fd--; ) if (anfds [fd].events) { fd_kill (EV_A_ fd); return; } } /* usually called after fork if backend needs to re-arm all fds from scratch */ static void noinline fd_rearm_all (EV_P) { int fd; for (fd = 0; fd < anfdmax; ++fd) if (anfds [fd].events) { anfds [fd].events = 0; fd_change (EV_A_ fd, EV_IOFDSET | 1); } } /*****************************************************************************/ /* * the heap functions want a real array index. array index 0 uis guaranteed to not * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives * the branching factor of the d-tree. */ /* * at the moment we allow libev the luxury of two heaps, * a small-code-size 2-heap one and a ~1.5kb larger 4-heap * which is more cache-efficient. * the difference is about 5% with 50000+ watchers. */ #if EV_USE_4HEAP #define DHEAP 4 #define HEAP0 (DHEAP - 1) /* index of first element in heap */ #define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0) #define UPHEAP_DONE(p,k) ((p) == (k)) /* away from the root */ void inline_speed downheap (ANHE *heap, int N, int k) { ANHE he = heap [k]; ANHE *E = heap + N + HEAP0; for (;;) { ev_tstamp minat; ANHE *minpos; ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1; /* find minimum child */ if (expect_true (pos + DHEAP - 1 < E)) { /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos)); if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos)); if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos)); if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos)); } else if (pos < E) { /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos)); if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos)); if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos)); if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos)); } else break; if (ANHE_at (he) <= minat) break; heap [k] = *minpos; ev_active (ANHE_w (*minpos)) = k; k = minpos - heap; } heap [k] = he; ev_active (ANHE_w (he)) = k; } #else /* 4HEAP */ #define HEAP0 1 #define HPARENT(k) ((k) >> 1) #define UPHEAP_DONE(p,k) (!(p)) /* away from the root */ void inline_speed downheap (ANHE *heap, int N, int k) { ANHE he = heap [k]; for (;;) { int c = k << 1; if (c > N + HEAP0 - 1) break; c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1]) ? 1 : 0; if (ANHE_at (he) <= ANHE_at (heap [c])) break; heap [k] = heap [c]; ev_active (ANHE_w (heap [k])) = k; k = c; } heap [k] = he; ev_active (ANHE_w (he)) = k; } #endif /* towards the root */ void inline_speed upheap (ANHE *heap, int k) { ANHE he = heap [k]; for (;;) { int p = HPARENT (k); if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he)) break; heap [k] = heap [p]; ev_active (ANHE_w (heap [k])) = k; k = p; } heap [k] = he; ev_active (ANHE_w (he)) = k; } void inline_size adjustheap (ANHE *heap, int N, int k) { if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k])) upheap (heap, k); else downheap (heap, N, k); } /* rebuild the heap: this function is used only once and executed rarely */ void inline_size reheap (ANHE *heap, int N) { int i; /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */ /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */ for (i = 0; i < N; ++i) upheap (heap, i + HEAP0); } /*****************************************************************************/ typedef struct { WL head; EV_ATOMIC_T gotsig; } ANSIG; static ANSIG *signals; static int signalmax; static EV_ATOMIC_T gotsig; void inline_size signals_init (ANSIG *base, int count) { while (count--) { base->head = 0; base->gotsig = 0; ++base; } } /*****************************************************************************/ void inline_speed fd_intern (int fd) { #ifdef _WIN32 unsigned long arg = 1; ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); #else fcntl (fd, F_SETFD, FD_CLOEXEC); fcntl (fd, F_SETFL, O_NONBLOCK); #endif } static void noinline evpipe_init (EV_P) { if (!ev_is_active (&pipeev)) { #if EV_USE_EVENTFD if ((evfd = eventfd (0, 0)) >= 0) { evpipe [0] = -1; fd_intern (evfd); ev_io_set (&pipeev, evfd, EV_READ); } else #endif { while (pipe (evpipe)) syserr ("(libev) error creating signal/async pipe"); fd_intern (evpipe [0]); fd_intern (evpipe [1]); ev_io_set (&pipeev, evpipe [0], EV_READ); } ev_io_start (EV_A_ &pipeev); ev_unref (EV_A); /* watcher should not keep loop alive */ } } void inline_size evpipe_write (EV_P_ EV_ATOMIC_T *flag) { if (!*flag) { int old_errno = errno; /* save errno because write might clobber it */ *flag = 1; #if EV_USE_EVENTFD if (evfd >= 0) { uint64_t counter = 1; write (evfd, &counter, sizeof (uint64_t)); } else #endif write (evpipe [1], &old_errno, 1); errno = old_errno; } } static void pipecb (EV_P_ ev_io *iow, int revents) { #if EV_USE_EVENTFD if (evfd >= 0) { uint64_t counter; read (evfd, &counter, sizeof (uint64_t)); } else #endif { char dummy; read (evpipe [0], &dummy, 1); } if (gotsig && ev_is_default_loop (EV_A)) { int signum; gotsig = 0; for (signum = signalmax; signum--; ) if (signals [signum].gotsig) ev_feed_signal_event (EV_A_ signum + 1); } #if EV_ASYNC_ENABLE if (gotasync) { int i; gotasync = 0; for (i = asynccnt; i--; ) if (asyncs [i]->sent) { asyncs [i]->sent = 0; ev_feed_event (EV_A_ asyncs [i], EV_ASYNC); } } #endif } /*****************************************************************************/ static void ev_sighandler (int signum) { #if EV_MULTIPLICITY struct ev_loop *loop = &default_loop_struct; #endif #if _WIN32 signal (signum, ev_sighandler); #endif signals [signum - 1].gotsig = 1; evpipe_write (EV_A_ &gotsig); } void noinline ev_feed_signal_event (EV_P_ int signum) { WL w; #if EV_MULTIPLICITY assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr)); #endif --signum; if (signum < 0 || signum >= signalmax) return; signals [signum].gotsig = 0; for (w = signals [signum].head; w; w = w->next) ev_feed_event (EV_A_ (W)w, EV_SIGNAL); } /*****************************************************************************/ static WL childs [EV_PID_HASHSIZE]; #ifndef _WIN32 static ev_signal childev; #ifndef WIFCONTINUED # define WIFCONTINUED(status) 0 #endif void inline_speed child_reap (EV_P_ int chain, int pid, int status) { ev_child *w; int traced = WIFSTOPPED (status) || WIFCONTINUED (status); for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) { if ((w->pid == pid || !w->pid) && (!traced || (w->flags & 1))) { ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */ w->rpid = pid; w->rstatus = status; ev_feed_event (EV_A_ (W)w, EV_CHILD); } } } #ifndef WCONTINUED # define WCONTINUED 0 #endif static void childcb (EV_P_ ev_signal *sw, int revents) { int pid, status; /* some systems define WCONTINUED but then fail to support it (linux 2.4) */ if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) if (!WCONTINUED || errno != EINVAL || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) return; /* make sure we are called again until all children have been reaped */ /* we need to do it this way so that the callback gets called before we continue */ ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); child_reap (EV_A_ pid, pid, status); if (EV_PID_HASHSIZE > 1) child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ } #endif /*****************************************************************************/ #if EV_USE_PORT # include "ev_port.c" #endif #if EV_USE_KQUEUE # include "ev_kqueue.c" #endif #if EV_USE_EPOLL # include "ev_epoll.c" #endif #if EV_USE_POLL # include "ev_poll.c" #endif #if EV_USE_SELECT # include "ev_select.c" #endif int ev_version_major (void) { return EV_VERSION_MAJOR; } int ev_version_minor (void) { return EV_VERSION_MINOR; } /* return true if we are running with elevated privileges and should ignore env variables */ int inline_size enable_secure (void) { #ifdef _WIN32 return 0; #else return getuid () != geteuid () || getgid () != getegid (); #endif } unsigned int ev_supported_backends (void) { unsigned int flags = 0; if (EV_USE_PORT ) flags |= EVBACKEND_PORT; if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE; if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL; if (EV_USE_POLL ) flags |= EVBACKEND_POLL; if (EV_USE_SELECT) flags |= EVBACKEND_SELECT; return flags; } unsigned int ev_recommended_backends (void) { unsigned int flags = ev_supported_backends (); #ifndef __NetBSD__ /* kqueue is borked on everything but netbsd apparently */ /* it usually doesn't work correctly on anything but sockets and pipes */ flags &= ~EVBACKEND_KQUEUE; #endif #ifdef __APPLE__ // flags &= ~EVBACKEND_KQUEUE; for documentation flags &= ~EVBACKEND_POLL; #endif return flags; } unsigned int ev_embeddable_backends (void) { int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT; /* epoll embeddability broken on all linux versions up to at least 2.6.23 */ /* please fix it and tell me how to detect the fix */ flags &= ~EVBACKEND_EPOLL; return flags; } unsigned int ev_backend (EV_P) { return backend; } unsigned int ev_loop_count (EV_P) { return loop_count; } void ev_set_io_collect_interval (EV_P_ ev_tstamp interval) { io_blocktime = interval; } void ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) { timeout_blocktime = interval; } static void noinline loop_init (EV_P_ unsigned int flags) { if (!backend) { #if EV_USE_MONOTONIC { struct timespec ts; if (!clock_gettime (CLOCK_MONOTONIC, &ts)) have_monotonic = 1; } #endif ev_rt_now = ev_time (); mn_now = get_clock (); now_floor = mn_now; rtmn_diff = ev_rt_now - mn_now; io_blocktime = 0.; timeout_blocktime = 0.; backend = 0; backend_fd = -1; gotasync = 0; #if EV_USE_INOTIFY fs_fd = -2; #endif /* pid check not overridable via env */ #ifndef _WIN32 if (flags & EVFLAG_FORKCHECK) curpid = getpid (); #endif if (!(flags & EVFLAG_NOENV) && !enable_secure () && getenv ("LIBEV_FLAGS")) flags = atoi (getenv ("LIBEV_FLAGS")); if (!(flags & 0x0000ffffU)) flags |= ev_recommended_backends (); #if EV_USE_PORT if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); #endif #if EV_USE_KQUEUE if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); #endif #if EV_USE_EPOLL if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags); #endif #if EV_USE_POLL if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags); #endif #if EV_USE_SELECT if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); #endif ev_init (&pipeev, pipecb); ev_set_priority (&pipeev, EV_MAXPRI); } } static void noinline loop_destroy (EV_P) { int i; if (ev_is_active (&pipeev)) { ev_ref (EV_A); /* signal watcher */ ev_io_stop (EV_A_ &pipeev); #if EV_USE_EVENTFD if (evfd >= 0) close (evfd); #endif if (evpipe [0] >= 0) { close (evpipe [0]); close (evpipe [1]); } } #if EV_USE_INOTIFY if (fs_fd >= 0) close (fs_fd); #endif if (backend_fd >= 0) close (backend_fd); #if EV_USE_PORT if (backend == EVBACKEND_PORT ) port_destroy (EV_A); #endif #if EV_USE_KQUEUE if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); #endif #if EV_USE_EPOLL if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A); #endif #if EV_USE_POLL if (backend == EVBACKEND_POLL ) poll_destroy (EV_A); #endif #if EV_USE_SELECT if (backend == EVBACKEND_SELECT) select_destroy (EV_A); #endif for (i = NUMPRI; i--; ) { array_free (pending, [i]); #if EV_IDLE_ENABLE array_free (idle, [i]); #endif } ev_free (anfds); anfdmax = 0; /* have to use the microsoft-never-gets-it-right macro */ array_free (fdchange, EMPTY); array_free (timer, EMPTY); #if EV_PERIODIC_ENABLE array_free (periodic, EMPTY); #endif #if EV_FORK_ENABLE array_free (fork, EMPTY); #endif array_free (prepare, EMPTY); array_free (check, EMPTY); #if EV_ASYNC_ENABLE array_free (async, EMPTY); #endif backend = 0; } #if EV_USE_INOTIFY void inline_size infy_fork (EV_P); #endif void inline_size loop_fork (EV_P) { #if EV_USE_PORT if (backend == EVBACKEND_PORT ) port_fork (EV_A); #endif #if EV_USE_KQUEUE if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A); #endif #if EV_USE_EPOLL if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A); #endif #if EV_USE_INOTIFY infy_fork (EV_A); #endif if (ev_is_active (&pipeev)) { /* this "locks" the handlers against writing to the pipe */ /* while we modify the fd vars */ gotsig = 1; #if EV_ASYNC_ENABLE gotasync = 1; #endif ev_ref (EV_A); ev_io_stop (EV_A_ &pipeev); #if EV_USE_EVENTFD if (evfd >= 0) close (evfd); #endif if (evpipe [0] >= 0) { close (evpipe [0]); close (evpipe [1]); } evpipe_init (EV_A); /* now iterate over everything, in case we missed something */ pipecb (EV_A_ &pipeev, EV_READ); } postfork = 0; } #if EV_MULTIPLICITY struct ev_loop * ev_loop_new (unsigned int flags) { struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); memset (loop, 0, sizeof (struct ev_loop)); loop_init (EV_A_ flags); if (ev_backend (EV_A)) return loop; return 0; } void ev_loop_destroy (EV_P) { loop_destroy (EV_A); ev_free (loop); } void ev_loop_fork (EV_P) { postfork = 1; /* must be in line with ev_default_fork */ } #if EV_VERIFY static void noinline verify_watcher (EV_P_ W w) { assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI)); if (w->pending) assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w)); } static void noinline verify_heap (EV_P_ ANHE *heap, int N) { int i; for (i = HEAP0; i < N + HEAP0; ++i) { assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i)); assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i]))); assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i])))); verify_watcher (EV_A_ (W)ANHE_w (heap [i])); } } static void noinline array_verify (EV_P_ W *ws, int cnt) { while (cnt--) { assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1)); verify_watcher (EV_A_ ws [cnt]); } } #endif void ev_loop_verify (EV_P) { #if EV_VERIFY int i; WL w; assert (activecnt >= -1); assert (fdchangemax >= fdchangecnt); for (i = 0; i < fdchangecnt; ++i) assert (("negative fd in fdchanges", fdchanges [i] >= 0)); assert (anfdmax >= 0); for (i = 0; i < anfdmax; ++i) for (w = anfds [i].head; w; w = w->next) { verify_watcher (EV_A_ (W)w); assert (("inactive fd watcher on anfd list", ev_active (w) == 1)); assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i)); } assert (timermax >= timercnt); verify_heap (EV_A_ timers, timercnt); #if EV_PERIODIC_ENABLE assert (periodicmax >= periodiccnt); verify_heap (EV_A_ periodics, periodiccnt); #endif for (i = NUMPRI; i--; ) { assert (pendingmax [i] >= pendingcnt [i]); #if EV_IDLE_ENABLE assert (idleall >= 0); assert (idlemax [i] >= idlecnt [i]); array_verify (EV_A_ (W *)idles [i], idlecnt [i]); #endif } #if EV_FORK_ENABLE assert (forkmax >= forkcnt); array_verify (EV_A_ (W *)forks, forkcnt); #endif #if EV_ASYNC_ENABLE assert (asyncmax >= asynccnt); array_verify (EV_A_ (W *)asyncs, asynccnt); #endif assert (preparemax >= preparecnt); array_verify (EV_A_ (W *)prepares, preparecnt); assert (checkmax >= checkcnt); array_verify (EV_A_ (W *)checks, checkcnt); # if 0 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) for (signum = signalmax; signum--; ) if (signals [signum].gotsig) # endif #endif } #endif /* multiplicity */ #if EV_MULTIPLICITY struct ev_loop * ev_default_loop_init (unsigned int flags) #else int ev_default_loop (unsigned int flags) #endif { if (!ev_default_loop_ptr) { #if EV_MULTIPLICITY struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; #else ev_default_loop_ptr = 1; #endif loop_init (EV_A_ flags); if (ev_backend (EV_A)) { #ifndef _WIN32 ev_signal_init (&childev, childcb, SIGCHLD); ev_set_priority (&childev, EV_MAXPRI); ev_signal_start (EV_A_ &childev); ev_unref (EV_A); /* child watcher should not keep loop alive */ #endif } else ev_default_loop_ptr = 0; } return ev_default_loop_ptr; } void ev_default_destroy (void) { #if EV_MULTIPLICITY struct ev_loop *loop = ev_default_loop_ptr; #endif #ifndef _WIN32 ev_ref (EV_A); /* child watcher */ ev_signal_stop (EV_A_ &childev); #endif loop_destroy (EV_A); } void ev_default_fork (void) { #if EV_MULTIPLICITY struct ev_loop *loop = ev_default_loop_ptr; #endif if (backend) postfork = 1; /* must be in line with ev_loop_fork */ } /*****************************************************************************/ void ev_invoke (EV_P_ void *w, int revents) { EV_CB_INVOKE ((W)w, revents); } void inline_speed call_pending (EV_P) { int pri; for (pri = NUMPRI; pri--; ) while (pendingcnt [pri]) { ANPENDING *p = pendings [pri] + --pendingcnt [pri]; if (expect_true (p->w)) { /*assert (("non-pending watcher on pending list", p->w->pending));*/ p->w->pending = 0; EV_CB_INVOKE (p->w, p->events); EV_FREQUENT_CHECK; } } } #if EV_IDLE_ENABLE void inline_size idle_reify (EV_P) { if (expect_false (idleall)) { int pri; for (pri = NUMPRI; pri--; ) { if (pendingcnt [pri]) break; if (idlecnt [pri]) { queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE); break; } } } } #endif void inline_size timers_reify (EV_P) { EV_FREQUENT_CHECK; while (timercnt && ANHE_at (timers [HEAP0]) < mn_now) { ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]); /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/ /* first reschedule or stop timer */ if (w->repeat) { ev_at (w) += w->repeat; if (ev_at (w) < mn_now) ev_at (w) = mn_now; assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); ANHE_at_cache (timers [HEAP0]); downheap (timers, timercnt, HEAP0); } else ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ EV_FREQUENT_CHECK; ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); } } #if EV_PERIODIC_ENABLE void inline_size periodics_reify (EV_P) { EV_FREQUENT_CHECK; while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now) { ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]); /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ /* first reschedule or stop timer */ if (w->reschedule_cb) { ev_at (w) = w->reschedule_cb (w, ev_rt_now); assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now)); ANHE_at_cache (periodics [HEAP0]); downheap (periodics, periodiccnt, HEAP0); } else if (w->interval) { ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; /* if next trigger time is not sufficiently in the future, put it there */ /* this might happen because of floating point inexactness */ if (ev_at (w) - ev_rt_now < TIME_EPSILON) { ev_at (w) += w->interval; /* if interval is unreasonably low we might still have a time in the past */ /* so correct this. this will make the periodic very inexact, but the user */ /* has effectively asked to get triggered more often than possible */ if (ev_at (w) < ev_rt_now) ev_at (w) = ev_rt_now; } ANHE_at_cache (periodics [HEAP0]); downheap (periodics, periodiccnt, HEAP0); } else ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ EV_FREQUENT_CHECK; ev_feed_event (EV_A_ (W)w, EV_PERIODIC); } } static void noinline periodics_reschedule (EV_P) { int i; /* adjust periodics after time jump */ for (i = HEAP0; i < periodiccnt + HEAP0; ++i) { ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]); if (w->reschedule_cb) ev_at (w) = w->reschedule_cb (w, ev_rt_now); else if (w->interval) ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; ANHE_at_cache (periodics [i]); } reheap (periodics, periodiccnt); } #endif void inline_speed time_update (EV_P_ ev_tstamp max_block) { int i; #if EV_USE_MONOTONIC if (expect_true (have_monotonic)) { ev_tstamp odiff = rtmn_diff; mn_now = get_clock (); /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ /* interpolate in the meantime */ if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) { ev_rt_now = rtmn_diff + mn_now; return; } now_floor = mn_now; ev_rt_now = ev_time (); /* loop a few times, before making important decisions. * on the choice of "4": one iteration isn't enough, * in case we get preempted during the calls to * ev_time and get_clock. a second call is almost guaranteed * to succeed in that case, though. and looping a few more times * doesn't hurt either as we only do this on time-jumps or * in the unlikely event of having been preempted here. */ for (i = 4; --i; ) { rtmn_diff = ev_rt_now - mn_now; if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)) return; /* all is well */ ev_rt_now = ev_time (); mn_now = get_clock (); now_floor = mn_now; } # if EV_PERIODIC_ENABLE periodics_reschedule (EV_A); # endif /* no timer adjustment, as the monotonic clock doesn't jump */ /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ } else #endif { ev_rt_now = ev_time (); if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) { #if EV_PERIODIC_ENABLE periodics_reschedule (EV_A); #endif /* adjust timers. this is easy, as the offset is the same for all of them */ for (i = 0; i < timercnt; ++i) { ANHE *he = timers + i + HEAP0; ANHE_w (*he)->at += ev_rt_now - mn_now; ANHE_at_cache (*he); } } mn_now = ev_rt_now; } } void ev_ref (EV_P) { ++activecnt; } void ev_unref (EV_P) { --activecnt; } void ev_now_update (EV_P) { time_update (EV_A_ 1e100); } static int loop_done; void ev_loop (EV_P_ int flags) { loop_done = EVUNLOOP_CANCEL; call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ do { #if EV_VERIFY >= 2 ev_loop_verify (EV_A); #endif #ifndef _WIN32 if (expect_false (curpid)) /* penalise the forking check even more */ if (expect_false (getpid () != curpid)) { curpid = getpid (); postfork = 1; } #endif #if EV_FORK_ENABLE /* we might have forked, so queue fork handlers */ if (expect_false (postfork)) if (forkcnt) { queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); call_pending (EV_A); } #endif /* queue prepare watchers (and execute them) */ if (expect_false (preparecnt)) { queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); call_pending (EV_A); } if (expect_false (!activecnt)) break; /* we might have forked, so reify kernel state if necessary */ if (expect_false (postfork)) loop_fork (EV_A); /* update fd-related kernel structures */ fd_reify (EV_A); /* calculate blocking time */ { ev_tstamp waittime = 0.; ev_tstamp sleeptime = 0.; if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) { /* update time to cancel out callback processing overhead */ time_update (EV_A_ 1e100); waittime = MAX_BLOCKTIME; if (timercnt) { ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge; if (waittime > to) waittime = to; } #if EV_PERIODIC_ENABLE if (periodiccnt) { ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; if (waittime > to) waittime = to; } #endif if (expect_false (waittime < timeout_blocktime)) waittime = timeout_blocktime; sleeptime = waittime - backend_fudge; if (expect_true (sleeptime > io_blocktime)) sleeptime = io_blocktime; if (sleeptime) { ev_sleep (sleeptime); waittime -= sleeptime; } } ++loop_count; backend_poll (EV_A_ waittime); /* update ev_rt_now, do magic */ time_update (EV_A_ waittime + sleeptime); } /* queue pending timers and reschedule them */ timers_reify (EV_A); /* relative timers called last */ #if EV_PERIODIC_ENABLE periodics_reify (EV_A); /* absolute timers called first */ #endif #if EV_IDLE_ENABLE /* queue idle watchers unless other events are pending */ idle_reify (EV_A); #endif /* queue check watchers, to be executed first */ if (expect_false (checkcnt)) queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); call_pending (EV_A); } while (expect_true ( activecnt && !loop_done && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) )); if (loop_done == EVUNLOOP_ONE) loop_done = EVUNLOOP_CANCEL; } void ev_unloop (EV_P_ int how) { loop_done = how; } /*****************************************************************************/ void inline_size wlist_add (WL *head, WL elem) { elem->next = *head; *head = elem; } void inline_size wlist_del (WL *head, WL elem) { while (*head) { if (*head == elem) { *head = elem->next; return; } head = &(*head)->next; } } void inline_speed clear_pending (EV_P_ W w) { if (w->pending) { pendings [ABSPRI (w)][w->pending - 1].w = 0; w->pending = 0; } } int ev_clear_pending (EV_P_ void *w) { W w_ = (W)w; int pending = w_->pending; if (expect_true (pending)) { ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; w_->pending = 0; p->w = 0; return p->events; } else return 0; } void inline_size pri_adjust (EV_P_ W w) { int pri = w->priority; pri = pri < EV_MINPRI ? EV_MINPRI : pri; pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; w->priority = pri; } void inline_speed ev_start (EV_P_ W w, int active) { pri_adjust (EV_A_ w); w->active = active; ev_ref (EV_A); } void inline_size ev_stop (EV_P_ W w) { ev_unref (EV_A); w->active = 0; } /*****************************************************************************/ void noinline ev_io_start (EV_P_ ev_io *w) { int fd = w->fd; if (expect_false (ev_is_active (w))) return; assert (("ev_io_start called with negative fd", fd >= 0)); EV_FREQUENT_CHECK; ev_start (EV_A_ (W)w, 1); array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); wlist_add (&anfds[fd].head, (WL)w); fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); w->events &= ~EV_IOFDSET; EV_FREQUENT_CHECK; } void noinline ev_io_stop (EV_P_ ev_io *w) { clear_pending (EV_A_ (W)w); if (expect_false (!ev_is_active (w))) return; assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); EV_FREQUENT_CHECK; wlist_del (&anfds[w->fd].head, (WL)w); ev_stop (EV_A_ (W)w); fd_change (EV_A_ w->fd, 1); EV_FREQUENT_CHECK; } void noinline ev_timer_start (EV_P_ ev_timer *w) { if (expect_false (ev_is_active (w))) return; ev_at (w) += mn_now; assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); EV_FREQUENT_CHECK; ++timercnt; ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1); array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2); ANHE_w (timers [ev_active (w)]) = (WT)w; ANHE_at_cache (timers [ev_active (w)]); upheap (timers, ev_active (w)); EV_FREQUENT_CHECK; /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/ } void noinline ev_timer_stop (EV_P_ ev_timer *w) { clear_pending (EV_A_ (W)w); if (expect_false (!ev_is_active (w))) return; EV_FREQUENT_CHECK; { int active = ev_active (w); assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w)); --timercnt; if (expect_true (active < timercnt + HEAP0)) { timers [active] = timers [timercnt + HEAP0]; adjustheap (timers, timercnt, active); } } EV_FREQUENT_CHECK; ev_at (w) -= mn_now; ev_stop (EV_A_ (W)w); } void noinline ev_timer_again (EV_P_ ev_timer *w) { EV_FREQUENT_CHECK; if (ev_is_active (w)) { if (w->repeat) { ev_at (w) = mn_now + w->repeat; ANHE_at_cache (timers [ev_active (w)]); adjustheap (timers, timercnt, ev_active (w)); } else ev_timer_stop (EV_A_ w); } else if (w->repeat) { ev_at (w) = w->repeat; ev_timer_start (EV_A_ w); } EV_FREQUENT_CHECK; } #if EV_PERIODIC_ENABLE void noinline ev_periodic_start (EV_P_ ev_periodic *w) { if (expect_false (ev_is_active (w))) return; if (w->reschedule_cb) ev_at (w) = w->reschedule_cb (w, ev_rt_now); else if (w->interval) { assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); /* this formula differs from the one in periodic_reify because we do not always round up */ ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; } else ev_at (w) = w->offset; EV_FREQUENT_CHECK; ++periodiccnt; ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1); array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2); ANHE_w (periodics [ev_active (w)]) = (WT)w; ANHE_at_cache (periodics [ev_active (w)]); upheap (periodics, ev_active (w)); EV_FREQUENT_CHECK; /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/ } void noinline ev_periodic_stop (EV_P_ ev_periodic *w) { clear_pending (EV_A_ (W)w); if (expect_false (!ev_is_active (w))) return; EV_FREQUENT_CHECK; { int active = ev_active (w); assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w)); --periodiccnt; if (expect_true (active < periodiccnt + HEAP0)) { periodics [active] = periodics [periodiccnt + HEAP0]; adjustheap (periodics, periodiccnt, active); } } EV_FREQUENT_CHECK; ev_stop (EV_A_ (W)w); } void noinline ev_periodic_again (EV_P_ ev_periodic *w) { /* TODO: use adjustheap and recalculation */ ev_periodic_stop (EV_A_ w); ev_periodic_start (EV_A_ w); } #endif #ifndef SA_RESTART # define SA_RESTART 0 #endif void noinline ev_signal_start (EV_P_ ev_signal *w) { #if EV_MULTIPLICITY assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); #endif if (expect_false (ev_is_active (w))) return; assert (("ev_signal_start called with illegal signal number", w->signum > 0)); evpipe_init (EV_A); EV_FREQUENT_CHECK; { #ifndef _WIN32 sigset_t full, prev; sigfillset (&full); sigprocmask (SIG_SETMASK, &full, &prev); #endif array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); #ifndef _WIN32 sigprocmask (SIG_SETMASK, &prev, 0); #endif } ev_start (EV_A_ (W)w, 1); wlist_add (&signals [w->signum - 1].head, (WL)w); if (!((WL)w)->next) { #if _WIN32 signal (w->signum, ev_sighandler); #else struct sigaction sa; sa.sa_handler = ev_sighandler; sigfillset (&sa.sa_mask); sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ sigaction (w->signum, &sa, 0); #endif } EV_FREQUENT_CHECK; } void noinline ev_signal_stop (EV_P_ ev_signal *w) { clear_pending (EV_A_ (W)w); if (expect_false (!ev_is_active (w))) return; EV_FREQUENT_CHECK; wlist_del (&signals [w->signum - 1].head, (WL)w); ev_stop (EV_A_ (W)w); if (!signals [w->signum - 1].head) signal (w->signum, SIG_DFL); EV_FREQUENT_CHECK; } void ev_child_start (EV_P_ ev_child *w) { #if EV_MULTIPLICITY assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); #endif if (expect_false (ev_is_active (w))) return; EV_FREQUENT_CHECK; ev_start (EV_A_ (W)w, 1); wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); EV_FREQUENT_CHECK; } void ev_child_stop (EV_P_ ev_child *w) { clear_pending (EV_A_ (W)w); if (expect_false (!ev_is_active (w))) return; EV_FREQUENT_CHECK; wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); ev_stop (EV_A_ (W)w); EV_FREQUENT_CHECK; } #if EV_STAT_ENABLE # ifdef _WIN32 # undef lstat # define lstat(a,b) _stati64 (a,b) # endif #define DEF_STAT_INTERVAL 5.0074891 #define MIN_STAT_INTERVAL 0.1074891 static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); #if EV_USE_INOTIFY # define EV_INOTIFY_BUFSIZE 8192 static void noinline infy_add (EV_P_ ev_stat *w) { w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); if (w->wd < 0) { ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ /* monitor some parent directory for speedup hints */ /* note that exceeding the hardcoded limit is not a correctness issue, */ /* but an efficiency issue only */ if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) { char path [4096]; strcpy (path, w->path); do { int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); char *pend = strrchr (path, '/'); if (!pend) break; /* whoops, no '/', complain to your admin */ *pend = 0; w->wd = inotify_add_watch (fs_fd, path, mask); } while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); } } else ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */ if (w->wd >= 0) wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); } static void noinline infy_del (EV_P_ ev_stat *w) { int slot; int wd = w->wd; if (wd < 0) return; w->wd = -2; slot = wd & (EV_INOTIFY_HASHSIZE - 1); wlist_del (&fs_hash [slot].head, (WL)w); /* remove this watcher, if others are watching it, they will rearm */ inotify_rm_watch (fs_fd, wd); } static void noinline infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) { if (slot < 0) /* overflow, need to check for all hahs slots */ for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) infy_wd (EV_A_ slot, wd, ev); else { WL w_; for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) { ev_stat *w = (ev_stat *)w_; w_ = w_->next; /* lets us remove this watcher and all before it */ if (w->wd == wd || wd == -1) { if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) { w->wd = -1; infy_add (EV_A_ w); /* re-add, no matter what */ } stat_timer_cb (EV_A_ &w->timer, 0); } } } } static void infy_cb (EV_P_ ev_io *w, int revents) { char buf [EV_INOTIFY_BUFSIZE]; struct inotify_event *ev = (struct inotify_event *)buf; int ofs; int len = read (fs_fd, buf, sizeof (buf)); for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) infy_wd (EV_A_ ev->wd, ev->wd, ev); } void inline_size infy_init (EV_P) { if (fs_fd != -2) return; fs_fd = inotify_init (); if (fs_fd >= 0) { ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); ev_set_priority (&fs_w, EV_MAXPRI); ev_io_start (EV_A_ &fs_w); } } void inline_size infy_fork (EV_P) { int slot; if (fs_fd < 0) return; close (fs_fd); fs_fd = inotify_init (); for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) { WL w_ = fs_hash [slot].head; fs_hash [slot].head = 0; while (w_) { ev_stat *w = (ev_stat *)w_; w_ = w_->next; /* lets us add this watcher */ w->wd = -1; if (fs_fd >= 0) infy_add (EV_A_ w); /* re-add, no matter what */ else ev_timer_start (EV_A_ &w->timer); } } } #endif #ifdef _WIN32 # define EV_LSTAT(p,b) _stati64 (p, b) #else # define EV_LSTAT(p,b) lstat (p, b) #endif void ev_stat_stat (EV_P_ ev_stat *w) { if (lstat (w->path, &w->attr) < 0) w->attr.st_nlink = 0; else if (!w->attr.st_nlink) w->attr.st_nlink = 1; } static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents) { ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); /* we copy this here each the time so that */ /* prev has the old value when the callback gets invoked */ w->prev = w->attr; ev_stat_stat (EV_A_ w); /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ if ( w->prev.st_dev != w->attr.st_dev || w->prev.st_ino != w->attr.st_ino || w->prev.st_mode != w->attr.st_mode || w->prev.st_nlink != w->attr.st_nlink || w->prev.st_uid != w->attr.st_uid || w->prev.st_gid != w->attr.st_gid || w->prev.st_rdev != w->attr.st_rdev || w->prev.st_size != w->attr.st_size || w->prev.st_atime != w->attr.st_atime || w->prev.st_mtime != w->attr.st_mtime || w->prev.st_ctime != w->attr.st_ctime ) { #if EV_USE_INOTIFY infy_del (EV_A_ w); infy_add (EV_A_ w); ev_stat_stat (EV_A_ w); /* avoid race... */ #endif ev_feed_event (EV_A_ w, EV_STAT); } } void ev_stat_start (EV_P_ ev_stat *w) { if (expect_false (ev_is_active (w))) return; /* since we use memcmp, we need to clear any padding data etc. */ memset (&w->prev, 0, sizeof (ev_statdata)); memset (&w->attr, 0, sizeof (ev_statdata)); ev_stat_stat (EV_A_ w); if (w->interval < MIN_STAT_INTERVAL) w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL; ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); ev_set_priority (&w->timer, ev_priority (w)); #if EV_USE_INOTIFY infy_init (EV_A); if (fs_fd >= 0) infy_add (EV_A_ w); else #endif ev_timer_start (EV_A_ &w->timer); ev_start (EV_A_ (W)w, 1); EV_FREQUENT_CHECK; } void ev_stat_stop (EV_P_ ev_stat *w) { clear_pending (EV_A_ (W)w); if (expect_false (!ev_is_active (w))) return; EV_FREQUENT_CHECK; #if EV_USE_INOTIFY infy_del (EV_A_ w); #endif ev_timer_stop (EV_A_ &w->timer); ev_stop (EV_A_ (W)w); EV_FREQUENT_CHECK; } #endif #if EV_IDLE_ENABLE void ev_idle_start (EV_P_ ev_idle *w) { if (expect_false (ev_is_active (w))) return; pri_adjust (EV_A_ (W)w); EV_FREQUENT_CHECK; { int active = ++idlecnt [ABSPRI (w)]; ++idleall; ev_start (EV_A_ (W)w, active); array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); idles [ABSPRI (w)][active - 1] = w; } EV_FREQUENT_CHECK; } void ev_idle_stop (EV_P_ ev_idle *w) { clear_pending (EV_A_ (W)w); if (expect_false (!ev_is_active (w))) return; EV_FREQUENT_CHECK; { int active = ev_active (w); idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; ev_active (idles [ABSPRI (w)][active - 1]) = active; ev_stop (EV_A_ (W)w); --idleall; } EV_FREQUENT_CHECK; } #endif void ev_prepare_start (EV_P_ ev_prepare *w) { if (expect_false (ev_is_active (w))) return; EV_FREQUENT_CHECK; ev_start (EV_A_ (W)w, ++preparecnt); array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); prepares [preparecnt - 1] = w; EV_FREQUENT_CHECK; } void ev_prepare_stop (EV_P_ ev_prepare *w) { clear_pending (EV_A_ (W)w); if (expect_false (!ev_is_active (w))) return; EV_FREQUENT_CHECK; { int active = ev_active (w); prepares [active - 1] = prepares [--preparecnt]; ev_active (prepares [active - 1]) = active; } ev_stop (EV_A_ (W)w); EV_FREQUENT_CHECK; } void ev_check_start (EV_P_ ev_check *w) { if (expect_false (ev_is_active (w))) return; EV_FREQUENT_CHECK; ev_start (EV_A_ (W)w, ++checkcnt); array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); checks [checkcnt - 1] = w; EV_FREQUENT_CHECK; } void ev_check_stop (EV_P_ ev_check *w) { clear_pending (EV_A_ (W)w); if (expect_false (!ev_is_active (w))) return; EV_FREQUENT_CHECK; { int active = ev_active (w); checks [active - 1] = checks [--checkcnt]; ev_active (checks [active - 1]) = active; } ev_stop (EV_A_ (W)w); EV_FREQUENT_CHECK; } #if EV_EMBED_ENABLE void noinline ev_embed_sweep (EV_P_ ev_embed *w) { ev_loop (w->other, EVLOOP_NONBLOCK); } static void embed_io_cb (EV_P_ ev_io *io, int revents) { ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); if (ev_cb (w)) ev_feed_event (EV_A_ (W)w, EV_EMBED); else ev_loop (w->other, EVLOOP_NONBLOCK); } static void embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) { ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); { struct ev_loop *loop = w->other; while (fdchangecnt) { fd_reify (EV_A); ev_loop (EV_A_ EVLOOP_NONBLOCK); } } } #if 0 static void embed_idle_cb (EV_P_ ev_idle *idle, int revents) { ev_idle_stop (EV_A_ idle); } #endif void ev_embed_start (EV_P_ ev_embed *w) { if (expect_false (ev_is_active (w))) return; { struct ev_loop *loop = w->other; assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); } EV_FREQUENT_CHECK; ev_set_priority (&w->io, ev_priority (w)); ev_io_start (EV_A_ &w->io); ev_prepare_init (&w->prepare, embed_prepare_cb); ev_set_priority (&w->prepare, EV_MINPRI); ev_prepare_start (EV_A_ &w->prepare); /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ ev_start (EV_A_ (W)w, 1); EV_FREQUENT_CHECK; } void ev_embed_stop (EV_P_ ev_embed *w) { clear_pending (EV_A_ (W)w); if (expect_false (!ev_is_active (w))) return; EV_FREQUENT_CHECK; ev_io_stop (EV_A_ &w->io); ev_prepare_stop (EV_A_ &w->prepare); ev_stop (EV_A_ (W)w); EV_FREQUENT_CHECK; } #endif #if EV_FORK_ENABLE void ev_fork_start (EV_P_ ev_fork *w) { if (expect_false (ev_is_active (w))) return; EV_FREQUENT_CHECK; ev_start (EV_A_ (W)w, ++forkcnt); array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); forks [forkcnt - 1] = w; EV_FREQUENT_CHECK; } void ev_fork_stop (EV_P_ ev_fork *w) { clear_pending (EV_A_ (W)w); if (expect_false (!ev_is_active (w))) return; EV_FREQUENT_CHECK; { int active = ev_active (w); forks [active - 1] = forks [--forkcnt]; ev_active (forks [active - 1]) = active; } ev_stop (EV_A_ (W)w); EV_FREQUENT_CHECK; } #endif #if EV_ASYNC_ENABLE void ev_async_start (EV_P_ ev_async *w) { if (expect_false (ev_is_active (w))) return; evpipe_init (EV_A); EV_FREQUENT_CHECK; ev_start (EV_A_ (W)w, ++asynccnt); array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); asyncs [asynccnt - 1] = w; EV_FREQUENT_CHECK; } void ev_async_stop (EV_P_ ev_async *w) { clear_pending (EV_A_ (W)w); if (expect_false (!ev_is_active (w))) return; EV_FREQUENT_CHECK; { int active = ev_active (w); asyncs [active - 1] = asyncs [--asynccnt]; ev_active (asyncs [active - 1]) = active; } ev_stop (EV_A_ (W)w); EV_FREQUENT_CHECK; } void ev_async_send (EV_P_ ev_async *w) { w->sent = 1; evpipe_write (EV_A_ &gotasync); } #endif /*****************************************************************************/ struct ev_once { ev_io io; ev_timer to; void (*cb)(int revents, void *arg); void *arg; }; static void once_cb (EV_P_ struct ev_once *once, int revents) { void (*cb)(int revents, void *arg) = once->cb; void *arg = once->arg; ev_io_stop (EV_A_ &once->io); ev_timer_stop (EV_A_ &once->to); ev_free (once); cb (revents, arg); } static void once_cb_io (EV_P_ ev_io *w, int revents) { once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); } static void once_cb_to (EV_P_ ev_timer *w, int revents) { once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); } void ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) { struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); if (expect_false (!once)) { cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); return; } once->cb = cb; once->arg = arg; ev_init (&once->io, once_cb_io); if (fd >= 0) { ev_io_set (&once->io, fd, events); ev_io_start (EV_A_ &once->io); } ev_init (&once->to, once_cb_to); if (timeout >= 0.) { ev_timer_set (&once->to, timeout, 0.); ev_timer_start (EV_A_ &once->to); } } #if EV_MULTIPLICITY #include "ev_wrap.h" #endif #ifdef __cplusplus } #endif