/* * condvar.c * * Description: * This translation unit implements condition variables and their primitives. * * * -------------------------------------------------------------------------- * * Pthreads-win32 - POSIX Threads Library for Win32 * Copyright(C) 1998 John E. Bossom * Copyright(C) 1999,2002 Pthreads-win32 contributors * * Contact Email: rpj@ise.canberra.edu.au * * The current list of contributors is contained * in the file CONTRIBUTORS included with the source * code distribution. The list can also be seen at the * following World Wide Web location: * http://sources.redhat.com/pthreads-win32/contributors.html * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library in the file COPYING.LIB; * if not, write to the Free Software Foundation, Inc., * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA * * * ------------------------------------------------------------- * Algorithm: * The algorithm used in this implementation is that developed by * Alexander Terekhov in colaboration with Louis Thomas. The bulk * of the discussion is recorded in the file README.CV, which contains * several generations of both colaborators original algorithms. The final * algorithm used here is the one referred to as * * Algorithm 8a / IMPL_SEM,UNBLOCK_STRATEGY == UNBLOCK_ALL * * presented below in pseudo-code as it appeared: * * * given: * semBlockLock - bin.semaphore * semBlockQueue - semaphore * mtxExternal - mutex or CS * mtxUnblockLock - mutex or CS * nWaitersGone - int * nWaitersBlocked - int * nWaitersToUnblock - int * * wait( timeout ) { * * [auto: register int result ] // error checking omitted * [auto: register int nSignalsWasLeft ] * [auto: register int nWaitersWasGone ] * * sem_wait( semBlockLock ); * nWaitersBlocked++; * sem_post( semBlockLock ); * * unlock( mtxExternal ); * bTimedOut = sem_wait( semBlockQueue,timeout ); * * lock( mtxUnblockLock ); * if ( 0 != (nSignalsWasLeft = nWaitersToUnblock) ) { * if ( bTimeout ) { // timeout (or canceled) * if ( 0 != nWaitersBlocked ) { * nWaitersBlocked--; * } * else { * nWaitersGone++; // count spurious wakeups. * } * } * if ( 0 == --nWaitersToUnblock ) { * if ( 0 != nWaitersBlocked ) { * sem_post( semBlockLock ); // open the gate. * nSignalsWasLeft = 0; // do not open the gate * // below again. * } * else if ( 0 != (nWaitersWasGone = nWaitersGone) ) { * nWaitersGone = 0; * } * } * } * else if ( INT_MAX/2 == ++nWaitersGone ) { // timeout/canceled or * // spurious semaphore :-) * sem_wait( semBlockLock ); * nWaitersBlocked -= nWaitersGone; // something is going on here * // - test of timeouts? :-) * sem_post( semBlockLock ); * nWaitersGone = 0; * } * unlock( mtxUnblockLock ); * * if ( 1 == nSignalsWasLeft ) { * if ( 0 != nWaitersWasGone ) { * // sem_adjust( semBlockQueue,-nWaitersWasGone ); * while ( nWaitersWasGone-- ) { * sem_wait( semBlockQueue ); // better now than spurious later * } * } sem_post( semBlockLock ); // open the gate * } * * lock( mtxExternal ); * * return ( bTimedOut ) ? ETIMEOUT : 0; * } * * signal(bAll) { * * [auto: register int result ] * [auto: register int nSignalsToIssue] * * lock( mtxUnblockLock ); * * if ( 0 != nWaitersToUnblock ) { // the gate is closed!!! * if ( 0 == nWaitersBlocked ) { // NO-OP * return unlock( mtxUnblockLock ); * } * if (bAll) { * nWaitersToUnblock += nSignalsToIssue=nWaitersBlocked; * nWaitersBlocked = 0; * } * else { * nSignalsToIssue = 1; * nWaitersToUnblock++; * nWaitersBlocked--; * } * } * else if ( nWaitersBlocked > nWaitersGone ) { // HARMLESS RACE CONDITION! * sem_wait( semBlockLock ); // close the gate * if ( 0 != nWaitersGone ) { * nWaitersBlocked -= nWaitersGone; * nWaitersGone = 0; * } * if (bAll) { * nSignalsToIssue = nWaitersToUnblock = nWaitersBlocked; * nWaitersBlocked = 0; * } * else { * nSignalsToIssue = nWaitersToUnblock = 1; * nWaitersBlocked--; * } * } * else { // NO-OP * return unlock( mtxUnblockLock ); * } * * unlock( mtxUnblockLock ); * sem_post( semBlockQueue,nSignalsToIssue ); * return result; * } * ------------------------------------------------------------- * */ #include "pthread.h" #include "implement.h" static INLINE int ptw32_cond_check_need_init (pthread_cond_t *cond) { int result = 0; /* * The following guarded test is specifically for statically * initialised condition variables (via PTHREAD_OBJECT_INITIALIZER). * * Note that by not providing this synchronisation we risk * introducing race conditions into applications which are * correctly written. * * Approach * -------- * We know that static condition variables will not be PROCESS_SHARED * so we can serialise access to internal state using * Win32 Critical Sections rather than Win32 Mutexes. * * If using a single global lock slows applications down too much, * multiple global locks could be created and hashed on some random * value associated with each mutex, the pointer perhaps. At a guess, * a good value for the optimal number of global locks might be * the number of processors + 1. * */ EnterCriticalSection(&ptw32_cond_test_init_lock); /* * We got here possibly under race * conditions. Check again inside the critical section. * If a static cv has been destroyed, the application can * re-initialise it only by calling pthread_cond_init() * explicitly. */ if (*cond == PTHREAD_COND_INITIALIZER) { result = pthread_cond_init(cond, NULL); } else if (*cond == NULL) { /* * The cv has been destroyed while we were waiting to * initialise it, so the operation that caused the * auto-initialisation should fail. */ result = EINVAL; } LeaveCriticalSection(&ptw32_cond_test_init_lock); return result; } int pthread_condattr_init (pthread_condattr_t * attr) /* * ------------------------------------------------------ * DOCPUBLIC * Initializes a condition variable attributes object * with default attributes. * * PARAMETERS * attr * pointer to an instance of pthread_condattr_t * * * DESCRIPTION * Initializes a condition variable attributes object * with default attributes. * * NOTES: * 1) Use to define condition variable types * 2) It is up to the application to ensure * that it doesn't re-init an attribute * without destroying it first. Otherwise * a memory leak is created. * * RESULTS * 0 successfully initialized attr, * ENOMEM insufficient memory for attr. * * ------------------------------------------------------ */ { pthread_condattr_t attr_result; int result = 0; attr_result = (pthread_condattr_t) calloc (1, sizeof (*attr_result)); if (attr_result == NULL) { result = ENOMEM; } *attr = attr_result; return result; } /* pthread_condattr_init */ int pthread_condattr_destroy (pthread_condattr_t * attr) /* * ------------------------------------------------------ * DOCPUBLIC * Destroys a condition variable attributes object. * The object can no longer be used. * * PARAMETERS * attr * pointer to an instance of pthread_condattr_t * * * DESCRIPTION * Destroys a condition variable attributes object. * The object can no longer be used. * * NOTES: * 1) Does not affect condition variables created * using 'attr' * * RESULTS * 0 successfully released attr, * EINVAL 'attr' is invalid. * * ------------------------------------------------------ */ { int result = 0; if (attr == NULL || *attr == NULL) { result = EINVAL; } else { (void) free (*attr); *attr = NULL; result = 0; } return result; } /* pthread_condattr_destroy */ int pthread_condattr_getpshared (const pthread_condattr_t * attr, int *pshared) /* * ------------------------------------------------------ * DOCPUBLIC * Determine whether condition variables created with 'attr' * can be shared between processes. * * PARAMETERS * attr * pointer to an instance of pthread_condattr_t * * pshared * will be set to one of: * * PTHREAD_PROCESS_SHARED * May be shared if in shared memory * * PTHREAD_PROCESS_PRIVATE * Cannot be shared. * * * DESCRIPTION * Condition Variables created with 'attr' can be shared * between processes if pthread_cond_t variable is allocated * in memory shared by these processes. * NOTES: * 1) pshared condition variables MUST be allocated in * shared memory. * * 2) The following macro is defined if shared mutexes * are supported: * _POSIX_THREAD_PROCESS_SHARED * * RESULTS * 0 successfully retrieved attribute, * EINVAL 'attr' or 'pshared' is invalid, * * ------------------------------------------------------ */ { int result; if ((attr != NULL && *attr != NULL) && (pshared != NULL)) { *pshared = (*attr)->pshared; result = 0; } else { result = EINVAL; } return result; } /* pthread_condattr_getpshared */ int pthread_condattr_setpshared (pthread_condattr_t * attr, int pshared) /* * ------------------------------------------------------ * DOCPUBLIC * Mutexes created with 'attr' can be shared between * processes if pthread_mutex_t variable is allocated * in memory shared by these processes. * * PARAMETERS * attr * pointer to an instance of pthread_mutexattr_t * * pshared * must be one of: * * PTHREAD_PROCESS_SHARED * May be shared if in shared memory * * PTHREAD_PROCESS_PRIVATE * Cannot be shared. * * DESCRIPTION * Mutexes creatd with 'attr' can be shared between * processes if pthread_mutex_t variable is allocated * in memory shared by these processes. * * NOTES: * 1) pshared mutexes MUST be allocated in shared * memory. * * 2) The following macro is defined if shared mutexes * are supported: * _POSIX_THREAD_PROCESS_SHARED * * RESULTS * 0 successfully set attribute, * EINVAL 'attr' or pshared is invalid, * ENOSYS PTHREAD_PROCESS_SHARED not supported, * * ------------------------------------------------------ */ { int result; if ((attr != NULL && *attr != NULL) && ((pshared == PTHREAD_PROCESS_SHARED) || (pshared == PTHREAD_PROCESS_PRIVATE))) { if (pshared == PTHREAD_PROCESS_SHARED) { #if !defined( _POSIX_THREAD_PROCESS_SHARED ) result = ENOSYS; pshared = PTHREAD_PROCESS_PRIVATE; #else result = 0; #endif /* _POSIX_THREAD_PROCESS_SHARED */ } else { result = 0; } (*attr)->pshared = pshared; } else { result = EINVAL; } return result; } /* pthread_condattr_setpshared */ int pthread_cond_init (pthread_cond_t * cond, const pthread_condattr_t * attr) /* * ------------------------------------------------------ * DOCPUBLIC * This function initializes a condition variable. * * PARAMETERS * cond * pointer to an instance of pthread_cond_t * * attr * specifies optional creation attributes. * * * DESCRIPTION * This function initializes a condition variable. * * RESULTS * 0 successfully created condition variable, * EINVAL 'attr' is invalid, * EAGAIN insufficient resources (other than * memory, * ENOMEM insufficient memory, * EBUSY 'cond' is already initialized, * * ------------------------------------------------------ */ { int result; pthread_cond_t cv = NULL; if (cond == NULL) { return EINVAL; } if ((attr != NULL && *attr != NULL) && ((*attr)->pshared == PTHREAD_PROCESS_SHARED)) { /* * Creating condition variable that can be shared between * processes. */ result = ENOSYS; goto DONE; } cv = (pthread_cond_t) calloc(1, sizeof (*cv)); if (cv == NULL) { result = ENOMEM; goto DONE; } cv->nWaitersBlocked = 0; cv->nWaitersToUnblock = 0; cv->nWaitersGone = 0; if (sem_init(&(cv->semBlockLock), 0, 1) != 0) { result = errno; goto FAIL0; } if (sem_init(&(cv->semBlockQueue), 0, 0) != 0) { result = errno; goto FAIL1; } if ((result = pthread_mutex_init(&(cv->mtxUnblockLock), 0)) != 0) { goto FAIL2; } result = 0; goto DONE; /* * ------------- * Failed... * ------------- */ FAIL2: (void) sem_destroy(&(cv->semBlockQueue)); FAIL1: (void) sem_destroy(&(cv->semBlockLock)); FAIL0: (void) free(cv); cv = NULL; DONE: *cond = cv; return result; } /* pthread_cond_init */ int pthread_cond_destroy (pthread_cond_t * cond) /* * ------------------------------------------------------ * DOCPUBLIC * This function destroys a condition variable * * * PARAMETERS * cond * pointer to an instance of pthread_cond_t * * * DESCRIPTION * This function destroys a condition variable. * * NOTES: * 1) A condition variable can be destroyed * immediately after all the threads that * are blocked on it are awakened. e.g. * * struct list { * pthread_mutex_t lm; * ... * } * * struct elt { * key k; * int busy; * pthread_cond_t notbusy; * ... * } * * * struct elt * * list_find(struct list *lp, key k) * { * struct elt *ep; * * pthread_mutex_lock(&lp->lm); * while ((ep = find_elt(l,k) != NULL) && ep->busy) * pthread_cond_wait(&ep->notbusy, &lp->lm); * if (ep != NULL) * ep->busy = 1; * pthread_mutex_unlock(&lp->lm); * return(ep); * } * * delete_elt(struct list *lp, struct elt *ep) * { * pthread_mutex_lock(&lp->lm); * assert(ep->busy); * ... remove ep from list ... * ep->busy = 0; * (A) pthread_cond_broadcast(&ep->notbusy); * pthread_mutex_unlock(&lp->lm); * (B) pthread_cond_destroy(&rp->notbusy); * free(ep); * } * * In this example, the condition variable * and its list element may be freed (line B) * immediately after all threads waiting for * it are awakened (line A), since the mutex * and the code ensure that no other thread * can touch the element to be deleted. * * RESULTS * 0 successfully released condition variable, * EINVAL 'cond' is invalid, * EBUSY 'cond' is in use, * * ------------------------------------------------------ */ { pthread_cond_t cv; int result = 0, result1 = 0, result2 = 0; /* * Assuming any race condition here is harmless. */ if (cond == NULL || *cond == NULL) { return EINVAL; } if (*cond != PTHREAD_COND_INITIALIZER) { cv = *cond; /* * Close the gate; this will synchronize this thread with * all already signaled waiters to let them retract their * waiter status - SEE NOTE 1 ABOVE!!! */ if (sem_wait(&(cv->semBlockLock)) != 0) { return errno; } /* * !TRY! lock mtxUnblockLock; try will detect busy condition * and will not course a deadlock with respect to concurrent * signal/broadcast. */ if ((result = pthread_mutex_trylock(&(cv->mtxUnblockLock))) != 0) { (void) sem_post(&(cv->semBlockLock)); return result; } /* * Check whether cv is still busy (still has waiters) */ if (cv->nWaitersBlocked > cv->nWaitersGone) { if (sem_post(&(cv->semBlockLock)) != 0) { result = errno; } result1 = pthread_mutex_unlock(&(cv->mtxUnblockLock)); result2 = EBUSY; } else { /* * Now it is safe to destroy */ *cond = NULL; if (sem_destroy(&(cv->semBlockLock)) != 0) { result = errno; } if (sem_destroy(&(cv->semBlockQueue)) != 0) { result1 = errno; } if ((result2 = pthread_mutex_unlock(&(cv->mtxUnblockLock))) == 0) { result2 = pthread_mutex_destroy(&(cv->mtxUnblockLock)); } (void) free(cv); } } else { /* * See notes in ptw32_cond_check_need_init() above also. */ EnterCriticalSection(&ptw32_cond_test_init_lock); /* * Check again. */ if (*cond == PTHREAD_COND_INITIALIZER) { /* * This is all we need to do to destroy a statically * initialised cond that has not yet been used (initialised). * If we get to here, another thread waiting to initialise * this cond will get an EINVAL. That's OK. */ *cond = NULL; } else { /* * The cv has been initialised while we were waiting * so assume it's in use. */ result = EBUSY; } LeaveCriticalSection(&ptw32_cond_test_init_lock); } return ((result != 0) ? result : ((result1 != 0) ? result1 : result2)); } /* * Arguments for cond_wait_cleanup, since we can only pass a * single void * to it. */ typedef struct { pthread_mutex_t * mutexPtr; pthread_cond_t cv; int * resultPtr; int signaled; } ptw32_cond_wait_cleanup_args_t; static void ptw32_cond_wait_cleanup(void * args) { ptw32_cond_wait_cleanup_args_t * cleanup_args = (ptw32_cond_wait_cleanup_args_t *) args; pthread_cond_t cv = cleanup_args->cv; int * resultPtr = cleanup_args->resultPtr; int nSignalsWasLeft; int nWaitersWasGone = 0; /* Initialised to quell warnings. */ int result; /* * Whether we got here as a result of signal/broadcast or because of * timeout on wait or thread cancellation we indicate that we are no * longer waiting. The waiter is responsible for adjusting waiters * (to)unblock(ed) counts (protected by unblock lock). */ if ((result = pthread_mutex_lock(&(cv->mtxUnblockLock))) != 0) { *resultPtr = result; return; } if ( 0 != (nSignalsWasLeft = cv->nWaitersToUnblock) ) { if ( !cleanup_args->signaled ) { if ( 0 != cv->nWaitersBlocked ) { (cv->nWaitersBlocked)--; } else { (cv->nWaitersGone)++; } } if ( 0 == --(cv->nWaitersToUnblock) ) { if ( 0 != cv->nWaitersBlocked ) { if (sem_post( &(cv->semBlockLock) ) != 0) { *resultPtr = errno; /* * This is a fatal error for this CV, * so we deliberately don't unlock * cv->mtxUnblockLock before returning. */ return; } nSignalsWasLeft = 0; } else if ( 0 != (nWaitersWasGone = cv->nWaitersGone) ) { cv->nWaitersGone = 0; } } } else if ( INT_MAX/2 == ++(cv->nWaitersGone) ) { if (sem_wait( &(cv->semBlockLock) ) != 0) { *resultPtr = errno; /* * This is a fatal error for this CV, * so we deliberately don't unlock * cv->mtxUnblockLock before returning. */ return; } cv->nWaitersBlocked -= cv->nWaitersGone; if (sem_post( &(cv->semBlockLock) ) != 0) { *resultPtr = errno; /* * This is a fatal error for this CV, * so we deliberately don't unlock * cv->mtxUnblockLock before returning. */ return; } cv->nWaitersGone = 0; } if ((result = pthread_mutex_unlock(&(cv->mtxUnblockLock))) != 0) { *resultPtr = result; return; } if ( 1 == nSignalsWasLeft ) { if ( 0 != nWaitersWasGone ) { // sem_adjust( &(cv->semBlockQueue), -nWaitersWasGone ); while ( nWaitersWasGone-- ) { if (sem_wait( &(cv->semBlockQueue)) != 0 ) { *resultPtr = errno; return; } } } if (sem_post(&(cv->semBlockLock)) != 0) { *resultPtr = errno; return; } } /* * XSH: Upon successful return, the mutex has been locked and is owned * by the calling thread */ if ((result = pthread_mutex_lock(cleanup_args->mutexPtr)) != 0) { *resultPtr = result; } } /* ptw32_cond_wait_cleanup */ static INLINE int ptw32_cond_timedwait (pthread_cond_t * cond, pthread_mutex_t * mutex, const struct timespec *abstime) { int result = 0; pthread_cond_t cv; ptw32_cond_wait_cleanup_args_t cleanup_args; if (cond == NULL || *cond == NULL) { return EINVAL; } /* * We do a quick check to see if we need to do more work * to initialise a static condition variable. We check * again inside the guarded section of ptw32_cond_check_need_init() * to avoid race conditions. */ if (*cond == PTHREAD_COND_INITIALIZER) { result = ptw32_cond_check_need_init(cond); } if (result != 0 && result != EBUSY) { return result; } cv = *cond; if (sem_wait(&(cv->semBlockLock)) != 0) { return errno; } cv->nWaitersBlocked++; if (sem_post(&(cv->semBlockLock)) != 0) { return errno; } /* * Setup this waiter cleanup handler */ cleanup_args.mutexPtr = mutex; cleanup_args.cv = cv; cleanup_args.resultPtr = &result; /* * If we're canceled, or the cancelable wait fails for any reason, * including a timeout, then tell the cleanup routine that we * have not been signaled. */ cleanup_args.signaled = 0; #ifdef _MSC_VER #pragma inline_depth(0) #endif pthread_cleanup_push(ptw32_cond_wait_cleanup, (void *) &cleanup_args); /* * Now we can release 'mutex' and... */ if ((result = pthread_mutex_unlock(mutex)) == 0) { /* * ...wait to be awakened by * pthread_cond_signal, or * pthread_cond_broadcast, or * timeout, or * thread cancellation * * Note: * * sem_timedwait is a cancellation point, * hence providing the mechanism for making * pthread_cond_wait a cancellation point. * We use the cleanup mechanism to ensure we * re-lock the mutex and adjust (to)unblock(ed) waiters * counts if we are cancelled, timed out or signalled. */ if (sem_timedwait(&(cv->semBlockQueue), abstime) != 0) { result = errno; } } /* * Not executed if we're canceled. Signaled is false if we timed out. */ cleanup_args.signaled = (result == 0); /* * Always cleanup */ pthread_cleanup_pop(1); #ifdef _MSC_VER #pragma inline_depth() #endif /* * "result" can be modified by the cleanup handler. */ return result; } /* ptw32_cond_timedwait */ static INLINE int ptw32_cond_unblock (pthread_cond_t * cond, int unblockAll) /* * Notes. * * Does not use the external mutex for synchronisation, * therefore semBlockLock is needed. * mtxUnblockLock is for LEVEL-2 synch. LEVEL-2 is the * state where the external mutex is not necessarily locked by * any thread, ie. between cond_wait unlocking and re-acquiring * the lock after having been signaled or a timeout or * cancellation. * * Uses the following CV elements: * nWaitersBlocked * nWaitersToUnblock * nWaitersGone * mtxUnblockLock * semBlockLock * semBlockQueue */ { int result; pthread_cond_t cv; int nSignalsToIssue; if (cond == NULL || *cond == NULL) { return EINVAL; } cv = *cond; /* * No-op if the CV is static and hasn't been initialised yet. * Assuming that any race condition is harmless. */ if (cv == PTHREAD_COND_INITIALIZER) { return 0; } if ((result = pthread_mutex_lock(&(cv->mtxUnblockLock))) != 0) { return result; } if ( 0 != cv->nWaitersToUnblock ) { if ( 0 == cv->nWaitersBlocked ) { return pthread_mutex_unlock( &(cv->mtxUnblockLock) ); } if (unblockAll) { cv->nWaitersToUnblock += (nSignalsToIssue = cv->nWaitersBlocked); cv->nWaitersBlocked = 0; } else { nSignalsToIssue = 1; cv->nWaitersToUnblock++; cv->nWaitersBlocked--; } } else if ( cv->nWaitersBlocked > cv->nWaitersGone ) { if (sem_wait( &(cv->semBlockLock) ) != 0) { result = errno; (void) pthread_mutex_unlock( &(cv->mtxUnblockLock) ); return result; } if ( 0 != cv->nWaitersGone ) { cv->nWaitersBlocked -= cv->nWaitersGone; cv->nWaitersGone = 0; } if (unblockAll) { nSignalsToIssue = cv->nWaitersToUnblock = cv->nWaitersBlocked; cv->nWaitersBlocked = 0; } else { nSignalsToIssue = cv->nWaitersToUnblock = 1; cv->nWaitersBlocked--; } } else { return pthread_mutex_unlock( &(cv->mtxUnblockLock) ); } if ((result = pthread_mutex_unlock( &(cv->mtxUnblockLock) )) == 0) { if (sem_post_multiple( &(cv->semBlockQueue), nSignalsToIssue ) != 0) { result = errno; } } return result; } /* ptw32_cond_unblock */ int pthread_cond_wait (pthread_cond_t * cond, pthread_mutex_t * mutex) /* * ------------------------------------------------------ * DOCPUBLIC * This function waits on a condition variable until * awakened by a signal or broadcast. * * Caller MUST be holding the mutex lock; the * lock is released and the caller is blocked waiting * on 'cond'. When 'cond' is signaled, the mutex * is re-acquired before returning to the caller. * * PARAMETERS * cond * pointer to an instance of pthread_cond_t * * mutex * pointer to an instance of pthread_mutex_t * * * DESCRIPTION * This function waits on a condition variable until * awakened by a signal or broadcast. * * NOTES: * * 1) The function must be called with 'mutex' LOCKED * by the calling thread, or undefined behaviour * will result. * * 2) This routine atomically releases 'mutex' and causes * the calling thread to block on the condition variable. * The blocked thread may be awakened by * pthread_cond_signal or * pthread_cond_broadcast. * * Upon successful completion, the 'mutex' has been locked and * is owned by the calling thread. * * * RESULTS * 0 caught condition; mutex released, * EINVAL 'cond' or 'mutex' is invalid, * EINVAL different mutexes for concurrent waits, * EINVAL mutex is not held by the calling thread, * * ------------------------------------------------------ */ { /* * The NULL abstime arg means INFINITE waiting. */ return (ptw32_cond_timedwait(cond, mutex, NULL)); } /* pthread_cond_wait */ int pthread_cond_timedwait (pthread_cond_t * cond, pthread_mutex_t * mutex, const struct timespec *abstime) /* * ------------------------------------------------------ * DOCPUBLIC * This function waits on a condition variable either until * awakened by a signal or broadcast; or until the time * specified by abstime passes. * * PARAMETERS * cond * pointer to an instance of pthread_cond_t * * mutex * pointer to an instance of pthread_mutex_t * * abstime * pointer to an instance of (const struct timespec) * * * DESCRIPTION * This function waits on a condition variable either until * awakened by a signal or broadcast; or until the time * specified by abstime passes. * * NOTES: * 1) The function must be called with 'mutex' LOCKED * by the calling thread, or undefined behaviour * will result. * * 2) This routine atomically releases 'mutex' and causes * the calling thread to block on the condition variable. * The blocked thread may be awakened by * pthread_cond_signal or * pthread_cond_broadcast. * * * RESULTS * 0 caught condition; mutex released, * EINVAL 'cond', 'mutex', or abstime is invalid, * EINVAL different mutexes for concurrent waits, * EINVAL mutex is not held by the calling thread, * ETIMEDOUT abstime ellapsed before cond was signaled. * * ------------------------------------------------------ */ { if (abstime == NULL) { return EINVAL; } return (ptw32_cond_timedwait(cond, mutex, abstime)); } /* pthread_cond_timedwait */ int pthread_cond_signal (pthread_cond_t * cond) /* * ------------------------------------------------------ * DOCPUBLIC * This function signals a condition variable, waking * one waiting thread. * If SCHED_FIFO or SCHED_RR policy threads are waiting * the highest priority waiter is awakened; otherwise, * an unspecified waiter is awakened. * * PARAMETERS * cond * pointer to an instance of pthread_cond_t * * * DESCRIPTION * This function signals a condition variable, waking * one waiting thread. * If SCHED_FIFO or SCHED_RR policy threads are waiting * the highest priority waiter is awakened; otherwise, * an unspecified waiter is awakened. * * NOTES: * * 1) Use when any waiter can respond and only one need * respond (all waiters being equal). * * RESULTS * 0 successfully signaled condition, * EINVAL 'cond' is invalid, * * ------------------------------------------------------ */ { /* * The '0'(FALSE) unblockAll arg means unblock ONE waiter. */ return (ptw32_cond_unblock(cond, 0)); } /* pthread_cond_signal */ int pthread_cond_broadcast (pthread_cond_t * cond) /* * ------------------------------------------------------ * DOCPUBLIC * This function broadcasts the condition variable, * waking all current waiters. * * PARAMETERS * cond * pointer to an instance of pthread_cond_t * * * DESCRIPTION * This function signals a condition variable, waking * all waiting threads. * * NOTES: * * 1) Use when more than one waiter may respond to * predicate change or if any waiting thread may * not be able to respond * * RESULTS * 0 successfully signalled condition to all * waiting threads, * EINVAL 'cond' is invalid * ENOSPC a required resource has been exhausted, * * ------------------------------------------------------ */ { /* * The '1'(TRUE) unblockAll arg means unblock ALL waiters. */ return (ptw32_cond_unblock(cond, 1)); } /* pthread_cond_broadcast */