/* * rwlock.c * * Description: * This translation unit implements read/write lock primitives. * * -------------------------------------------------------------------------- * * Pthreads-win32 - POSIX Threads Library for Win32 * Copyright(C) 1998 John E. Bossom * Copyright(C) 1999,2002 Pthreads-win32 contributors * * Contact Email: rpj@ise.canberra.edu.au * * The current list of contributors is contained * in the file CONTRIBUTORS included with the source * code distribution. The list can also be seen at the * following World Wide Web location: * http://sources.redhat.com/pthreads-win32/contributors.html * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library in the file COPYING.LIB; * if not, write to the Free Software Foundation, Inc., * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA */ #include #include #include "pthread.h" #include "implement.h" static INLINE int ptw32_rwlock_check_need_init(pthread_rwlock_t *rwlock) { int result = 0; /* * The following guarded test is specifically for statically * initialised rwlocks (via PTHREAD_RWLOCK_INITIALIZER). * * Note that by not providing this synchronisation we risk * introducing race conditions into applications which are * correctly written. * * Approach * -------- * We know that static rwlocks will not be PROCESS_SHARED * so we can serialise access to internal state using * Win32 Critical Sections rather than Win32 Mutexes. * * If using a single global lock slows applications down too much, * multiple global locks could be created and hashed on some random * value associated with each mutex, the pointer perhaps. At a guess, * a good value for the optimal number of global locks might be * the number of processors + 1. * */ EnterCriticalSection(&ptw32_rwlock_test_init_lock); /* * We got here possibly under race * conditions. Check again inside the critical section * and only initialise if the rwlock is valid (not been destroyed). * If a static rwlock has been destroyed, the application can * re-initialise it only by calling pthread_rwlock_init() * explicitly. */ if (*rwlock == PTHREAD_RWLOCK_INITIALIZER) { result = pthread_rwlock_init(rwlock, NULL); } else if (*rwlock == NULL) { /* * The rwlock has been destroyed while we were waiting to * initialise it, so the operation that caused the * auto-initialisation should fail. */ result = EINVAL; } LeaveCriticalSection(&ptw32_rwlock_test_init_lock); return result; } int pthread_rwlock_init(pthread_rwlock_t *rwlock, const pthread_rwlockattr_t *attr) { int result; pthread_rwlock_t rwl = 0; if (rwlock == NULL) { return EINVAL; } if (attr != NULL && *attr != NULL) { result = EINVAL; /* Not supported */ goto DONE; } rwl = (pthread_rwlock_t) calloc(1, sizeof(*rwl)); if (rwl == NULL) { result = ENOMEM; goto DONE; } rwl->nSharedAccessCount = 0; rwl->nExclusiveAccessCount = 0; rwl->nCompletedSharedAccessCount = 0; result = pthread_mutex_init(&rwl->mtxExclusiveAccess, NULL); if (result != 0) { goto FAIL0; } result = pthread_mutex_init(&rwl->mtxSharedAccessCompleted, NULL); if (result != 0) { goto FAIL1; } result = pthread_cond_init(&rwl->cndSharedAccessCompleted, NULL); if (result != 0) { goto FAIL2; } rwl->nMagic = PTW32_RWLOCK_MAGIC; result = 0; goto DONE; FAIL2: (void) pthread_mutex_destroy(&(rwl->mtxSharedAccessCompleted)); FAIL1: (void) pthread_mutex_destroy(&(rwl->mtxExclusiveAccess)); FAIL0: (void) free(rwl); rwl = NULL; DONE: *rwlock = rwl; return result; } int pthread_rwlock_destroy(pthread_rwlock_t *rwlock) { pthread_rwlock_t rwl; int result = 0, result1 = 0, result2 = 0; if (rwlock == NULL || *rwlock == NULL) { return EINVAL; } if (*rwlock != PTHREAD_RWLOCK_INITIALIZER) { rwl = *rwlock; if (rwl->nMagic != PTW32_RWLOCK_MAGIC) { return EINVAL; } if ((result = pthread_mutex_lock(&(rwl->mtxExclusiveAccess))) != 0) { return result; } if ((result = pthread_mutex_lock(&(rwl->mtxSharedAccessCompleted))) != 0) { (void) pthread_mutex_unlock(&(rwl->mtxExclusiveAccess)); return result; } /* * Check whether any threads own/wait for the lock (wait for ex.access); * report "BUSY" if so. */ if (rwl->nExclusiveAccessCount > 0 || rwl->nSharedAccessCount > rwl->nCompletedSharedAccessCount) { result = pthread_mutex_unlock(&(rwl->mtxSharedAccessCompleted)); result1 = pthread_mutex_unlock(&(rwl->mtxExclusiveAccess)); result2 = EBUSY; } else { rwl->nMagic = 0; if ((result = pthread_mutex_unlock(&(rwl->mtxSharedAccessCompleted))) != 0) { pthread_mutex_unlock(&rwl->mtxExclusiveAccess); return result; } if ((result = pthread_mutex_unlock(&(rwl->mtxExclusiveAccess))) != 0) { return result; } *rwlock = NULL; /* Invalidate rwlock before anything else */ result = pthread_cond_destroy(&(rwl->cndSharedAccessCompleted)); result1 = pthread_mutex_destroy(&(rwl->mtxSharedAccessCompleted)); result2 = pthread_mutex_destroy(&(rwl->mtxExclusiveAccess)); (void) free(rwl); } } else { /* * See notes in ptw32_rwlock_check_need_init() above also. */ EnterCriticalSection(&ptw32_rwlock_test_init_lock); /* * Check again. */ if (*rwlock == PTHREAD_RWLOCK_INITIALIZER) { /* * This is all we need to do to destroy a statically * initialised rwlock that has not yet been used (initialised). * If we get to here, another thread * waiting to initialise this rwlock will get an EINVAL. */ *rwlock = NULL; } else { /* * The rwlock has been initialised while we were waiting * so assume it's in use. */ result = EBUSY; } LeaveCriticalSection(&ptw32_rwlock_test_init_lock); } return ((result != 0) ? result : ((result1 != 0) ? result1 : result2)); } int pthread_rwlockattr_init (pthread_rwlockattr_t * attr) /* * ------------------------------------------------------ * DOCPUBLIC * Initializes a rwlock attributes object with default * attributes. * * PARAMETERS * attr * pointer to an instance of pthread_rwlockattr_t * * * DESCRIPTION * Initializes a rwlock attributes object with default * attributes. * * RESULTS * 0 successfully initialized attr, * ENOMEM insufficient memory for attr. * * ------------------------------------------------------ */ { int result = 0; pthread_rwlockattr_t rwa; rwa = (pthread_rwlockattr_t) calloc (1, sizeof (*rwa)); if (rwa == NULL) { result = ENOMEM; } else { rwa->pshared = PTHREAD_PROCESS_PRIVATE; } *attr = rwa; return(result); } /* pthread_rwlockattr_init */ int pthread_rwlockattr_destroy (pthread_rwlockattr_t * attr) /* * ------------------------------------------------------ * DOCPUBLIC * Destroys a rwlock attributes object. The object can * no longer be used. * * PARAMETERS * attr * pointer to an instance of pthread_rwlockattr_t * * * DESCRIPTION * Destroys a rwlock attributes object. The object can * no longer be used. * * NOTES: * 1) Does not affect rwlockss created using 'attr' * * RESULTS * 0 successfully released attr, * EINVAL 'attr' is invalid. * * ------------------------------------------------------ */ { int result = 0; if (attr == NULL || *attr == NULL) { result = EINVAL; } else { pthread_rwlockattr_t rwa = *attr; *attr = NULL; free (rwa); } return(result); } /* pthread_rwlockattr_destroy */ int pthread_rwlockattr_getpshared (const pthread_rwlockattr_t * attr, int *pshared) /* * ------------------------------------------------------ * DOCPUBLIC * Determine whether rwlocks created with 'attr' can be * shared between processes. * * PARAMETERS * attr * pointer to an instance of pthread_rwlockattr_t * * pshared * will be set to one of: * * PTHREAD_PROCESS_SHARED * May be shared if in shared memory * * PTHREAD_PROCESS_PRIVATE * Cannot be shared. * * * DESCRIPTION * Rwlocks creatd with 'attr' can be shared between * processes if pthread_rwlock_t variable is allocated * in memory shared by these processes. * NOTES: * 1) pshared rwlocks MUST be allocated in shared * memory. * 2) The following macro is defined if shared rwlocks * are supported: * _POSIX_THREAD_PROCESS_SHARED * * RESULTS * 0 successfully retrieved attribute, * EINVAL 'attr' is invalid, * * ------------------------------------------------------ */ { int result; if ((attr != NULL && *attr != NULL) && (pshared != NULL)) { *pshared = (*attr)->pshared; result = 0; } else { result = EINVAL; } return (result); } /* pthread_rwlockattr_getpshared */ int pthread_rwlockattr_setpshared (pthread_rwlockattr_t * attr, int pshared) /* * ------------------------------------------------------ * DOCPUBLIC * Rwlocks created with 'attr' can be shared between * processes if pthread_rwlock_t variable is allocated * in memory shared by these processes. * * PARAMETERS * attr * pointer to an instance of pthread_rwlockattr_t * * pshared * must be one of: * * PTHREAD_PROCESS_SHARED * May be shared if in shared memory * * PTHREAD_PROCESS_PRIVATE * Cannot be shared. * * DESCRIPTION * Rwlocks creatd with 'attr' can be shared between * processes if pthread_rwlock_t variable is allocated * in memory shared by these processes. * * NOTES: * 1) pshared rwlocks MUST be allocated in shared * memory. * * 2) The following macro is defined if shared rwlocks * are supported: * _POSIX_THREAD_PROCESS_SHARED * * RESULTS * 0 successfully set attribute, * EINVAL 'attr' or pshared is invalid, * ENOSYS PTHREAD_PROCESS_SHARED not supported, * * ------------------------------------------------------ */ { int result; if ((attr != NULL && *attr != NULL) && ((pshared == PTHREAD_PROCESS_SHARED) || (pshared == PTHREAD_PROCESS_PRIVATE))) { if (pshared == PTHREAD_PROCESS_SHARED) { #if !defined( _POSIX_THREAD_PROCESS_SHARED ) result = ENOSYS; pshared = PTHREAD_PROCESS_PRIVATE; #else result = 0; #endif /* _POSIX_THREAD_PROCESS_SHARED */ } else { result = 0; } (*attr)->pshared = pshared; } else { result = EINVAL; } return (result); } /* pthread_rwlockattr_setpshared */ int pthread_rwlock_rdlock(pthread_rwlock_t *rwlock) { int result; pthread_rwlock_t rwl; if (rwlock == NULL || *rwlock == NULL) { return EINVAL; } /* * We do a quick check to see if we need to do more work * to initialise a static rwlock. We check * again inside the guarded section of ptw32_rwlock_check_need_init() * to avoid race conditions. */ if (*rwlock == PTHREAD_RWLOCK_INITIALIZER) { result = ptw32_rwlock_check_need_init(rwlock); if (result != 0 && result != EBUSY) { return result; } } rwl = *rwlock; if (rwl->nMagic != PTW32_RWLOCK_MAGIC) { return EINVAL; } if ((result = pthread_mutex_lock(&(rwl->mtxExclusiveAccess))) != 0) { return result; } if (++rwl->nSharedAccessCount == INT_MAX) { if ((result = pthread_mutex_lock(&(rwl->mtxSharedAccessCompleted))) != 0) { (void) pthread_mutex_unlock(&(rwl->mtxExclusiveAccess)); return result; } rwl->nSharedAccessCount -= rwl->nCompletedSharedAccessCount; rwl->nCompletedSharedAccessCount = 0; if ((result = pthread_mutex_unlock(&(rwl->mtxSharedAccessCompleted))) != 0) { (void) pthread_mutex_unlock(&(rwl->mtxExclusiveAccess)); return result; } } return (pthread_mutex_unlock(&(rwl->mtxExclusiveAccess))); } static void ptw32_rwlock_cancelwrwait(void * arg) { pthread_rwlock_t rwl = (pthread_rwlock_t) arg; rwl->nSharedAccessCount = -rwl->nCompletedSharedAccessCount; rwl->nCompletedSharedAccessCount = 0; (void) pthread_mutex_unlock(&(rwl->mtxSharedAccessCompleted)); (void) pthread_mutex_unlock(&(rwl->mtxExclusiveAccess)); } int pthread_rwlock_wrlock(pthread_rwlock_t * rwlock) { int result; pthread_rwlock_t rwl; if (rwlock == NULL || *rwlock == NULL) { return EINVAL; } /* * We do a quick check to see if we need to do more work * to initialise a static rwlock. We check * again inside the guarded section of ptw32_rwlock_check_need_init() * to avoid race conditions. */ if (*rwlock == PTHREAD_RWLOCK_INITIALIZER) { result = ptw32_rwlock_check_need_init(rwlock); if (result != 0 && result != EBUSY) { return result; } } rwl = *rwlock; if (rwl->nMagic != PTW32_RWLOCK_MAGIC) { return EINVAL; } if ((result = pthread_mutex_lock(&(rwl->mtxExclusiveAccess))) != 0) { return result; } if ((result = pthread_mutex_lock(&(rwl->mtxSharedAccessCompleted))) != 0) { (void) pthread_mutex_unlock(&(rwl->mtxExclusiveAccess)); return result; } if (rwl->nExclusiveAccessCount == 0) { if (rwl->nCompletedSharedAccessCount > 0) { rwl->nSharedAccessCount -= rwl->nCompletedSharedAccessCount; rwl->nCompletedSharedAccessCount = 0; } if (rwl->nSharedAccessCount > 0) { rwl->nCompletedSharedAccessCount = -rwl->nSharedAccessCount; /* * This routine may be a cancelation point * according to POSIX 1003.1j section 18.1.2. */ #ifdef _MSC_VER #pragma inline_depth(0) #endif pthread_cleanup_push(ptw32_rwlock_cancelwrwait, (void*)rwl); do { result = pthread_cond_wait(&(rwl->cndSharedAccessCompleted), &(rwl->mtxSharedAccessCompleted)); } while (result == 0 && rwl->nCompletedSharedAccessCount < 0); pthread_cleanup_pop ((result != 0) ? 1 : 0); #ifdef _MSC_VER #pragma inline_depth() #endif if (result == 0) { rwl->nSharedAccessCount = 0; } } } if (result == 0) { rwl->nExclusiveAccessCount++; } return result; } int pthread_rwlock_unlock(pthread_rwlock_t * rwlock) { int result, result1; pthread_rwlock_t rwl; if (rwlock == NULL || *rwlock == NULL) { return(EINVAL); } if (*rwlock == PTHREAD_RWLOCK_INITIALIZER) { /* * Assume any race condition here is harmless. */ return 0; } rwl = *rwlock; if (rwl->nMagic != PTW32_RWLOCK_MAGIC) { return EINVAL; } if (rwl->nExclusiveAccessCount == 0) { if ((result = pthread_mutex_lock(&(rwl->mtxSharedAccessCompleted))) != 0) { return result; } if (++rwl->nCompletedSharedAccessCount == 0) { result = pthread_cond_signal(&(rwl->cndSharedAccessCompleted)); } result1 = pthread_mutex_unlock(&(rwl->mtxSharedAccessCompleted)); } else { rwl->nExclusiveAccessCount--; result = pthread_mutex_unlock(&(rwl->mtxSharedAccessCompleted)); result1 = pthread_mutex_unlock(&(rwl->mtxExclusiveAccess)); } return ((result != 0) ? result : result1); } int pthread_rwlock_tryrdlock(pthread_rwlock_t * rwlock) { int result; pthread_rwlock_t rwl; if (rwlock == NULL || *rwlock == NULL) { return EINVAL; } /* * We do a quick check to see if we need to do more work * to initialise a static rwlock. We check * again inside the guarded section of ptw32_rwlock_check_need_init() * to avoid race conditions. */ if (*rwlock == PTHREAD_RWLOCK_INITIALIZER) { result = ptw32_rwlock_check_need_init(rwlock); if (result != 0 && result != EBUSY) { return result; } } rwl = *rwlock; if (rwl->nMagic != PTW32_RWLOCK_MAGIC) { return EINVAL; } if ((result = pthread_mutex_trylock(&(rwl->mtxExclusiveAccess))) != 0) { return result; } if (++rwl->nSharedAccessCount == INT_MAX) { if ((result = pthread_mutex_lock(&(rwl->mtxSharedAccessCompleted))) != 0) { (void) pthread_mutex_unlock(&(rwl->mtxExclusiveAccess)); return result; } rwl->nSharedAccessCount -= rwl->nCompletedSharedAccessCount; rwl->nCompletedSharedAccessCount = 0; if ((result = pthread_mutex_unlock(&(rwl->mtxSharedAccessCompleted))) != 0) { (void) pthread_mutex_unlock(&(rwl->mtxExclusiveAccess)); return result; } } return (pthread_mutex_unlock(&rwl->mtxExclusiveAccess)); } int pthread_rwlock_trywrlock(pthread_rwlock_t * rwlock) { int result, result1; pthread_rwlock_t rwl; if (rwlock == NULL || *rwlock == NULL) { return EINVAL; } /* * We do a quick check to see if we need to do more work * to initialise a static rwlock. We check * again inside the guarded section of ptw32_rwlock_check_need_init() * to avoid race conditions. */ if (*rwlock == PTHREAD_RWLOCK_INITIALIZER) { result = ptw32_rwlock_check_need_init(rwlock); if (result != 0 && result != EBUSY) { return result; } } rwl = *rwlock; if (rwl->nMagic != PTW32_RWLOCK_MAGIC) { return EINVAL; } if ((result = pthread_mutex_trylock(&(rwl->mtxExclusiveAccess))) != 0) { return result; } if ((result = pthread_mutex_trylock(&(rwl->mtxSharedAccessCompleted))) != 0) { result1 = pthread_mutex_unlock(&(rwl->mtxExclusiveAccess)); return ((result1 != 0) ? result1 : result); } if (rwl->nExclusiveAccessCount == 0) { if (rwl->nCompletedSharedAccessCount > 0) { rwl->nSharedAccessCount -= rwl->nCompletedSharedAccessCount; rwl->nCompletedSharedAccessCount = 0; } if (rwl->nSharedAccessCount > 0) { if ((result = pthread_mutex_unlock(&(rwl->mtxSharedAccessCompleted))) != 0) { (void) pthread_mutex_unlock(&(rwl->mtxExclusiveAccess)); return result; } if ((result = pthread_mutex_unlock(&(rwl->mtxExclusiveAccess))) == 0) { result = EBUSY; } } else { rwl->nExclusiveAccessCount = 1; } } else { result = EBUSY; } return result; }