/* * cleanup.c * * Description: * This translation unit implements routines associated cleaning up * threads. */ #include #include #include "pthread.h" #include "implement.h" /* * Code contributed by John E. Bossom . */ _pthread_cleanup_t * _pthread_pop_cleanup (int execute) /* * ------------------------------------------------------ * DOCPUBLIC * This function pops the most recently pushed cleanup * handler. If execute is nonzero, then the cleanup handler * is executed if non-null. * * PARAMETERS * execute * if nonzero, execute the cleanup handler * * * DESCRIPTION * This function pops the most recently pushed cleanup * handler. If execute is nonzero, then the cleanup handler * is executed if non-null. * NOTE: specify 'execute' as nonzero to avoid duplication * of common cleanup code. * * RESULTS * N/A * * ------------------------------------------------------ */ { _pthread_cleanup_t *cleanup; cleanup = pthread_getspecific (_pthread_cleanupKey); if (cleanup != NULL) { if (execute && (cleanup->routine != NULL)) { #ifdef _WIN32 __try { /* * Run the caller's cleanup routine. */ (*cleanup->routine) (cleanup->arg); } __except (EXCEPTION_EXECUTE_HANDLER) { /* * A system unexpected exception had occurred * running the user's cleanup routine. * We get control back within this block. */ } } #else /* * Run the caller's cleanup routine. */ (*cleanup->routine) (cleanup->arg); #endif /* _WIN32 */ pthread_setspecific (_pthread_cleanupKey, cleanup->prev); } return (cleanup); } /* _pthread_pop_cleanup */ void _pthread_push_cleanup (_pthread_cleanup_t * cleanup, void (*routine) (void *), void *arg) /* * ------------------------------------------------------ * DOCPUBLIC * This function pushes a new cleanup handler onto the thread's stack * of cleanup handlers. Each cleanup handler pushed onto the stack is * popped and invoked with the argument 'arg' when * a) the thread exits by calling 'pthread_exit', * b) when the thread acts on a cancellation request, * c) or when the thrad calls pthread_cleanup_pop with a nonzero * 'execute' argument * * PARAMETERS * cleanup * a pointer to an instance of pthread_cleanup_t, * * routine * pointer to a cleanup handler, * * arg * parameter to be passed to the cleanup handler * * * DESCRIPTION * This function pushes a new cleanup handler onto the thread's stack * of cleanup handlers. Each cleanup handler pushed onto the stack is * popped and invoked with the argument 'arg' when * a) the thread exits by calling 'pthread_exit', * b) when the thread acts on a cancellation request, * c) or when the thrad calls pthread_cleanup_pop with a nonzero * 'execute' argument * NOTE: pthread_push_cleanup, pthread_pop_cleanup must be paired * in the same lexical scope. * * RESULTS * pthread_cleanup_t * * pointer to the previous cleanup * * ------------------------------------------------------ */ { cleanup->routine = routine; cleanup->arg = arg; cleanup->prev = pthread_getspecific (_pthread_cleanupKey); pthread_setspecific (_pthread_cleanupKey, (void *) cleanup); } /* _pthread_push_cleanup */ /* */ #if 0 /* Pre Bossom */ int _pthread_handler_push(int stack, int poporder, void (*routine)(void *), void *arg) { /* Place the new handler into the list so that handlers are popped off in the order given by poporder. */ _pthread_handler_node_t * new_handler; _pthread_handler_node_t * next; _pthread_handler_node_t ** stacktop; stacktop = _PTHREAD_STACK(stack); new_handler = (_pthread_handler_node_t *) malloc(sizeof(_pthread_handler_node_t)); if (new_handler == NULL) { return 0; /* NOMEM */ } new_handler->routine = routine; new_handler->arg = arg; if (poporder == _PTHREAD_HANDLER_POP_LIFO) { /* Add the new node to the start of the list. */ new_handler->next = *stacktop; *stacktop = new_handler; } else { /* Add the new node to the end of the list. */ new_handler->next = NULL; if (*stacktop == NULL) { *stacktop = new_handler; } else { next = *stacktop; while (next->next != NULL) { next = next->next; } next->next = new_handler; } } return 0; } void _pthread_handler_pop(int stack, int execute) { _pthread_handler_node_t ** stacktop; _pthread_handler_node_t * next; void (* func)(void *); void * arg; stacktop = _PTHREAD_STACK(stack); if (*stacktop != NULL) { func = (*stacktop)->routine; arg = (*stacktop)->arg; next = (*stacktop)->next; free(*stacktop); *stacktop = next; if (execute != 0 && func != NULL) { (void) func(arg); } } } void _pthread_handler_pop_all(int stack, int execute) { /* Pop and possibly run all handlers on the given stack. */ _pthread_handler_node_t ** stacktop; _pthread_handler_node_t * next; void (* func)(void *); void * arg; stacktop = _PTHREAD_STACK(stack); while (*stacktop != NULL) { func = (*stacktop)->routine; arg = (*stacktop)->arg; next = (*stacktop)->next; free(*stacktop); *stacktop = next; if (execute != 0 && func != NULL) { (void) func(arg); } } } /* Run destructors for all non-NULL key values for the calling thread. */ void _pthread_destructor_run_all() { _pthread_tsd_key_t * key; int count; int dirty; /* This threads private keys */ key = _pthread_tsd_key_table; /* Stop destructor execution at a finite time. POSIX allows us to ignore this if we like, even at the risk of an infinite loop. FIXME: We don't know when to stop yet. */ for (count = 0; count < PTHREAD_DESTRUCTOR_ITERATIONS; count++) { int k; void * arg; dirty = 0; /* Loop through all keys. */ for (k = 0; k < _POSIX_THREAD_KEYS_MAX; k++) { /* CRITICAL SECTION */ pthread_mutex_lock(&_pthread_tsd_mutex); switch (key->status) { case _PTHREAD_TSD_KEY_INUSE: arg = pthread_getspecific((pthread_key_t) k); if (arg != NULL && key->destructor != NULL) { /* The destructor must be called with the mutex off. */ pthread_mutex_unlock(&_pthread_tsd_mutex); /* END CRITICAL SECTION */ /* FIXME: Is the destructor supposed to set the key value to NULL? How is this done when arg is the key value, not a pointer to it? For now we assume that the destructor always succeeds. */ (void) (key->destructor)(arg); /* CRITICAL SECTION */ pthread_mutex_lock(&_pthread_tsd_mutex); pthread_setspecific((pthread_key_t) k, NULL); #if 0 /* Only needed if we don't assume the destructor always succeeds. */ dirty = 1; #endif } break; case _PTHREAD_TSD_KEY_DELETED: key->status = _PTHREAD_TSD_KEY_INUSE; pthread_setspecific((pthread_key_t) k, NULL); if (key->in_use <= 0) { /* This is the last thread to use this deleted key. It can now be made available for re-use. */ key->status = _PTHREAD_TSD_KEY_REUSE; _pthread_key_reuse[_pthread_key_reuse_top++] = k; } else { key->status = _PTHREAD_TSD_KEY_DELETED; } break; default: break; } pthread_mutex_unlock(&_pthread_tsd_mutex); /* END CRITICAL SECTION */ key++; } if (!dirty) break; } } #endif /* Pre Bossom */