/** \file * \brief Image Processing - Pontual Operations * * See Copyright Notice in im_lib.h */ #ifndef __IM_PROCESS_PON_H #define __IM_PROCESS_PON_H #include "im_image.h" #if defined(__cplusplus) extern "C" { #endif /** \defgroup arithm Arithmetic Operations * \par * Simple math operations for images. * \par * See \ref im_process_pon.h * \ingroup process */ /** Unary Arithmetic Operations. \n * Inverse and log may lead to math exceptions. * \ingroup arithm */ enum imUnaryOp { IM_UN_EQL, /**< equal = a */ IM_UN_ABS, /**< abssolute = |a| */ IM_UN_LESS, /**< less = -a */ IM_UN_INV, /**< invert = 1/a (#) */ IM_UN_SQR, /**< square = a*a */ IM_UN_SQRT, /**< square root = a^(1/2) */ IM_UN_LOG, /**< natural logarithm = ln(a) (#) */ IM_UN_EXP, /**< exponential = exp(a) */ IM_UN_SIN, /**< sine = sin(a) */ IM_UN_COS, /**< cosine = cos(a) */ IM_UN_CONJ, /**< complex conjugate = ar - ai*i */ IM_UN_CPXNORM /**< complex normalization by magnitude = a / cpxmag(a) */ }; /** Apply an arithmetic unary operation. \n * Can be done in place, images must match size. \n * Destiny image can be several types depending on source: \n * \li byte -> byte, ushort, int, float * \li ushort -> byte, ushort, int, float * \li int -> byte, ushort, int, float * \li float -> float * \li complex -> complex * If destiny is byte, then the result is cropped to 0-255. * * \verbatim im.ProcessUnArithmeticOp(src_image: imImage, dst_image: imImage, op: number) [in Lua 5] \endverbatim * \verbatim im.ProcessUnArithmeticOpNew(image: imImage, op: number) -> new_image: imImage [in Lua 5] \endverbatim * \ingroup arithm */ void imProcessUnArithmeticOp(const imImage* src_image, imImage* dst_image, int op); /** Binary Arithmetic Operations. \n * Divide may lead to math exceptions. * \ingroup arithm */ enum imBinaryOp { IM_BIN_ADD, /**< add = a+b */ IM_BIN_SUB, /**< subtract = a-b */ IM_BIN_MUL, /**< multiply = a*b */ IM_BIN_DIV, /**< divide = a/b (#) */ IM_BIN_DIFF, /**< difference = |a-b| */ IM_BIN_POW, /**< power = a^b */ IM_BIN_MIN, /**< minimum = (a < b)? a: b */ IM_BIN_MAX /**< maximum = (a > b)? a: b */ }; /** Apply a binary arithmetic operation. \n * Can be done in place, images must match size. \n * Source images must match type, destiny image can be several types depending on source: \n * \li byte -> byte, ushort, int, float * \li ushort -> ushort, int, float * \li int -> int, float * \li float -> float * \li complex -> complex * One exception is that you can combine complex with float resulting complex. * If destiny is byte, then the result is cropped to 0-255. * * \verbatim im.ProcessArithmeticOp(src_image1: imImage, src_image2: imImage, dst_image: imImage, op: number) [in Lua 5] \endverbatim * \verbatim im.ProcessArithmeticOpNew(image1: imImage, image2: imImage, op: number) -> new_image: imImage [in Lua 5] \endverbatim * The New function will create a new image of the same type of the source images. * \ingroup arithm */ void imProcessArithmeticOp(const imImage* src_image1, const imImage* src_image2, imImage* dst_image, int op); /** Apply a binary arithmetic operation with a constant value. \n * Can be done in place, images must match size. \n * Destiny image can be several types depending on source: \n * \li byte -> byte, ushort, int, float * \li ushort -> byte, ushort, int, float * \li int -> byte, ushort, int, float * \li float -> float * \li complex -> complex * The constant value is type casted to an apropriate type before the operation. * If destiny is byte, then the result is cropped to 0-255. * * \verbatim im.ProcessArithmeticConstOp(src_image: imImage, src_const: number, dst_image: imImage, op: number) [in Lua 5] \endverbatim * \verbatim im.ProcessArithmeticConstOpNew(image: imImage, src_const: number, op: number) -> new_image: imImage [in Lua 5] \endverbatim * \ingroup arithm */ void imProcessArithmeticConstOp(const imImage* src_image, float src_const, imImage* dst_image, int op); /** Blend two images using an alpha value = [a * alpha + b * (1 - alpha)]. \n * Can be done in place, images must match size and type. \n * alpha value must be in the interval [0.0 - 1.0]. * * \verbatim im.ProcessBlendConst(src_image1: imImage, src_image2: imImage, dst_image: imImage, alpha: number) [in Lua 5] \endverbatim * \verbatim im.ProcessBlendConstNew(image1: imImage, image2: imImage, alpha: number) -> new_image: imImage [in Lua 5] \endverbatim * \ingroup arithm */ void imProcessBlendConst(const imImage* src_image1, const imImage* src_image2, imImage* dst_image, float alpha); /** Blend two images using an alpha channel = [a * alpha + b * (1 - alpha)]. \n * Can be done in place, images must match size and type. \n * alpha_image must have the same data type except for complex images that must be float, and color_space must be IM_GRAY. * integer alpha values must be: \verbatim 0 - 255 IM_BYTE 0 - 65535 IM_USHORT 0 - 2147483647 IM_INT \endverbatim * that will be normalized to 0 - 1. * \verbatim im.ProcessBlend(src_image1: imImage, src_image2: imImage, alpha_image: imImage, dst_image: imImage) [in Lua 5] \endverbatim * \verbatim im.ProcessBlendNew(image1: imImage, image2: imImage, alpha_image: imImage) -> new_image: imImage [in Lua 5] \endverbatim * \ingroup arithm */ void imProcessBlend(const imImage* src_image1, const imImage* src_image2, const imImage* alpha_image, imImage* dst_image); /** Split a complex image into two images with real and imaginary parts \n * or magnitude and phase parts (polar). \n * Source image must be IM_CFLOAT, destiny images must be IM_FLOAT. * * \verbatim im.ProcessSplitComplex(src_image: imImage, dst_image1: imImage, dst_image2: imImage, polar: boolean) [in Lua 5] \endverbatim * \verbatim im.ProcessSplitComplexNew(image: imImage, polar: boolean) -> dst_image1: imImage, dst_image2: imImage [in Lua 5] \endverbatim * \ingroup arithm */ void imProcessSplitComplex(const imImage* src_image, imImage* dst_image1, imImage* dst_image2, int polar); /** Merges two images as the real and imaginary parts of a complex image, \n * or as magnitude and phase parts (polar = 1). \n * Source images must be IM_FLOAT, destiny image must be IM_CFLOAT. * * \verbatim im.ProcessMergeComplex(src_image1: imImage, src_image2: imImage, dst_image: imImage, polar: boolean) [in Lua 5] \endverbatim * \verbatim im.ProcessMergeComplexNew(image1: imImage, image2: imImage, polar: boolean) -> new_image: imImage [in Lua 5] \endverbatim * \ingroup arithm */ void imProcessMergeComplex(const imImage* src_image1, const imImage* src_image2, imImage* dst_image, int polar); /** Calculates the mean of multiple images. \n * Images must match size and type. * * \verbatim im.ProcessMultipleMean(src_image_list: table of imImage, dst_image: imImage) [in Lua 5] \endverbatim * \verbatim im.ProcessMultipleMeanNew(src_image_list: table of imImage) -> new_image: imImage [in Lua 5] \endverbatim * \ingroup arithm */ void imProcessMultipleMean(const imImage** src_image_list, int src_image_count, imImage* dst_image); /** Calculates the standard deviation of multiple images. \n * Images must match size and type. Use \ref imProcessMultipleMean to calculate the mean_image. * * \verbatim im.ProcessMultipleStdDev(src_image_list: table of imImage, mean_image: imImage, dst_image: imImage) [in Lua 5] \endverbatim * \verbatim im.ProcessMultipleStdDevNew(src_image_list: table of imImage, mean_image: imImage) -> new_image: imImage [in Lua 5] \endverbatim * \ingroup arithm */ void imProcessMultipleStdDev(const imImage** src_image_list, int src_image_count, const imImage *mean_image, imImage* dst_image); /** Calculates the auto-covariance of an image with the mean of a set of images. \n * Images must match size and type. Returns zero if the counter aborted. \n * Destiny is IM_FLOAT. * * \verbatim im.ProcessAutoCovariance(src_image: imImage, mean_image: imImage, dst_image: imImage) -> counter: boolean [in Lua 5] \endverbatim * \verbatim im.ProcessAutoCovarianceNew(src_image: imImage, mean_image: imImage) -> counter: boolean, new_image: imImage [in Lua 5] \endverbatim * \ingroup arithm */ int imProcessAutoCovariance(const imImage* src_image, const imImage* mean_image, imImage* dst_image); /** Multiplies the conjugate of one complex image with another complex image. \n * Images must match size. Conj(img1) * img2 \n * Can be done in-place. * * \verbatim im.ProcessMultiplyConj(src_image1: imImage, src_image2: imImage, dst_image: imImage) [in Lua 5] \endverbatim * \verbatim im.ProcessMultiplyConjNew(src_image1: imImage, src_image2: imImage) -> new_image: imImage [in Lua 5] \endverbatim * \ingroup arithm */ void imProcessMultiplyConj(const imImage* src_image1, const imImage* src_image2, imImage* dst_image); /** \defgroup quantize Additional Image Quantization Operations * \par * Additionally operations to the \ref imConvertColorSpace function. * \par * See \ref im_process_pon.h * \ingroup process */ /** Converts a RGB image to a MAP image using uniform quantization * with an optional 8x8 ordered dither. The RGB image must have data type IM_BYTE. * * \verbatim im.ProcessQuantizeRGBUniform(src_image: imImage, dst_image: imImage, do_dither: boolean) [in Lua 5] \endverbatim * \verbatim im.ProcessQuantizeRGBUniformNew(src_image: imImage, do_dither: boolean) -> new_image: imImage [in Lua 5] \endverbatim * \ingroup quantize */ void imProcessQuantizeRGBUniform(const imImage* src_image, imImage* dst_image, int do_dither); /** Quantizes a gray scale image in less that 256 grays using uniform quantization. \n * Both images must be IM_BYTE/IM_GRAY. Can be done in place. * * \verbatim im.ProcessQuantizeGrayUniform(src_image: imImage, dst_image: imImage, grays: number) [in Lua 5] \endverbatim * \verbatim im.ProcessQuantizeGrayUniformNew(src_image: imImage, grays: number) -> new_image: imImage [in Lua 5] \endverbatim * \ingroup quantize */ void imProcessQuantizeGrayUniform(const imImage* src_image, imImage* dst_image, int grays); /** \defgroup histo Histogram Based Operations * \par * See \ref im_process_pon.h * \ingroup process */ /** Performs an histogram expansion based on a percentage of the number of pixels. \n * Percentage defines an amount of pixels to include at the lowest level and at the highest level. * If its is zero only empty counts of the histogram will be considered. \n * Images must be IM_BYTE/(IM_RGB or IM_GRAY). Can be done in place. \n * To expand the gammut without using the histogram, by just specifing the lowest and highest levels * use the \ref IM_GAMUT_EXPAND tone gammut operation (\ref imProcessToneGamut). * * \verbatim im.ProcessExpandHistogram(src_image: imImage, dst_image: imImage, percent: number) [in Lua 5] \endverbatim * \verbatim im.ProcessExpandHistogramNew(src_image: imImage, percent: number) -> new_image: imImage [in Lua 5] \endverbatim * \ingroup histo */ void imProcessExpandHistogram(const imImage* src_image, imImage* dst_image, float percent); /** Performs an histogram equalization. \n * Images must be IM_BYTE/(IM_RGB or IM_GRAY). Can be done in place. * * \verbatim im.ProcessEqualizeHistogram(src_image: imImage, dst_image: imImage) [in Lua 5] \endverbatim * \verbatim im.ProcessEqualizeHistogramNew(src_image: imImage) -> new_image: imImage [in Lua 5] \endverbatim * \ingroup histo */ void imProcessEqualizeHistogram(const imImage* src_image, imImage* dst_image); /** \defgroup colorproc Color Processing Operations * \par * Operations to change the color components configuration. * \par * See \ref im_process_pon.h * \ingroup process */ /** Split a RGB image into luma and chroma. \n * Chroma is calculated as R-Y,G-Y,B-Y. Source image must be IM_RGB/IM_BYTE. \n * luma image is IM_GRAY/IM_BYTE and chroma is IM_RGB/IM_BYTE. \n * Source and destiny must have the same size. * * \verbatim im.ProcessSplitYChroma(src_image: imImage, y_image: imImage, chroma_image: imImage) [in Lua 5] \endverbatim * \verbatim im.ProcessSplitYChromaNew(src_image: imImage) -> y_image: imImage, chroma_image: imImage [in Lua 5] \endverbatim * \ingroup colorproc */ void imProcessSplitYChroma(const imImage* src_image, imImage* y_image, imImage* chroma_image); /** Split a RGB image into HSI planes. \n * Source image must be IM_RGB/IM_BYTE,IM_FLOAT. Destiny images are all IM_GRAY/IM_FLOAT. \n * Source images must normalized to 0-1 if type is IM_FLOAT (\ref imProcessToneGamut can be used). See \ref hsi for a definition of the color conversion.\n * Source and destiny must have the same size. * * \verbatim im.ProcessSplitHSI(src_image: imImage, h_image: imImage, s_image: imImage, i_image: imImage) [in Lua 5] \endverbatim * \verbatim im.ProcessSplitHSINew(src_image: imImage) -> h_image: imImage, s_image: imImage, i_image: imImage [in Lua 5] \endverbatim * \ingroup colorproc */ void imProcessSplitHSI(const imImage* src_image, imImage* h_image, imImage* s_image, imImage* i_image); /** Merge HSI planes into a RGB image. \n * Source images must be IM_GRAY/IM_FLOAT. Destiny image can be IM_RGB/IM_BYTE,IM_FLOAT. \n * Source and destiny must have the same size. See \ref hsi for a definition of the color conversion. * * \verbatim im.ProcessMergeHSI(h_image: imImage, s_image: imImage, i_image: imImage, dst_image: imImage) [in Lua 5] \endverbatim * \verbatim im.ProcessMergeHSINew(h_image: imImage, s_image: imImage, i_image: imImage) -> dst_image: imImage [in Lua 5] \endverbatim * \ingroup colorproc */ void imProcessMergeHSI(const imImage* h_image, const imImage* s_image, const imImage* i_image, imImage* dst_image); /** Split a multicomponent image into separate components.\n * Destiny images must be IM_GRAY. Size and data types must be all the same.\n * The number of destiny images must match the depth of the source image. * * \verbatim im.ProcessSplitComponents(src_image: imImage, dst_image_list: table of imImage) [in Lua 5] \endverbatim * \verbatim im.ProcessSplitComponentsNew(src_image: imImage) -> dst_image_list: table of imImage [in Lua 5] \endverbatim * \ingroup colorproc */ void imProcessSplitComponents(const imImage* src_image, imImage** dst_image_list); /** Merges separate components into a multicomponent image.\n * Source images must be IM_GRAY. Size and data types must be all the same.\n * The number of source images must match the depth of the destiny image. * * \verbatim im.ProcessMergeComponents(src_image_list: table of imImage, dst_image: imImage) [in Lua 5] \endverbatim * \verbatim im.ProcessMergeComponentsNew(src_image_list: table of imImage) -> dst_image: imImage [in Lua 5] \endverbatim * \ingroup colorproc */ void imProcessMergeComponents(const imImage** src_image_list, imImage* dst_image); /** Normalize the color components by their sum. Example: c1 = c1/(c1+c2+c3). \n * Destiny image must be IM_FLOAT. * * \verbatim im.ProcessNormalizeComponents(src_image: imImage, dst_image: imImage) [in Lua 5] \endverbatim * \verbatim im.ProcessNormalizeComponentsNew(src_image: imImage) -> new_image: imImage [in Lua 5] \endverbatim * \ingroup colorproc */ void imProcessNormalizeComponents(const imImage* src_image, imImage* dst_image); /** Replaces the source color by the destiny color. \n * The color will be type casted to the image data type. \n * The colors must have the same number of components of the images. \n * Supports all color spaces and all data types except IM_CFLOAT. * * \verbatim im.ProcessReplaceColor(src_image: imImage, dst_image: imImage, src_color: table of numbers, dst_color: table of numbers) [in Lua 5] \endverbatim * \verbatim im.ProcessReplaceColorNew(src_image: imImage, src_color: table of numbers, dst_color: table of numbers) -> new_image: imImage [in Lua 5] \endverbatim * \ingroup colorproc */ void imProcessReplaceColor(const imImage* src_image, imImage* dst_image, float* src_color, float* dst_color); /** \defgroup logic Logical Arithmetic Operations * \par * Logical binary math operations for images. * \par * See \ref im_process_pon.h * \ingroup process */ /** Logical Operations. * \ingroup logic */ enum imLogicOp { IM_BIT_AND, /**< and = a & b */ IM_BIT_OR, /**< or = a | b */ IM_BIT_XOR /**< xor = ~(a | b) */ }; /** Apply a logical operation.\n * Images must have data type IM_BYTE, IM_USHORT or IM_INT. Can be done in place. * * \verbatim im.ProcessBitwiseOp(src_image1: imImage, src_image2: imImage, dst_image: imImage, op: number) [in Lua 5] \endverbatim * \verbatim im.ProcessBitwiseOpNew(src_image1: imImage, src_image2: imImage, op: number) -> new_image: imImage [in Lua 5] \endverbatim * \ingroup logic */ void imProcessBitwiseOp(const imImage* src_image1, const imImage* src_image2, imImage* dst_image, int op); /** Apply a logical NOT operation.\n * Images must have data type IM_BYTE, IM_USHORT or IM_INT. Can be done in place. * * \verbatim im.ProcessBitwiseNot(src_image: imImage, dst_image: imImage) [in Lua 5] \endverbatim * \verbatim im.ProcessBitwiseNotNew(src_image: imImage) -> new_image: imImage [in Lua 5] \endverbatim * \ingroup logic */ void imProcessBitwiseNot(const imImage* src_image, imImage* dst_image); /** Apply a bit mask. \n * The same as imProcessBitwiseOp but the second image is replaced by a fixed mask. \n * Images must have data type IM_BYTE. It is valid only for AND, OR and XOR. Can be done in place. * * \verbatim im.ProcessBitMask(src_image: imImage, dst_image: imImage, mask: string, op: number) [in Lua 5] \endverbatim * \verbatim im.ProcessBitMaskNew(src_image: imImage, mask: string, op: number) -> new_image: imImage [in Lua 5] \endverbatim * In Lua, mask is a string with 0s and 1s, for example: "11001111". * \ingroup logic */ void imProcessBitMask(const imImage* src_image, imImage* dst_image, unsigned char mask, int op); /** Extract or Reset a bit plane. For ex: 000X0000 or XXX0XXXX (plane=3).\n * Images must have data type IM_BYTE. Can be done in place. * * \verbatim im.ProcessBitPlane(src_image: imImage, dst_image: imImage, plane: number, do_reset: boolean) [in Lua 5] \endverbatim * \verbatim im.ProcessBitPlaneNew(src_image: imImage, plane: number, do_reset: boolean) -> new_image: imImage [in Lua 5] \endverbatim * \ingroup logic */ void imProcessBitPlane(const imImage* src_image, imImage* dst_image, int plane, int do_reset); /** \defgroup render Synthetic Image Render * \par * Renders some 2D mathematical functions as images. All the functions operates in place * and supports all data types except IM_CFLOAT. * \par * See \ref im_process_pon.h * \ingroup process */ /** Render Funtion. * \verbatim render_func(x: number, y: number, d: number, param: table of number) -> value: number [in Lua 5] \endverbatim * \ingroup render */ typedef float (*imRenderFunc)(int x, int y, int d, float* param); /** Render Conditional Funtion. * \verbatim render_cond_func(x: number, y: number, d: number, param: table of number) -> value: number, cond: boolean [in Lua 5] \endverbatim * \ingroup render */ typedef float (*imRenderCondFunc)(int x, int y, int d, int *cond, float* param); /** Render a synthetic image using a render function. \n * plus will make the render be added to the current image data, * or else all data will be replaced. All the render functions use this or the conditional function. \n * Returns zero if the counter aborted. * * \verbatim im.ProcessRenderOp(image: imImage, render_func: function, render_name: string, param: table of number, plus: boolean) -> counter: boolean [in Lua 5] \endverbatim * \ingroup render */ int imProcessRenderOp(imImage* image, imRenderFunc render_func, char* render_name, float* param, int plus); /** Render a synthetic image using a conditional render function. \n * Data will be rendered only if the condional param is true. \n * Returns zero if the counter aborted. * * \verbatim im.ProcessRenderCondOp(image: imImage, render_cond_func: function, render_name: string, param: table of number) -> counter: boolean [in Lua 5] \endverbatim * \ingroup render */ int imProcessRenderCondOp(imImage* image, imRenderCondFunc render_cond_func, char* render_name, float* param); /** Render speckle noise on existing data. Can be done in place. * * \verbatim im.ProcessRenderAddSpeckleNoise(src_image: imImage, dst_image: imImage, percent: number) -> counter: boolean [in Lua 5] \endverbatim * \verbatim im.ProcessRenderAddSpeckleNoiseNew(src_image: imImage, percent: number) -> counter: boolean, new_image: imImage [in Lua 5] \endverbatim * \ingroup render */ int imProcessRenderAddSpeckleNoise(const imImage* src_image, imImage* dst_image, float percent); /** Render gaussian noise on existing data. Can be done in place. * * \verbatim im.ProcessRenderAddGaussianNoise(src_image: imImage, dst_image: imImage, mean: number, stddev: number) -> counter: boolean [in Lua 5] \endverbatim * \verbatim im.ProcessRenderAddGaussianNoiseNew(src_image: imImage, mean: number, stddev: number) -> counter: boolean, new_image: imImage [in Lua 5] \endverbatim * \ingroup render */ int imProcessRenderAddGaussianNoise(const imImage* src_image, imImage* dst_image, float mean, float stddev); /** Render uniform noise on existing data. Can be done in place. * * \verbatim im.ProcessRenderAddUniformNoise(src_image: imImage, dst_image: imImage, mean: number, stddev: number) -> counter: boolean [in Lua 5] \endverbatim * \verbatim im.ProcessRenderAddUniformNoiseNew(src_image: imImage, mean: number, stddev: number) -> counter: boolean, new_image: imImage [in Lua 5] \endverbatim * \ingroup render */ int imProcessRenderAddUniformNoise(const imImage* src_image, imImage* dst_image, float mean, float stddev); /** Render random noise. * * \verbatim im.ProcessRenderRandomNoise(image: imImage) -> counter: boolean [in Lua 5] \endverbatim * \ingroup render */ int imProcessRenderRandomNoise(imImage* image); /** Render a constant. The number of values must match the depth of the image. * * \verbatim im.ProcessRenderConstant(image: imImage, value: table of number) -> counter: boolean [in Lua 5] \endverbatim * \ingroup render */ int imProcessRenderConstant(imImage* image, float* value); /** Render a centered wheel. * * \verbatim im.ProcessRenderWheel(image: imImage, internal_radius: number, external_radius: number) -> counter: boolean [in Lua 5] \endverbatim * \ingroup render */ int imProcessRenderWheel(imImage* image, int internal_radius, int external_radius); /** Render a centered cone. * * \verbatim im.ProcessRenderCone(image: imImage, radius: number) -> counter: boolean [in Lua 5] \endverbatim * \ingroup render */ int imProcessRenderCone(imImage* image, int radius); /** Render a centered tent. * * \verbatim im.ProcessRenderTent(image: imImage, tent_width: number, tent_height: number) -> counter: boolean [in Lua 5] \endverbatim * \ingroup render */ int imProcessRenderTent(imImage* image, int tent_width, int tent_height); /** Render a ramp. Direction can be vertical (1) or horizontal (0). * * \verbatim im.ProcessRenderRamp(image: imImage, start: number, end: number, vert_dir: boolean) -> counter: boolean [in Lua 5] \endverbatim * \ingroup render */ int imProcessRenderRamp(imImage* image, int start, int end, int vert_dir); /** Render a centered box. * * \verbatim im.ProcessRenderBox(image: imImage, box_width: number, box_height: number) -> counter: boolean [in Lua 5] \endverbatim * \ingroup render */ int imProcessRenderBox(imImage* image, int box_width, int box_height); /** Render a centered sinc. * * \verbatim im.ProcessRenderSinc(image: imImage, x_period: number, y_period: number) -> counter: boolean [in Lua 5] \endverbatim * \ingroup render */ int imProcessRenderSinc(imImage* image, float x_period, float y_period); /** Render a centered gaussian. * * \verbatim im.ProcessRenderGaussian(image: imImage, stddev: number) -> counter: boolean [in Lua 5] \endverbatim * \ingroup render */ int imProcessRenderGaussian(imImage* image, float stddev); /** Render the laplacian of a centered gaussian. * * \verbatim im.ProcessRenderLapOfGaussian(image: imImage, stddev: number) -> counter: boolean [in Lua 5] \endverbatim * \ingroup render */ int imProcessRenderLapOfGaussian(imImage* image, float stddev); /** Render a centered cosine. * * \verbatim im.ProcessRenderCosine(image: imImage, x_period: number, y_period: number) -> counter: boolean [in Lua 5] \endverbatim * \ingroup render */ int imProcessRenderCosine(imImage* image, float x_period, float y_period); /** Render a centered grid. * * \verbatim im.ProcessRenderGrid(image: imImage, x_space: number, y_space: number) -> counter: boolean [in Lua 5] \endverbatim * \ingroup render */ int imProcessRenderGrid(imImage* image, int x_space, int y_space); /** Render a centered chessboard. * * \verbatim im.ProcessRenderChessboard(image: imImage, x_space: number, y_space: number) -> counter: boolean [in Lua 5] \endverbatim * \ingroup render */ int imProcessRenderChessboard(imImage* image, int x_space, int y_space); /** \defgroup tonegamut Tone Gamut Operations * \par * Operations that try to preserve the min-max interval in the output (the dynamic range). * \par * See \ref im_process_pon.h * \ingroup process */ /** Tone Gamut Operations. * \ingroup tonegamut */ enum imToneGamut { IM_GAMUT_NORMALIZE, /**< normalize = (a-min) / (max-min) (destiny image must be IM_FLOAT) */ IM_GAMUT_POW, /**< pow = ((a-min) / (max-min))^gamma * (max-min) + min \n param[0]=gamma */ IM_GAMUT_LOG, /**< log = log(K * (a-min) / (max-min) + 1))*(max-min)/log(K+1) + min \n param[0]=K (K>0) */ IM_GAMUT_EXP, /**< exp = (exp(K * (a-min) / (max-min)) - 1))*(max-min)/(exp(K)-1) + min \n param[0]=K */ IM_GAMUT_INVERT, /**< invert = max - (a-min) */ IM_GAMUT_ZEROSTART, /**< zerostart = a - min */ IM_GAMUT_SOLARIZE, /**< solarize = a < level ? a: (level * (max-min) - a * (level-min)) / (max-level) \n param[0]=level percentage (0-100) relative to min-max \n photography solarization effect. */ IM_GAMUT_SLICE, /**< slice = start < a || a > end ? min: binarize? max: a \n param[0]=start, param[1]=end, param[2]=binarize */ IM_GAMUT_EXPAND, /**< expand = a < start ? min: a > end ? max : (a-start)*(max-min)/(end-start) + min \n param[0]=start, param[1]=end */ IM_GAMUT_CROP, /**< crop = a < start ? start: a > end ? end : a \n param[0]=start, param[1]=end */ IM_GAMUT_BRIGHTCONT /**< brightcont = a < min ? min: a > max ? max: a * tan(c_a) + b_s + (max-min)*(1 - tan(c_a))/2 \n param[0]=bright_shift (-100%..+100%), param[1]=contrast_factor (-100%..+100%) \n change brightness and contrast simultaneously. */ }; /** Apply a gamut operation with arguments. \n * Supports all data types except IM_CFLOAT. \n * The linear operation do a special convertion when min > 0 and max < 1, it forces min=0 and max=1. \n * IM_BYTE images have min=0 and max=255 always. \n * Can be done in place. When there is no extra params, can use NULL. * * \verbatim im.ProcessToneGamut(src_image: imImage, dst_image: imImage, op: number, param: table of number) [in Lua 5] \endverbatim * \verbatim im.ProcessToneGamutNew(src_image: imImage, op: number, param: table of number) -> new_image: imImage [in Lua 5] \endverbatim * \ingroup tonegamut */ void imProcessToneGamut(const imImage* src_image, imImage* dst_image, int op, float* param); /** Converts from (0-1) to (0-255), crop out of bounds values. \n * Source image must be IM_FLOAT, and destiny image must be IM_BYTE. * * \verbatim im.ProcessUnNormalize(src_image: imImage, dst_image: imImage) [in Lua 5] \endverbatim * \verbatim im.ProcessUnNormalizeNew(src_image: imImage) -> new_image: imImage [in Lua 5] \endverbatim * \ingroup tonegamut */ void imProcessUnNormalize(const imImage* src_image, imImage* dst_image); /** Directly converts IM_USHORT, IM_INT and IM_FLOAT into IM_BYTE images. \n * This can also be done using \ref imConvertDataType with IM_CAST_DIRECT. * * \verbatim im.ProcessDirectConv(src_image: imImage, dst_image: imImage) [in Lua 5] \endverbatim * \verbatim im.ProcessDirectConvNew(src_image: imImage) -> new_image: imImage [in Lua 5] \endverbatim * \ingroup tonegamut */ void imProcessDirectConv(const imImage* src_image, imImage* dst_image); /** A negative effect. Uses \ref imProcessToneGamut with IM_GAMUT_INVERT for non MAP images. \n * Supports all color spaces and all data types except IM_CFLOAT. \n * Can be done in place. * * \verbatim im.ProcessNegative(src_image: imImage, dst_image: imImage) [in Lua 5] \endverbatim * \verbatim im.ProcessNegativeNew(src_image: imImage) -> new_image: imImage [in Lua 5] \endverbatim * \ingroup tonegamut */ void imProcessNegative(const imImage* src_image, imImage* dst_image); /** \defgroup threshold Threshold Operations * \par * Operations that converts a usually IM_GRAY/IM_BYTE image into a IM_BINARY image using several threshold techniques. * \par * See \ref im_process_pon.h * \ingroup process */ /** Apply a manual threshold. \n * threshold = a <= level ? 0: value \n * Normal value is 1 but another common value is 255. Can be done in place for IM_BYTE source. \n * Supports all integer IM_GRAY images as source, and IM_BINARY as destiny. * * \verbatim im.ProcessThreshold(src_image: imImage, dst_image: imImage, level: number, value: number) [in Lua 5] \endverbatim * \verbatim im.ProcessThresholdNew(src_image: imImage, level: number, value: number) -> new_image: imImage [in Lua 5] \endverbatim * \ingroup threshold */ void imProcessThreshold(const imImage* src_image, imImage* dst_image, int level, int value); /** Apply a threshold by the difference of two images. \n * threshold = a1 <= a2 ? 0: 1 \n * Can be done in place. * * \verbatim im.ProcessThresholdByDiff(src_image1: imImage, src_image2: imImage, dst_image: imImage) [in Lua 5] \endverbatim * \verbatim im.ProcessThresholdByDiffNew(src_image1: imImage, src_image2: imImage) -> new_image: imImage [in Lua 5] \endverbatim * \ingroup threshold */ void imProcessThresholdByDiff(const imImage* src_image1, const imImage* src_image2, imImage* dst_image); /** Apply a threshold by the Hysteresis method. \n * Hysteresis thersholding of edge pixels. Starting at pixels with a * value greater than the HIGH threshold, trace a connected sequence * of pixels that have a value greater than the LOW threhsold. \n * Supports only IM_BYTE images. * Note: could not find the original source code author name. * * \verbatim im.ProcessHysteresisThreshold(src_image: imImage, dst_image: imImage, low_thres: number, high_thres: number) [in Lua 5] \endverbatim * \verbatim im.ProcessHysteresisThresholdNew(src_image: imImage, low_thres: number, high_thres: number) -> new_image: imImage [in Lua 5] \endverbatim * \ingroup threshold */ void imProcessHysteresisThreshold(const imImage* src_image, imImage* dst_image, int low_thres, int high_thres); /** Estimates hysteresis low and high threshold levels. \n * Supports only IM_BYTE images. * Usefull for \ref imProcessHysteresisThreshold. * * \verbatim im.ProcessHysteresisThresEstimate(image: imImage) -> low_level: number, high_level: number [in Lua 5] \endverbatim * \ingroup threshold */ void imProcessHysteresisThresEstimate(const imImage* image, int *low_level, int *high_level); /** Calculates the threshold level for manual threshold using an uniform error approach. \n * Supports only IM_BYTE images. * Extracted from XITE, Copyright 1991, Blab, UiO \n * http://www.ifi.uio.no/~blab/Software/Xite/ \verbatim Reference: S. M. Dunn & D. Harwood & L. S. Davis: "Local Estimation of the Uniform Error Threshold" IEEE Trans. on PAMI, Vol PAMI-6, No 6, Nov 1984. Comments: It only works well on images whith large objects. Author: Olav Borgli, BLAB, ifi, UiO Image processing lab, Department of Informatics, University of Oslo \endverbatim * Returns the used level. * * \verbatim im.ProcessUniformErrThreshold(src_image: imImage, dst_image: imImage) -> level: number [in Lua 5] \endverbatim * \verbatim im.ProcessUniformErrThresholdNew(src_image: imImage) -> level: number, new_image: imImage [in Lua 5] \endverbatim * \ingroup threshold */ int imProcessUniformErrThreshold(const imImage* src_image, imImage* dst_image); /** Apply a dithering on each image channel by using a difusion error method. \n * It can be applied on any IM_BYTE images. It will "threshold" each channel indivudually, so * source and destiny must be of the same depth. * * \verbatim im.ProcessDifusionErrThreshold(src_image: imImage, dst_image: imImage, level: number) [in Lua 5] \endverbatim * \verbatim im.ProcessDifusionErrThresholdNew(src_image: imImage, level: number) -> new_image: imImage [in Lua 5] \endverbatim * \ingroup threshold */ void imProcessDifusionErrThreshold(const imImage* src_image, imImage* dst_image, int level); /** Calculates the threshold level for manual threshold using a percentage of pixels * that should stay bellow the threshold. \n * Supports only IM_BYTE images. * Returns the used level. * * \verbatim im.ProcessPercentThreshold(src_image: imImage, dst_image: imImage, percent: number) -> level: number [in Lua 5] \endverbatim * \verbatim im.ProcessPercentThresholdNew(src_image: imImage, percent: number) -> level: number, new_image: imImage [in Lua 5] \endverbatim * \ingroup threshold */ int imProcessPercentThreshold(const imImage* src_image, imImage* dst_image, float percent); /** Calculates the threshold level for manual threshold using the Otsu approach. \n * Returns the used level. \n * Supports only IM_BYTE images. * Original implementation by Flavio Szenberg. * * \verbatim im.ProcessOtsuThreshold(src_image: imImage, dst_image: imImage) -> level: number [in Lua 5] \endverbatim * \verbatim im.ProcessOtsuThresholdNew(src_image: imImage) -> level: number, new_image: imImage [in Lua 5] \endverbatim * \ingroup threshold */ int imProcessOtsuThreshold(const imImage* src_image, imImage* dst_image); /** Calculates the threshold level for manual threshold using (max-min)/2. \n * Returns the used level. \n * Supports all integer IM_GRAY images as source, and IM_BINARY as destiny. * * \verbatim im.ProcessMinMaxThreshold(src_image: imImage, dst_image: imImage) -> level: number [in Lua 5] \endverbatim * \verbatim im.ProcessMinMaxThresholdNew(src_image: imImage) -> level: number, new_image: imImage [in Lua 5] \endverbatim * \ingroup threshold */ int imProcessMinMaxThreshold(const imImage* src_image, imImage* dst_image); /** Estimates Local Max threshold level for IM_BYTE images. * * \verbatim im.ProcessLocalMaxThresEstimate(image: imImage) -> level: number [in Lua 5] \endverbatim * \ingroup threshold */ void imProcessLocalMaxThresEstimate(const imImage* image, int *level); /** Apply a manual threshold using an interval. \n * threshold = start_level <= a <= end_level ? 1: 0 \n * Normal value is 1 but another common value is 255. Can be done in place for IM_BYTE source. \n * Supports all integer IM_GRAY images as source, and IM_BINARY as destiny. * * \verbatim im.ProcessSliceThreshold(src_image: imImage, dst_image: imImage, start_level: number, end_level: number) [in Lua 5] \endverbatim * \verbatim im.ProcessSliceThresholdNew(src_image: imImage, start_level: number, end_level: number) -> new_image: imImage [in Lua 5] \endverbatim * \ingroup threshold */ void imProcessSliceThreshold(const imImage* src_image, imImage* dst_image, int start_level, int end_level); /** \defgroup effects Special Effects * \par * Operations to change image appearance. * \par * See \ref im_process_pon.h * \ingroup process */ /** Generates a zoom in effect averaging colors inside a square region. \n * Operates only on IM_BYTE images. * * \verbatim im.ProcessPixelate(src_image: imImage, dst_image: imImage, box_size: number) [in Lua 5] \endverbatim * \verbatim im.ProcessPixelateNew(src_image: imImage, box_size: number) -> new_image: imImage [in Lua 5] \endverbatim * \ingroup effects */ void imProcessPixelate(const imImage* src_image, imImage* dst_image, int box_size); /** A simple Posterize effect. It reduces the number of colors in the image eliminating * less significant bit planes. Can have 1 to 7 levels. See \ref imProcessBitMask. \n * Images must have data type IM_BYTE. * * \verbatim im.ProcessPosterize(src_image: imImage, dst_image: imImage, level: number) [in Lua 5] \endverbatim * \verbatim im.ProcessPosterizeNew(src_image: imImage, level: number) -> new_image: imImage [in Lua 5] \endverbatim * \ingroup effects */ void imProcessPosterize(const imImage* src_image, imImage* dst_image, int level); #if defined(__cplusplus) } #endif #endif