1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
|
#ifndef EVPP_H__
#define EVPP_H__
/* work in progress, don't use unless you know what you are doing */
namespace ev {
template<class watcher>
class callback
{
struct object { };
void *obj;
void (object::*meth)(watcher &, int);
/* a proxy is a kind of recipe on how to call a specific class method */
struct proxy_base {
virtual void call (void *obj, void (object::*meth)(watcher &, int), watcher &w, int) const = 0;
};
template<class O1, class O2>
struct proxy : proxy_base {
virtual void call (void *obj, void (object::*meth)(watcher &, int), watcher &w, int e) const
{
((reinterpret_cast<O1 *>(obj)) ->* (reinterpret_cast<void (O2::*)(watcher &, int)>(meth)))
(w, e);
}
};
proxy_base *prxy;
public:
template<class O1, class O2>
explicit callback (O1 *object, void (O2::*method)(watcher &, int))
{
static proxy<O1,O2> p;
obj = reinterpret_cast<void *>(object);
meth = reinterpret_cast<void (object::*)(watcher &, int)>(method);
prxy = &p;
}
void call (watcher *w, int e) const
{
return prxy->call (obj, meth, *w, e);
}
};
#include "ev.h"
enum {
UNDEF = EV_UNDEF,
NONE = EV_NONE,
READ = EV_READ,
WRITE = EV_WRITE,
TIMEOUT = EV_TIMEOUT,
PERIODIC = EV_PERIODIC,
SIGNAL = EV_SIGNAL,
IDLE = EV_IDLE,
CHECK = EV_CHECK,
PREPARE = EV_PREPARE,
CHILD = EV_CHILD,
ERROR = EV_ERROR,
};
typedef ev_tstamp tstamp;
inline ev_tstamp now (EV_P)
{
return ev_now (EV_A);
}
#if EV_MULTIPLICITY
#define EV_CONSTRUCT(cppstem) \
EV_P; \
\
void set (EV_P) \
{ \
this->EV_A = EV_A; \
} \
\
template<class O1, class O2> \
explicit cppstem (O1 *object, void (O2::*method)(cppstem &, int), EV_P = ev_default_loop (0)) \
: callback<cppstem> (object, method), EV_A (EV_A)
#else
#define EV_CONSTRUCT(cppstem) \
template<class O1, class O2> \
explicit cppstem (O1 *object, void (O2::*method)(cppstem &, int)) \
: callback<cppstem> (object, method)
#endif
/* using a template here would require quite a bit more lines,
* so a macro solution was chosen */
#define EV_DECLARE_WATCHER(cppstem,cstem) \
\
extern "C" void cb_ ## cppstem (struct ev_ ## cstem *w, int revents); \
\
struct cppstem : ev_ ## cstem, callback<cppstem> \
{ \
EV_CONSTRUCT (cppstem) \
{ \
ev_init (static_cast<ev_ ## cstem *>(this), cb_ ## cppstem); \
} \
\
bool is_active () const \
{ \
return ev_is_active (static_cast<const ev_ ## cstem *>(this)); \
} \
\
bool is_pending () const \
{ \
return ev_is_pending (static_cast<const ev_ ## cstem *>(this)); \
} \
\
void start () \
{ \
ev_ ## cstem ## _start (EV_A_ static_cast<ev_ ## cstem *>(this)); \
} \
\
void stop () \
{ \
ev_ ## cstem ## _stop (EV_A_ static_cast<ev_ ## cstem *>(this)); \
} \
\
void operator ()(int events = EV_UNDEF) \
{ \
return call (this, events); \
} \
\
~cppstem () \
{ \
stop (); \
} \
\
private: \
\
cppstem (const cppstem &o) \
: callback<cppstem> (this, (void (cppstem::*)(cppstem &, int))0) \
{ /* disabled */ } \
void operator =(const cppstem &o) { /* disabled */ } \
\
public:
EV_DECLARE_WATCHER (io, io)
void set (int fd, int events)
{
int active = is_active ();
if (active) stop ();
ev_io_set (static_cast<ev_io *>(this), fd, events);
if (active) start ();
}
void set (int events)
{
int active = is_active ();
if (active) stop ();
ev_io_set (static_cast<ev_io *>(this), fd, events);
if (active) start ();
}
void start (int fd, int events)
{
set (fd, events);
start ();
}
};
EV_DECLARE_WATCHER (timer, timer)
void set (ev_tstamp after, ev_tstamp repeat = 0.)
{
int active = is_active ();
if (active) stop ();
ev_timer_set (static_cast<ev_timer *>(this), after, repeat);
if (active) start ();
}
void start (ev_tstamp after, ev_tstamp repeat = 0.)
{
set (after, repeat);
start ();
}
void again ()
{
ev_timer_again (EV_A_ static_cast<ev_timer *>(this));
}
};
#if EV_PERIODICS
EV_DECLARE_WATCHER (periodic, periodic)
void set (ev_tstamp at, ev_tstamp interval = 0.)
{
int active = is_active ();
if (active) stop ();
ev_periodic_set (static_cast<ev_periodic *>(this), at, interval, 0);
if (active) start ();
}
void start (ev_tstamp at, ev_tstamp interval = 0.)
{
set (at, interval);
start ();
}
void again ()
{
ev_periodic_again (EV_A_ static_cast<ev_periodic *>(this));
}
};
#endif
EV_DECLARE_WATCHER (idle, idle)
};
EV_DECLARE_WATCHER (prepare, prepare)
};
EV_DECLARE_WATCHER (check, check)
};
EV_DECLARE_WATCHER (sig, signal)
void set (int signum)
{
int active = is_active ();
if (active) stop ();
ev_signal_set (static_cast<ev_signal *>(this), signum);
if (active) start ();
}
void start (int signum)
{
set (signum);
start ();
}
};
EV_DECLARE_WATCHER (child, child)
void set (int pid)
{
int active = is_active ();
if (active) stop ();
ev_child_set (static_cast<ev_child *>(this), pid);
if (active) start ();
}
void start (int pid)
{
set (pid);
start ();
}
};
#undef EV_CONSTRUCT
#undef EV_DECLARE_WATCHER
}
#endif
|