/* * cleanup.c * * Description: * This translation unit implements routines associated cleaning up * threads. */ #include "pthread.h" #include "implement.h" int _pthread_handler_push(int stack, int poporder, void (*routine)(void *), void *arg) { /* Place the new handler into the list so that handlers are popped off in the order given by poporder. */ _pthread_handler_node_t * new_thread; _pthread_handler_node_t * next; _pthread_handler_node_t ** stacktop; stacktop = _PTHREAD_STACK(stack); new_thread = (_pthread_handler_node_t *) malloc(sizeof(_pthread_handler_node_t)); if (new_thread == NULL) { return ENOMEM; } new_thread->routine = routine; new_thread->arg = arg; if (poporder == _PTHREAD_HANDLER_POP_LIFO) { /* Add the new node to the start of the list. */ new_thread->next = *stacktop; *stacktop = next; } else { /* Add the new node to the end of the list. */ new_thread->next = NULL; if (*stacktop == NULL) { *stacktop = new_thread; } else { next = *stacktop; while (next != NULL) { next = next->next; } next = new_thread; } } return 0; } void _pthread_handler_pop(int stack, int execute) { _pthread_handler_node_t ** stacktop; _pthread_handler_node_t * next; void (* func)(void *); void * arg; stacktop = _PTHREAD_STACK(stack); if (*stacktop != NULL) { func = (*stacktop)->routine; arg = (*stacktop)->arg; next = (*stacktop)->next; free(*stacktop); *stacktop = next; if (execute != 0 && func != NULL) { (void) func(arg); } } } void _pthread_handler_pop_all(int stack, int execute) { /* Pop and possibly run all handlers on the given stack. */ _pthread_handler_node_t ** stacktop; _pthread_handler_node_t * next; void (* func)(void *); void * arg; stacktop = _PTHREAD_STACK(stack); while (*stacktop != NULL) { func = (*stacktop)->routine; arg = (*stacktop)->arg; next = (*stacktop)->next; free(*stacktop); *stacktop = next; if (execute != 0 && func != NULL) { (void) func(arg); } } } int _pthread_destructor_push(void (* routine)(void *), pthread_key_t key) { return _pthread_handler_push(_PTHREAD_DESTRUCTOR_STACK, _PTHREAD_HANDLER_POP_LIFO, routine, key); } /* Remove all of the destructors associated with the key. */ void _pthread_destructor_pop(pthread_key_t key) { _pthread_handler_node_t ** head; _pthread_handler_node_t * current; _pthread_handler_node_t * next; head = _PTHREAD_STACK(_PTHREAD_DESTRUCTOR_STACK); current = *head; while (current != NULL) { next = current->next; /* The destructors associated key is in current->arg. */ if (current->arg == key) { if (current == *head) { *head = next; } free(current); } current = next; } } /* Run destructors for all non-NULL key values. FIXME: Currently we only run the destructors on the calling thread's key values. The way I interpret POSIX semantics is that, for each key that the calling thread has a destructor for, we need to look at the key values of every thread and run the destructor on it if the key value is non-NULL. The question is: how do we access the key associated values which are private to other threads? */ void _pthread_destructor_pop_all() { _pthread_handler_node_t ** head; _pthread_handler_node_t * current; _pthread_handler_node_t * next; void (* func)(void *); void * arg; int count; head = _PTHREAD_STACK(_PTHREAD_DESTRUCTOR_STACK); /* Stop destructor execution at a finite time. POSIX allows us to ignore this if we like, even at the risk of an infinite loop. */ for (count = 0; count < _PTHREAD_DESTRUCTOR_ITERATIONS; count++) { /* Loop through all destructors for this thread. */ while (current != NULL) { func = current->routine; /* Get the key value using the key which is in current->arg. */ arg = pthread_getspecific(current->arg); next = current->next; /* If the key value is non-NULL run the destructor, otherwise unlink it from the list. */ if (arg != NULL) { if (func != NULL) { (void) func(arg); } } else { if (current == *head) { *head = next; } free(current); } current = next; } } /* Free the destructor list even if we still have non-NULL key values. */ while (*head != NULL) { next = (*head)->next; free(*head); *head = next; } }