From 29d3e89b71281c626f151a1585a40d9d2448123b Mon Sep 17 00:00:00 2001 From: rpj Date: Tue, 26 Apr 2005 02:41:11 +0000 Subject: '' --- tests/README.BENCHTESTS | 97 +++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 97 insertions(+) create mode 100644 tests/README.BENCHTESTS (limited to 'tests/README.BENCHTESTS') diff --git a/tests/README.BENCHTESTS b/tests/README.BENCHTESTS new file mode 100644 index 0000000..e02cb3e --- /dev/null +++ b/tests/README.BENCHTESTS @@ -0,0 +1,97 @@ + +------------ +Benchmarking +------------ +There is a new but growing set a benchmarking programs in the +"tests" directory. These should be runnable using the +following command-lines corresponding to each of the possible +library builds: + +MSVC: +nmake clean VC-bench +nmake clean VCE-bench +nmake clean VSE-bench + +Mingw32: +make clean GC-bench +make clean GCE-bench + +UWIN: +The benchtests are run as part of the testsuite. + + +Mutex benchtests +---------------- + +benchtest1 - Lock plus unlock on an unlocked mutex. +benchtest2 - Lock plus unlock on a locked mutex. +benchtest3 - Trylock on a locked mutex. +benchtest4 - Trylock plus unlock on an unlocked mutex. + + +Each test times up to three alternate synchronisation +implementations as a reference, and then times each of +the four mutex types provided by the library. Each is +described below: + +Simple Critical Section +- uses a simple Win32 critical section. There is no +additional overhead for this case as there is in the +remaining cases. + +POSIX mutex implemented using a Critical Section +- The old implementation which uses runtime adaptation +depending on the Windows variant being run on. When +the pthreads DLL was run on WinNT or higher then +POSIX mutexes would use Win32 Critical Sections. + +POSIX mutex implemented using a Win32 Mutex +- The old implementation which uses runtime adaptation +depending on the Windows variant being run on. When +the pthreads DLL was run on Win9x then POSIX mutexes +would use Win32 Mutexes (because TryEnterCriticalSection +is not implemented on Win9x). + +PTHREAD_MUTEX_DEFAULT +PTHREAD_MUTEX_NORMAL +PTHREAD_MUTEX_ERRORCHECK +PTHREAD_MUTEX_RECURSIVE +- The current implementation supports these mutex types. +The underlying basis of POSIX mutexes is now the same +irrespective of the Windows variant, and should therefore +have consistent performance. + + +In all benchtests, the operation is repeated a large +number of times and an average is calculated. Loop +overhead is measured and subtracted from all test times. + +Comment on the results +---------------------- +The gain in performance for Win9x systems is enormous - up to +40 times faster for unlocked mutexes (2 times faster for locked +mutexes). + +Pthread_mutex_trylock also appears to be faster for locked mutexes. + +The price for the new consistency between WinNT and Win9x is +slower performance (up to twice as long) across a lock/unlock +sequence. It is difficult to get a good split timing for lock +and unlock operations, but by code inspection, it is the unlock +operation that is slowing the pair down in comparison with the +old-style CS mutexes, even for the fast PTHREAD_MUTEX_NORMAL mutex +type with no other waiting threads. However, comparitive +performance for operations on already locked mutexes is very close. + +When this is translated to real-world applications, the overall +camparitive performance should be almost identical on NT class +systems. That is, applications with heavy mutex contention should +have almost equal performance, while applications with only light +mutex contention should also have almost equal performance because +the most critical operation in this case is the lock operation. + +Overall, the newer pthreads-win32 mutex routines are only slower +(on NT class systems) where and when it is least critical. + +Thanks go to Thomas Pfaff for the current implementation of mutex +routines. -- cgit v1.2.3