summaryrefslogtreecommitdiff
path: root/include/im_color.h
diff options
context:
space:
mode:
authorscuri <scuri>2008-10-17 06:10:15 +0000
committerscuri <scuri>2008-10-17 06:10:15 +0000
commit5a422aba704c375a307a902bafe658342e209906 (patch)
tree5005011e086bb863d8fb587ad3319bbec59b2447 /include/im_color.h
First commit - moving from LuaForge to SourceForge
Diffstat (limited to 'include/im_color.h')
-rw-r--r--include/im_color.h465
1 files changed, 465 insertions, 0 deletions
diff --git a/include/im_color.h b/include/im_color.h
new file mode 100644
index 0000000..b38b22c
--- /dev/null
+++ b/include/im_color.h
@@ -0,0 +1,465 @@
+/** \file
+ * \brief Color Manipulation
+ *
+ * See Copyright Notice in im_lib.h
+ */
+
+#ifndef __IM_COLOR_H
+#define __IM_COLOR_H
+
+#include "im_math.h"
+
+/** \defgroup color Color Manipulation
+ *
+ * \par
+ * Functions to convert from one color space to another,
+ * and color gammut utilities.
+ * \par
+ * See \ref im_color.h
+ *
+ * \section s1 Some Color Science
+ * \par
+ * Y is luminance, a linear-light quantity.
+ * It is directly proportional to physical intensity
+ * weighted by the spectral sensitivity of human vision.
+ * \par
+ * L* is lightness, a nonlinear luminance
+ * that aproximates the perception of brightness.
+ * It is nearly perceptual uniform.
+ * It has a range of 0 to 100.
+ * \par
+ * Y' is luma, a nonlinear luminance that aproximates lightness.
+ * \par
+ * Brightness is a visual sensation according to which an area
+ * apears to exhibit more or less light.
+ * It is a subjective quantity and can not be measured.
+ * \par
+ * One unit of euclidian distante in CIE L*u*v* or CIE L*a*b* corresponds
+ * roughly to a just-noticeable difference (JND) of color.
+ * \par
+\verbatim
+ ChromaUV = sqrt(u*u + v*v)
+ HueUV = atan2(v, u)
+ SaturationUV = ChromaUV / L (called psychometric saturation)
+ (the same can be calculated for Lab)
+\endverbatim
+ * \par
+ * IEC 61966-2.1 Default RGB colour space - sRGB
+ * \li ITU-R Recommendation BT.709 (D65 white point).
+ * \li D65 White Point (X,Y,Z) = (0.9505 1.0000 1.0890)
+ * \par
+ * Documentation extracted from Charles Poynton - Digital Video and HDTV - Morgan Kaufmann - 2003.
+ *
+ * \section Links
+ * \li www.color.org - ICC
+ * \li www.srgb.com - sRGB
+ * \li www.poynton.com - Charles Poynton
+ * \li www.littlecms.com - A free Color Management System (use this if you need precise color conversions)
+ *
+ * \section cci Color Component Intervals
+ * \par
+ * All the color components are stored in the 0-max interval, even the signed ones. \n
+ * Here are the pre-defined intervals for each data type. These values are used for standard color conversion.
+ * You should normalize data before converting betwwen color spaces.
+ * \par
+\verbatim
+ byte [0,255] or [-128,+127] (1 byte)
+ ushort [0,65535] or [-32768,+32767] (2 bytes)
+ int [0,16777215] or [-8388608,+8388607] (3 bytes)
+ float [0,1] or [-0.5,+0.5] (4 bytes)
+\endverbatim
+ * \ingroup util */
+
+/** Returns the zero value for color conversion porpouses. \n
+ * This is a value to be compensated when the data_type is unsigned and component is signed. \n
+ * \ingroup color */
+inline float imColorZero(int data_type)
+{
+ float zero[] = {128.0f, 32768.0f, 8388608.0f, 0.5f};
+ return zero[data_type];
+}
+
+/** Returns the maximum value for color conversion porpouses. \n
+ * \ingroup color */
+inline int imColorMax(int data_type)
+{
+ int max[] = {255, 65535, 16777215, 1};
+ return max[data_type];
+}
+
+/** Quantize r=0-1 values into q=0-max.
+ * max is the maximum value.
+ * max and the returned value are usually integers,
+ * but the dummy quantizer uses real values.
+ * See also \ref math.
+ * \ingroup color */
+template <class T>
+inline T imColorQuantize(const float& value, const T& max)
+{
+ if (max == 1) return (T)value; // to allow a dummy quantizer
+ if (value >= 1) return max;
+ if (value <= 0) return 0;
+ /* return (T)imRound(value*(max + 1) - 0.5f); not necessary since all values are positive */
+ return (T)(value*(max + 1));
+}
+
+/** Reconstruct 0-max values into 0-1. \n
+ * max is the maximum value.
+ * max and the given value are usually integers,
+ * but the dummy reconstructor uses real values.
+ * See also \ref math.
+ * \ingroup color */
+template <class T>
+inline float imColorReconstruct(const T& value, const T& max)
+{
+ if (max == 1) return (float)value; // to allow a dummy reconstructor
+ if (value <= 0) return 0;
+ if (value >= max) return 1;
+ return (((float)value + 0.5f)/((float)max + 1.0f));
+}
+
+/** Converts Y'CbCr to R'G'B' (all nonlinear). \n
+ * ITU-R Recommendation 601-1 with no headroom/footroom.
+\verbatim
+ 0 <= Y <= 1 ; -0.5 <= CbCr <= 0.5 ; 0 <= RGB <= 1
+
+ R'= Y' + 0.000 *Cb + 1.402 *Cr
+ G'= Y' - 0.344 *Cb - 0.714 *Cr
+ B'= Y' + 1.772 *Cb + 0.000 *Cr
+\endverbatim
+ * \ingroup color */
+template <class T>
+inline void imColorYCbCr2RGB(const T Y, const T Cb, const T Cr,
+ T& R, T& G, T& B,
+ const T& zero, const T& max)
+{
+ float r = float(Y + 1.402f * (Cr - zero));
+ float g = float(Y - 0.344f * (Cb - zero) - 0.714f * (Cr - zero));
+ float b = float(Y + 1.772f * (Cb - zero));
+
+ // now we should enforce 0<= rgb <= max
+
+ R = (T)IM_CROPMAX(r, max);
+ G = (T)IM_CROPMAX(g, max);
+ B = (T)IM_CROPMAX(b, max);
+}
+
+/** Converts R'G'B' to Y'CbCr (all nonlinear). \n
+ * ITU-R Recommendation 601-1 with no headroom/footroom.
+\verbatim
+ 0 <= Y <= 1 ; -0.5 <= CbCr <= 0.5 ; 0 <= RGB <= 1
+
+ Y' = 0.299 *R' + 0.587 *G' + 0.114 *B'
+ Cb = -0.169 *R' - 0.331 *G' + 0.500 *B'
+ Cr = 0.500 *R' - 0.419 *G' - 0.081 *B'
+\endverbatim
+ * \ingroup color */
+template <class T>
+inline void imColorRGB2YCbCr(const T R, const T G, const T B,
+ T& Y, T& Cb, T& Cr,
+ const T& zero)
+{
+ Y = (T)( 0.299f *R + 0.587f *G + 0.114f *B);
+ Cb = (T)(-0.169f *R - 0.331f *G + 0.500f *B + (float)zero);
+ Cr = (T)( 0.500f *R - 0.419f *G - 0.081f *B + (float)zero);
+
+ // there is no need for cropping here, YCrCr is already at the limits
+}
+
+/** Converts C'M'Y'K' to R'G'B' (all nonlinear). \n
+ * This is a poor conversion that works for a simple visualization.
+\verbatim
+ 0 <= CMYK <= 1 ; 0 <= RGB <= 1
+
+ R = (1 - K) * (1 - C)
+ G = (1 - K) * (1 - M)
+ B = (1 - K) * (1 - Y)
+\endverbatim
+ * \ingroup color */
+template <class T>
+inline void imColorCMYK2RGB(const T C, const T M, const T Y, const T K,
+ T& R, T& G, T& B, const T& max)
+{
+ T W = max - K;
+ R = (T)((W * (max - C)) / max);
+ G = (T)((W * (max - M)) / max);
+ B = (T)((W * (max - Y)) / max);
+
+ // there is no need for cropping here, RGB is already at the limits
+}
+
+/** Converts CIE XYZ to Rec 709 RGB (all linear). \n
+ * ITU-R Recommendation BT.709 (D65 white point). \n
+\verbatim
+ 0 <= XYZ <= 1 ; 0 <= RGB <= 1
+
+ R = 3.2406 *X - 1.5372 *Y - 0.4986 *Z
+ G = -0.9689 *X + 1.8758 *Y + 0.0415 *Z
+ B = 0.0557 *X - 0.2040 *Y + 1.0570 *Z
+\endverbatim
+ * \ingroup color */
+template <class T>
+inline void imColorXYZ2RGB(const T X, const T Y, const T Z,
+ T& R, T& G, T& B, const T& max)
+{
+ float r = 3.2406f *X - 1.5372f *Y - 0.4986f *Z;
+ float g = -0.9689f *X + 1.8758f *Y + 0.0415f *Z;
+ float b = 0.0557f *X - 0.2040f *Y + 1.0570f *Z;
+
+ // we need to crop because not all XYZ colors are visible
+
+ R = (T)IM_CROPMAX(r, max);
+ G = (T)IM_CROPMAX(g, max);
+ B = (T)IM_CROPMAX(b, max);
+}
+
+/** Converts Rec 709 RGB to CIE XYZ (all linear). \n
+ * ITU-R Recommendation BT.709 (D65 white point). \n
+\verbatim
+ 0 <= XYZ <= 1 ; 0 <= RGB <= 1
+
+ X = 0.4124 *R + 0.3576 *G + 0.1805 *B
+ Y = 0.2126 *R + 0.7152 *G + 0.0722 *B
+ Z = 0.0193 *R + 0.1192 *G + 0.9505 *B
+\endverbatim
+ * \ingroup color */
+template <class T>
+inline void imColorRGB2XYZ(const T R, const T G, const T B,
+ T& X, T& Y, T& Z)
+{
+ X = (T)(0.4124f *R + 0.3576f *G + 0.1805f *B);
+ Y = (T)(0.2126f *R + 0.7152f *G + 0.0722f *B);
+ Z = (T)(0.0193f *R + 0.1192f *G + 0.9505f *B);
+
+ // there is no need for cropping here, XYZ is already at the limits
+}
+
+#define IM_FWLAB(_w) (_w > 0.008856f? \
+ powf(_w, 1.0f/3.0f): \
+ 7.787f * _w + 0.16f/1.16f)
+
+/** Converts CIE XYZ (linear) to CIE L*a*b* (nonlinear). \n
+ * The white point is D65. \n
+\verbatim
+ 0 <= L <= 1 ; -0.5 <= ab <= +0.5 ; 0 <= XYZ <= 1
+
+ if (t > 0.008856)
+ f(t) = pow(t, 1/3)
+ else
+ f(t) = 7.787*t + 16/116
+
+ fX = f(X / Xn) fY = f(Y / Yn) fZ = f(Z / Zn)
+
+ L = 1.16 * fY - 0.16
+ a = 2.5 * (fX - fY)
+ b = (fY - fZ)
+
+\endverbatim
+ * \ingroup color */
+inline void imColorXYZ2Lab(const float X, const float Y, const float Z,
+ float& L, float& a, float& b)
+{
+ float fX = X / 0.9505f; // white point D65
+ float fY = Y / 1.0f;
+ float fZ = Z / 1.0890f;
+
+ fX = IM_FWLAB(fX);
+ fY = IM_FWLAB(fY);
+ fZ = IM_FWLAB(fZ);
+
+ L = 1.16f * fY - 0.16f;
+ a = 2.5f * (fX - fY);
+ b = (fY - fZ);
+}
+
+#define IM_GWLAB(_w) (_w > 0.20689f? \
+ powf(_w, 3.0f): \
+ 0.1284f * (_w - 0.16f/1.16f))
+
+/** Converts CIE L*a*b* (nonlinear) to CIE XYZ (linear). \n
+ * The white point is D65. \n
+ * 0 <= L <= 1 ; -0.5 <= ab <= +0.5 ; 0 <= XYZ <= 1
+ * \ingroup color */
+inline void imColorLab2XYZ(const float L, const float a, const float b,
+ float& X, float& Y, float& Z)
+
+{
+ float fY = (L + 0.16f) / 1.16f;
+ float gY = IM_GWLAB(fY);
+
+ float fgY = IM_FWLAB(gY);
+ float gX = fgY + a / 2.5f;
+ float gZ = fgY - b;
+ gX = IM_GWLAB(gX);
+ gZ = IM_GWLAB(gZ);
+
+ X = gX * 0.9505f; // white point D65
+ Y = gY * 1.0f;
+ Z = gZ * 1.0890f;
+}
+
+/** Converts CIE XYZ (linear) to CIE L*u*v* (nonlinear). \n
+ * The white point is D65. \n
+\verbatim
+ 0 <= L <= 1 ; -1 <= uv <= +1 ; 0 <= XYZ <= 1
+
+ Y = Y / 1.0 (for D65)
+ if (Y > 0.008856)
+ fY = pow(Y, 1/3)
+ else
+ fY = 7.787 * Y + 0.16/1.16
+ L = 1.16 * fY - 0.16
+
+ U(x, y, z) = (4 * x)/(x + 15 * y + 3 * z)
+ V(x, y, z) = (9 * x)/(x + 15 * y + 3 * z)
+ un = U(Xn, Yn, Zn) = 0.1978 (for D65)
+ vn = V(Xn, Yn, Zn) = 0.4683 (for D65)
+ fu = U(X, Y, Z)
+ fv = V(X, Y, Z)
+
+ u = 13 * L * (fu - un)
+ v = 13 * L * (fv - vn)
+\endverbatim
+ * \ingroup color */
+inline void imColorXYZ2Luv(const float X, const float Y, const float Z,
+ float& L, float& u, float& v)
+{
+ float XYZ = (float)(X + 15 * Y + 3 * Z);
+ float fY = Y / 1.0f;
+
+ if (XYZ != 0)
+ {
+ L = 1.16f * IM_FWLAB(fY) - 0.16f;
+ u = 6.5f * L * ((4 * X)/XYZ - 0.1978f);
+ v = 6.5f * L * ((9 * Y)/XYZ - 0.4683f);
+ }
+ else
+ {
+ L = u = v = 0;
+ }
+}
+
+/** Converts CIE L*u*v* (nonlinear) to CIE XYZ (linear). \n
+ * The white point is D65.
+ * 0 <= L <= 1 ; -0.5 <= uv <= +0.5 ; 0 <= XYZ <= 1 \n
+ * \ingroup color */
+inline void imColorLuv2XYZ(const float L, const float u, const float v,
+ float& X, float& Y, float& Z)
+
+{
+ float fY = (L + 0.16f) / 1.16f;
+ Y = IM_GWLAB(fY) * 1.0f;
+
+ float ul = 0.1978f, vl = 0.4683f;
+ if (L != 0)
+ {
+ ul = u / (6.5f * L) + 0.1978f;
+ vl = v / (6.5f * L) + 0.4683f;
+ }
+
+ X = ((9 * ul) / (4 * vl)) * Y;
+ Z = ((12 - 3 * ul - 20 * vl) / (4 * vl)) * Y;
+}
+
+/** Converts nonlinear values to linear values. \n
+ * We use the sRGB transfer function. sRGB uses ITU-R 709 primaries and D65 white point. \n
+\verbatim
+ 0 <= l <= 1 ; 0 <= v <= 1
+
+ if (v < 0.03928)
+ l = v / 12.92
+ else
+ l = pow((v + 0.055) / 1.055, 2.4)
+\endverbatim
+ * \ingroup color */
+inline float imColorTransfer2Linear(const float& nonlinear_value)
+{
+ if (nonlinear_value < 0.03928f)
+ return nonlinear_value / 12.92f;
+ else
+ return powf((nonlinear_value + 0.055f) / 1.055f, 2.4f);
+}
+
+/** Converts linear values to nonlinear values. \n
+ * We use the sRGB transfer function. sRGB uses ITU-R 709 primaries and D65 white point. \n
+\verbatim
+ 0 <= l <= 1 ; 0 <= v <= 1
+
+ if (l < 0.0031308)
+ v = 12.92 * l
+ else
+ v = 1.055 * pow(l, 1/2.4) - 0.055
+\endverbatim
+ * \ingroup color */
+inline float imColorTransfer2Nonlinear(const float& value)
+{
+ if (value < 0.0031308f)
+ return 12.92f * value;
+ else
+ return 1.055f * powf(value, 1.0f/2.4f) - 0.055f;
+}
+
+/** Converts RGB (linear) to R'G'B' (nonlinear).
+ * \ingroup color */
+inline void imColorRGB2RGBNonlinear(const float RL, const float GL, const float BL,
+ float& R, float& G, float& B)
+{
+ R = imColorTransfer2Nonlinear(RL);
+ G = imColorTransfer2Nonlinear(GL);
+ B = imColorTransfer2Nonlinear(BL);
+}
+
+/** Converts R'G'B' to Y' (all nonlinear). \n
+\verbatim
+ Y' = 0.299 *R' + 0.587 *G' + 0.114 *B'
+\endverbatim
+ * \ingroup color */
+template <class T>
+inline T imColorRGB2Luma(const T R, const T G, const T B)
+{
+ return (T)((299 * R + 587 * G + 114 * B) / 1000);
+}
+
+/** Converts Luminance (CIE Y) to Lightness (CIE L*) (all linear). \n
+ * The white point is D65.
+\verbatim
+ 0 <= Y <= 1 ; 0 <= L* <= 1
+
+ Y = Y / 1.0 (for D65)
+ if (Y > 0.008856)
+ fY = pow(Y, 1/3)
+ else
+ fY = 7.787 * Y + 0.16/1.16
+ L = 1.16 * fY - 0.16
+\endverbatim
+ * \ingroup color */
+inline float imColorLuminance2Lightness(const float& Y)
+{
+ return 1.16f * IM_FWLAB(Y) - 0.16f;
+}
+
+/** Converts Lightness (CIE L*) to Luminance (CIE Y) (all linear). \n
+ * The white point is D65.
+\verbatim
+ 0 <= Y <= 1 ; 0 <= L* <= 1
+
+ fY = (L + 0.16)/1.16
+ if (fY > 0.20689)
+ Y = pow(fY, 3)
+ else
+ Y = 0.1284 * (fY - 0.16/1.16)
+ Y = Y * 1.0 (for D65)
+\endverbatim
+ * \ingroup color */
+inline float imColorLightness2Luminance(const float& L)
+{
+ float fY = (L + 0.16f) / 1.16f;
+ return IM_GWLAB(fY);
+}
+
+#undef IM_FWLAB
+#undef IM_GWLAB
+#undef IM_CROPL
+#undef IM_CROPC
+
+#endif