/* * mutex.c * * Description: * This translation unit implements mutual exclusion (mutex) primitives. * * Pthreads-win32 - POSIX Threads Library for Win32 * Copyright (C) 1998 * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Library General Public License for more details. * * You should have received a copy of the GNU Library General Public * License along with this library; if not, write to the Free * Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, * MA 02111-1307, USA */ /* errno.h or a replacement file is included by pthread.h */ //#include #include "pthread.h" #include "implement.h" static int _mutex_check_need_init(pthread_mutex_t *mutex) { int result = 0; /* * The following guarded test is specifically for statically * initialised mutexes (via PTHREAD_MUTEX_INITIALIZER). * * Note that by not providing this synchronisation we risk * introducing race conditions into applications which are * correctly written. * * Approach * -------- * We know that static mutexes will not be PROCESS_SHARED * so we can serialise access to internal state using * Win32 Critical Sections rather than Win32 Mutexes. * * If using a single global lock slows applications down too much, * multiple global locks could be created and hashed on some random * value associated with each mutex, the pointer perhaps. At a guess, * a good value for the optimal number of global locks might be * the number of processors + 1. * */ EnterCriticalSection(&_pthread_mutex_test_init_lock); /* * We got here possibly under race * conditions. Check again inside the critical section * and only initialise if the mutex is valid (not been destroyed). * If a static mutex has been destroyed, the application can * re-initialise it only by calling pthread_mutex_init() * explicitly. */ if (*mutex == (pthread_mutex_t) _PTHREAD_OBJECT_AUTO_INIT) { result = pthread_mutex_init(mutex, NULL); } else if (*mutex == NULL) { /* * The mutex has been destroyed while we were waiting to * initialise it, so the operation that caused the * auto-initialisation should fail. */ result = EINVAL; } LeaveCriticalSection(&_pthread_mutex_test_init_lock); return(result); } int pthread_mutex_init(pthread_mutex_t *mutex, const pthread_mutexattr_t *attr) { int result = 0; pthread_mutex_t mx; if (mutex == NULL) { return EINVAL; } mx = *mutex; mx = (pthread_mutex_t) calloc(1, sizeof(*mx)); if (mx == NULL) { result = ENOMEM; goto FAIL0; } mx->mutex = 0; if (attr != NULL && *attr != NULL && (*attr)->pshared == PTHREAD_PROCESS_SHARED ) { /* * Creating mutex that can be shared between * processes. */ #if _POSIX_THREAD_PROCESS_SHARED /* * Not implemented yet. */ #error ERROR [__FILE__, line __LINE__]: Process shared mutexes are not supported yet. mx->mutex = CreateMutex ( NULL, FALSE, ????); result = (mx->mutex == 0) ? EAGAIN : 0; #else result = ENOSYS; #endif /* _POSIX_THREAD_PROCESS_SHARED */ } else { if (_pthread_try_enter_critical_section != NULL || (attr != NULL && *attr != NULL && (*attr)->forcecs == 1) ) { /* * Create a critical section. */ InitializeCriticalSection(&mx->cs); } else { /* * Create a mutex that can only be used within the * current process */ mx->mutex = CreateMutex (NULL, FALSE, NULL); if (mx->mutex == 0) { result = EAGAIN; mx = NULL; goto FAIL0; } } } FAIL0: *mutex = mx; return(result); } int pthread_mutex_destroy(pthread_mutex_t *mutex) { int result = 0; pthread_mutex_t mx; if (mutex == NULL || *mutex == NULL) { return EINVAL; } /* * Check to see if we have something to delete. */ if (*mutex != (pthread_mutex_t) _PTHREAD_OBJECT_AUTO_INIT) { mx = *mutex; if (mx->mutex == 0) { DeleteCriticalSection(&mx->cs); } else { result = (CloseHandle (mx->mutex) ? 0 : EINVAL); } if (result == 0) { mx->mutex = 0; free(mx); *mutex = NULL; } } else { /* * See notes in _mutex_check_need_init() above also. */ EnterCriticalSection(&_pthread_mutex_test_init_lock); /* * Check again. */ if (*mutex == (pthread_mutex_t) _PTHREAD_OBJECT_AUTO_INIT) { /* * This is all we need to do to destroy a statically * initialised mutex that has not yet been used (initialised). * If we get to here, another thread * waiting to initialise this mutex will get an EINVAL. */ *mutex = NULL; } else { /* * The mutex has been initialised while we were waiting * so assume it's in use. */ result = EBUSY; } LeaveCriticalSection(&_pthread_mutex_test_init_lock); } return(result); } int pthread_mutexattr_init (pthread_mutexattr_t * attr) /* * ------------------------------------------------------ * DOCPUBLIC * Initializes a mutex attributes object with default * attributes. * * PARAMETERS * attr * pointer to an instance of pthread_mutexattr_t * * * DESCRIPTION * Initializes a mutex attributes object with default * attributes. * * NOTES: * 1) Used to define mutex types * * RESULTS * 0 successfully initialized attr, * ENOMEM insufficient memory for attr. * * ------------------------------------------------------ */ { pthread_mutexattr_t attr_result; int result = 0; attr_result = (pthread_mutexattr_t) calloc (1, sizeof (*attr_result)); result = (attr_result == NULL) ? ENOMEM : 0; *attr = attr_result; return (result); } /* pthread_mutexattr_init */ int pthread_mutexattr_destroy (pthread_mutexattr_t * attr) /* * ------------------------------------------------------ * DOCPUBLIC * Destroys a mutex attributes object. The object can * no longer be used. * * PARAMETERS * attr * pointer to an instance of pthread_mutexattr_t * * * DESCRIPTION * Destroys a mutex attributes object. The object can * no longer be used. * * NOTES: * 1) Does not affect mutexes created using 'attr' * * RESULTS * 0 successfully released attr, * EINVAL 'attr' is invalid. * * ------------------------------------------------------ */ { int result = 0; if (attr == NULL || *attr == NULL) { result = EINVAL; } else { free (*attr); *attr = NULL; result = 0; } return (result); } /* pthread_mutexattr_destroy */ int pthread_mutexattr_setforcecs_np(pthread_mutexattr_t *attr, int forcecs) { if (attr == NULL || *attr == NULL) { /* This is disallowed. */ return EINVAL; } (*attr)->forcecs = forcecs; return 0; } int pthread_mutexattr_getpshared (const pthread_mutexattr_t * attr, int *pshared) /* * ------------------------------------------------------ * DOCPUBLIC * Determine whether mutexes created with 'attr' can be * shared between processes. * * PARAMETERS * attr * pointer to an instance of pthread_mutexattr_t * * pshared * will be set to one of: * * PTHREAD_PROCESS_SHARED * May be shared if in shared memory * * PTHREAD_PROCESS_PRIVATE * Cannot be shared. * * * DESCRIPTION * Mutexes creatd with 'attr' can be shared between * processes if pthread_mutex_t variable is allocated * in memory shared by these processes. * NOTES: * 1) pshared mutexes MUST be allocated in shared * memory. * 2) The following macro is defined if shared mutexes * are supported: * _POSIX_THREAD_PROCESS_SHARED * * RESULTS * 0 successfully retrieved attribute, * EINVAL 'attr' is invalid, * * ------------------------------------------------------ */ { int result; if ((attr != NULL && *attr != NULL) && (pshared != NULL)) { *pshared = (*attr)->pshared; result = 0; } else { *pshared = PTHREAD_PROCESS_PRIVATE; result = EINVAL; } return (result); } /* pthread_mutexattr_getpshared */ int pthread_mutexattr_setpshared (pthread_mutexattr_t * attr, int pshared) /* * ------------------------------------------------------ * DOCPUBLIC * Mutexes created with 'attr' can be shared between * processes if pthread_mutex_t variable is allocated * in memory shared by these processes. * * PARAMETERS * attr * pointer to an instance of pthread_mutexattr_t * * pshared * must be one of: * * PTHREAD_PROCESS_SHARED * May be shared if in shared memory * * PTHREAD_PROCESS_PRIVATE * Cannot be shared. * * DESCRIPTION * Mutexes creatd with 'attr' can be shared between * processes if pthread_mutex_t variable is allocated * in memory shared by these processes. * * NOTES: * 1) pshared mutexes MUST be allocated in shared * memory. * * 2) The following macro is defined if shared mutexes * are supported: * _POSIX_THREAD_PROCESS_SHARED * * RESULTS * 0 successfully set attribute, * EINVAL 'attr' or pshared is invalid, * ENOSYS PTHREAD_PROCESS_SHARED not supported, * * ------------------------------------------------------ */ { int result; if ((attr != NULL && *attr != NULL) && ((pshared == PTHREAD_PROCESS_SHARED) || (pshared == PTHREAD_PROCESS_PRIVATE))) { if (pshared == PTHREAD_PROCESS_SHARED) { #if !defined( _POSIX_THREAD_PROCESS_SHARED ) result = ENOSYS; pshared = PTHREAD_PROCESS_PRIVATE; #else result = 0; #endif /* _POSIX_THREAD_PROCESS_SHARED */ } else { result = 0; } (*attr)->pshared = pshared; } else { result = EINVAL; } return (result); } /* pthread_mutexattr_setpshared */ int pthread_mutex_lock(pthread_mutex_t *mutex) { int result = 0; pthread_mutex_t mx; if (mutex == NULL || *mutex == NULL) { return EINVAL; } /* * We do a quick check to see if we need to do more work * to initialise a static mutex. We check * again inside the guarded section of _mutex_check_need_init() * to avoid race conditions. */ if (*mutex == (pthread_mutex_t) _PTHREAD_OBJECT_AUTO_INIT) { result = _mutex_check_need_init(mutex); } mx = *mutex; if (result == 0) { if (mx->mutex == 0) { EnterCriticalSection(&mx->cs); } else { result = (WaitForSingleObject(mx->mutex, INFINITE) == WAIT_OBJECT_0) ? 0 : EINVAL; } } return(result); } int pthread_mutex_unlock(pthread_mutex_t *mutex) { int result = 0; pthread_mutex_t mx; if (mutex == NULL || *mutex == NULL) { return EINVAL; } mx = *mutex; /* * If the thread calling us holds the mutex then there is no * race condition. If another thread holds the * lock then we shouldn't be in here. */ if (mx != (pthread_mutex_t) _PTHREAD_OBJECT_AUTO_INIT) { if (mx->mutex == 0) { LeaveCriticalSection(&mx->cs); } else { result = (ReleaseMutex (mx->mutex) ? 0 : EINVAL); } } else { result = EINVAL; } return(result); } int pthread_mutex_trylock(pthread_mutex_t *mutex) { int result = 0; pthread_mutex_t mx; if (mutex == NULL || *mutex == NULL) { return EINVAL; } /* * We do a quick check to see if we need to do more work * to initialise a static mutex. We check * again inside the guarded section of _mutex_check_need_init() * to avoid race conditions. */ if (*mutex == (pthread_mutex_t) _PTHREAD_OBJECT_AUTO_INIT) { result = _mutex_check_need_init(mutex); } mx = *mutex; if (result == 0) { if (mx->mutex == 0) { if ((*_pthread_try_enter_critical_section)(&mx->cs) != TRUE) { result = EBUSY; } } else { DWORD status; status = WaitForSingleObject (mx->mutex, 0); if (status != WAIT_OBJECT_0) { result = ((status == WAIT_TIMEOUT) ? EBUSY : EINVAL); } } } return(result); }