diff options
author | scuri <scuri> | 2008-10-17 06:10:15 +0000 |
---|---|---|
committer | scuri <scuri> | 2008-10-17 06:10:15 +0000 |
commit | 5a422aba704c375a307a902bafe658342e209906 (patch) | |
tree | 5005011e086bb863d8fb587ad3319bbec59b2447 /src/fftw3/rdft/codelets/r2hc/hf_64.c |
First commit - moving from LuaForge to SourceForge
Diffstat (limited to 'src/fftw3/rdft/codelets/r2hc/hf_64.c')
-rw-r--r-- | src/fftw3/rdft/codelets/r2hc/hf_64.c | 2001 |
1 files changed, 2001 insertions, 0 deletions
diff --git a/src/fftw3/rdft/codelets/r2hc/hf_64.c b/src/fftw3/rdft/codelets/r2hc/hf_64.c new file mode 100644 index 0000000..3e99d63 --- /dev/null +++ b/src/fftw3/rdft/codelets/r2hc/hf_64.c @@ -0,0 +1,2001 @@ +/* + * Copyright (c) 2003 Matteo Frigo + * Copyright (c) 2003 Massachusetts Institute of Technology + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA + * + */ + +/* This file was automatically generated --- DO NOT EDIT */ +/* Generated on Sat Jul 5 21:57:11 EDT 2003 */ + +#include "codelet-rdft.h" + +/* Generated by: /homee/stevenj/cvs/fftw3.0.1/genfft/gen_hc2hc -compact -variables 4 -n 64 -dit -name hf_64 -include hf.h */ + +/* + * This function contains 1038 FP additions, 500 FP multiplications, + * (or, 808 additions, 270 multiplications, 230 fused multiply/add), + * 176 stack variables, and 256 memory accesses + */ +/* + * Generator Id's : + * $Id: hf_64.c,v 1.1 2008/10/17 06:12:34 scuri Exp $ + * $Id: hf_64.c,v 1.1 2008/10/17 06:12:34 scuri Exp $ + * $Id: hf_64.c,v 1.1 2008/10/17 06:12:34 scuri Exp $ + */ + +#include "hf.h" + +static const R *hf_64(R *rio, R *iio, const R *W, stride ios, int m, int dist) +{ + DK(KP471396736, +0.471396736825997648556387625905254377657460319); + DK(KP881921264, +0.881921264348355029712756863660388349508442621); + DK(KP290284677, +0.290284677254462367636192375817395274691476278); + DK(KP956940335, +0.956940335732208864935797886980269969482849206); + DK(KP634393284, +0.634393284163645498215171613225493370675687095); + DK(KP773010453, +0.773010453362736960810906609758469800971041293); + DK(KP098017140, +0.098017140329560601994195563888641845861136673); + DK(KP995184726, +0.995184726672196886244836953109479921575474869); + DK(KP555570233, +0.555570233019602224742830813948532874374937191); + DK(KP831469612, +0.831469612302545237078788377617905756738560812); + DK(KP980785280, +0.980785280403230449126182236134239036973933731); + DK(KP195090322, +0.195090322016128267848284868477022240927691618); + DK(KP923879532, +0.923879532511286756128183189396788286822416626); + DK(KP382683432, +0.382683432365089771728459984030398866761344562); + DK(KP707106781, +0.707106781186547524400844362104849039284835938); + int i; + for (i = m - 2; i > 0; i = i - 2, rio = rio + dist, iio = iio - dist, W = W + 126) { + E Tj, TcL, ThT, Tin, T6b, Taz, TgT, Thn, TG, Thm, TcO, TgO, T6m, ThQ, TaC; + E Tim, T14, Tfq, T6y, T9O, TaG, Tc0, TcU, TeE, T1r, Tfr, T6J, T9P, TaJ, Tc1; + E TcZ, TeF, T1Q, T2d, Tfx, Tfu, Tfv, Tfw, T6Q, TaM, Tdb, TeJ, T71, TaQ, T7a; + E TaN, Td6, TeI, T77, TaP, T2B, T2Y, Tfz, TfA, TfB, TfC, T7h, TaW, Tdm, TeM; + E T7s, TaU, T7B, TaX, Tdh, TeL, T7y, TaT, T3M, TfL, TdL, TeQ, TfI, Tgt, T7K; + E Tb2, T7V, Tbe, T8s, Tb3, Tdu, TeT, T8p, Tbd, T5j, TfR, Tec, Tf0, TfY, Tgy; + E T8D, Tbl, T8O, Tbx, T9l, Tbm, TdV, TeX, T9i, Tbw, T64, TfZ, Te5, Ted, TfU; + E Tgz, T90, T9o, T9b, T9n, Tbt, Tbz, Te0, Tee, Tbq, TbA, T4x, TfJ, TdE, TdM; + E TfO, Tgu, T87, T8v, T8i, T8u, Tba, Tbg, Tdz, TdN, Tb7, Tbh; + { + E T1, TgR, T6, TgQ, Tc, T68, Th, T69; + T1 = rio[0]; + TgR = iio[-WS(ios, 63)]; + { + E T3, T5, T2, T4; + T3 = rio[WS(ios, 32)]; + T5 = iio[-WS(ios, 31)]; + T2 = W[62]; + T4 = W[63]; + T6 = FMA(T2, T3, T4 * T5); + TgQ = FNMS(T4, T3, T2 * T5); + } + { + E T9, Tb, T8, Ta; + T9 = rio[WS(ios, 16)]; + Tb = iio[-WS(ios, 47)]; + T8 = W[30]; + Ta = W[31]; + Tc = FMA(T8, T9, Ta * Tb); + T68 = FNMS(Ta, T9, T8 * Tb); + } + { + E Te, Tg, Td, Tf; + Te = rio[WS(ios, 48)]; + Tg = iio[-WS(ios, 15)]; + Td = W[94]; + Tf = W[95]; + Th = FMA(Td, Te, Tf * Tg); + T69 = FNMS(Tf, Te, Td * Tg); + } + { + E T7, Ti, ThR, ThS; + T7 = T1 + T6; + Ti = Tc + Th; + Tj = T7 + Ti; + TcL = T7 - Ti; + ThR = TgR - TgQ; + ThS = Tc - Th; + ThT = ThR - ThS; + Tin = ThS + ThR; + } + { + E T67, T6a, TgP, TgS; + T67 = T1 - T6; + T6a = T68 - T69; + T6b = T67 - T6a; + Taz = T67 + T6a; + TgP = T68 + T69; + TgS = TgQ + TgR; + TgT = TgP + TgS; + Thn = TgS - TgP; + } + } + { + E To, T6c, Tt, T6d, T6e, T6f, Tz, T6i, TE, T6j, T6h, T6k; + { + E Tl, Tn, Tk, Tm; + Tl = rio[WS(ios, 8)]; + Tn = iio[-WS(ios, 55)]; + Tk = W[14]; + Tm = W[15]; + To = FMA(Tk, Tl, Tm * Tn); + T6c = FNMS(Tm, Tl, Tk * Tn); + } + { + E Tq, Ts, Tp, Tr; + Tq = rio[WS(ios, 40)]; + Ts = iio[-WS(ios, 23)]; + Tp = W[78]; + Tr = W[79]; + Tt = FMA(Tp, Tq, Tr * Ts); + T6d = FNMS(Tr, Tq, Tp * Ts); + } + T6e = T6c - T6d; + T6f = To - Tt; + { + E Tw, Ty, Tv, Tx; + Tw = rio[WS(ios, 56)]; + Ty = iio[-WS(ios, 7)]; + Tv = W[110]; + Tx = W[111]; + Tz = FMA(Tv, Tw, Tx * Ty); + T6i = FNMS(Tx, Tw, Tv * Ty); + } + { + E TB, TD, TA, TC; + TB = rio[WS(ios, 24)]; + TD = iio[-WS(ios, 39)]; + TA = W[46]; + TC = W[47]; + TE = FMA(TA, TB, TC * TD); + T6j = FNMS(TC, TB, TA * TD); + } + T6h = Tz - TE; + T6k = T6i - T6j; + { + E Tu, TF, TcM, TcN; + Tu = To + Tt; + TF = Tz + TE; + TG = Tu + TF; + Thm = TF - Tu; + TcM = T6c + T6d; + TcN = T6i + T6j; + TcO = TcM - TcN; + TgO = TcM + TcN; + } + { + E T6g, T6l, TaA, TaB; + T6g = T6e - T6f; + T6l = T6h + T6k; + T6m = KP707106781 * (T6g - T6l); + ThQ = KP707106781 * (T6g + T6l); + TaA = T6f + T6e; + TaB = T6h - T6k; + TaC = KP707106781 * (TaA + TaB); + Tim = KP707106781 * (TaB - TaA); + } + } + { + E TS, TcQ, T6q, T6t, T13, TcR, T6r, T6w, T6s, T6x; + { + E TM, T6o, TR, T6p; + { + E TJ, TL, TI, TK; + TJ = rio[WS(ios, 4)]; + TL = iio[-WS(ios, 59)]; + TI = W[6]; + TK = W[7]; + TM = FMA(TI, TJ, TK * TL); + T6o = FNMS(TK, TJ, TI * TL); + } + { + E TO, TQ, TN, TP; + TO = rio[WS(ios, 36)]; + TQ = iio[-WS(ios, 27)]; + TN = W[70]; + TP = W[71]; + TR = FMA(TN, TO, TP * TQ); + T6p = FNMS(TP, TO, TN * TQ); + } + TS = TM + TR; + TcQ = T6o + T6p; + T6q = T6o - T6p; + T6t = TM - TR; + } + { + E TX, T6u, T12, T6v; + { + E TU, TW, TT, TV; + TU = rio[WS(ios, 20)]; + TW = iio[-WS(ios, 43)]; + TT = W[38]; + TV = W[39]; + TX = FMA(TT, TU, TV * TW); + T6u = FNMS(TV, TU, TT * TW); + } + { + E TZ, T11, TY, T10; + TZ = rio[WS(ios, 52)]; + T11 = iio[-WS(ios, 11)]; + TY = W[102]; + T10 = W[103]; + T12 = FMA(TY, TZ, T10 * T11); + T6v = FNMS(T10, TZ, TY * T11); + } + T13 = TX + T12; + TcR = T6u + T6v; + T6r = TX - T12; + T6w = T6u - T6v; + } + T14 = TS + T13; + Tfq = TcQ + TcR; + T6s = T6q + T6r; + T6x = T6t - T6w; + T6y = FNMS(KP923879532, T6x, KP382683432 * T6s); + T9O = FMA(KP923879532, T6s, KP382683432 * T6x); + { + E TaE, TaF, TcS, TcT; + TaE = T6q - T6r; + TaF = T6t + T6w; + TaG = FNMS(KP382683432, TaF, KP923879532 * TaE); + Tc0 = FMA(KP382683432, TaE, KP923879532 * TaF); + TcS = TcQ - TcR; + TcT = TS - T13; + TcU = TcS - TcT; + TeE = TcT + TcS; + } + } + { + E T1f, TcW, T6B, T6E, T1q, TcX, T6C, T6H, T6D, T6I; + { + E T19, T6z, T1e, T6A; + { + E T16, T18, T15, T17; + T16 = rio[WS(ios, 60)]; + T18 = iio[-WS(ios, 3)]; + T15 = W[118]; + T17 = W[119]; + T19 = FMA(T15, T16, T17 * T18); + T6z = FNMS(T17, T16, T15 * T18); + } + { + E T1b, T1d, T1a, T1c; + T1b = rio[WS(ios, 28)]; + T1d = iio[-WS(ios, 35)]; + T1a = W[54]; + T1c = W[55]; + T1e = FMA(T1a, T1b, T1c * T1d); + T6A = FNMS(T1c, T1b, T1a * T1d); + } + T1f = T19 + T1e; + TcW = T6z + T6A; + T6B = T6z - T6A; + T6E = T19 - T1e; + } + { + E T1k, T6F, T1p, T6G; + { + E T1h, T1j, T1g, T1i; + T1h = rio[WS(ios, 12)]; + T1j = iio[-WS(ios, 51)]; + T1g = W[22]; + T1i = W[23]; + T1k = FMA(T1g, T1h, T1i * T1j); + T6F = FNMS(T1i, T1h, T1g * T1j); + } + { + E T1m, T1o, T1l, T1n; + T1m = rio[WS(ios, 44)]; + T1o = iio[-WS(ios, 19)]; + T1l = W[86]; + T1n = W[87]; + T1p = FMA(T1l, T1m, T1n * T1o); + T6G = FNMS(T1n, T1m, T1l * T1o); + } + T1q = T1k + T1p; + TcX = T6F + T6G; + T6C = T1k - T1p; + T6H = T6F - T6G; + } + T1r = T1f + T1q; + Tfr = TcW + TcX; + T6D = T6B + T6C; + T6I = T6E - T6H; + T6J = FMA(KP382683432, T6D, KP923879532 * T6I); + T9P = FNMS(KP923879532, T6D, KP382683432 * T6I); + { + E TaH, TaI, TcV, TcY; + TaH = T6B - T6C; + TaI = T6E + T6H; + TaJ = FMA(KP923879532, TaH, KP382683432 * TaI); + Tc1 = FNMS(KP382683432, TaH, KP923879532 * TaI); + TcV = T1f - T1q; + TcY = TcW - TcX; + TcZ = TcV + TcY; + TeF = TcV - TcY; + } + } + { + E T1y, T6M, T1D, T6N, T1E, Td2, T1J, T74, T1O, T75, T1P, Td3, T21, Td8, T6W; + E T6Z, T2c, Td9, T6R, T6U; + { + E T1v, T1x, T1u, T1w; + T1v = rio[WS(ios, 2)]; + T1x = iio[-WS(ios, 61)]; + T1u = W[2]; + T1w = W[3]; + T1y = FMA(T1u, T1v, T1w * T1x); + T6M = FNMS(T1w, T1v, T1u * T1x); + } + { + E T1A, T1C, T1z, T1B; + T1A = rio[WS(ios, 34)]; + T1C = iio[-WS(ios, 29)]; + T1z = W[66]; + T1B = W[67]; + T1D = FMA(T1z, T1A, T1B * T1C); + T6N = FNMS(T1B, T1A, T1z * T1C); + } + T1E = T1y + T1D; + Td2 = T6M + T6N; + { + E T1G, T1I, T1F, T1H; + T1G = rio[WS(ios, 18)]; + T1I = iio[-WS(ios, 45)]; + T1F = W[34]; + T1H = W[35]; + T1J = FMA(T1F, T1G, T1H * T1I); + T74 = FNMS(T1H, T1G, T1F * T1I); + } + { + E T1L, T1N, T1K, T1M; + T1L = rio[WS(ios, 50)]; + T1N = iio[-WS(ios, 13)]; + T1K = W[98]; + T1M = W[99]; + T1O = FMA(T1K, T1L, T1M * T1N); + T75 = FNMS(T1M, T1L, T1K * T1N); + } + T1P = T1J + T1O; + Td3 = T74 + T75; + { + E T1V, T6X, T20, T6Y; + { + E T1S, T1U, T1R, T1T; + T1S = rio[WS(ios, 10)]; + T1U = iio[-WS(ios, 53)]; + T1R = W[18]; + T1T = W[19]; + T1V = FMA(T1R, T1S, T1T * T1U); + T6X = FNMS(T1T, T1S, T1R * T1U); + } + { + E T1X, T1Z, T1W, T1Y; + T1X = rio[WS(ios, 42)]; + T1Z = iio[-WS(ios, 21)]; + T1W = W[82]; + T1Y = W[83]; + T20 = FMA(T1W, T1X, T1Y * T1Z); + T6Y = FNMS(T1Y, T1X, T1W * T1Z); + } + T21 = T1V + T20; + Td8 = T6X + T6Y; + T6W = T1V - T20; + T6Z = T6X - T6Y; + } + { + E T26, T6S, T2b, T6T; + { + E T23, T25, T22, T24; + T23 = rio[WS(ios, 58)]; + T25 = iio[-WS(ios, 5)]; + T22 = W[114]; + T24 = W[115]; + T26 = FMA(T22, T23, T24 * T25); + T6S = FNMS(T24, T23, T22 * T25); + } + { + E T28, T2a, T27, T29; + T28 = rio[WS(ios, 26)]; + T2a = iio[-WS(ios, 37)]; + T27 = W[50]; + T29 = W[51]; + T2b = FMA(T27, T28, T29 * T2a); + T6T = FNMS(T29, T28, T27 * T2a); + } + T2c = T26 + T2b; + Td9 = T6S + T6T; + T6R = T26 - T2b; + T6U = T6S - T6T; + } + T1Q = T1E + T1P; + T2d = T21 + T2c; + Tfx = T1Q - T2d; + Tfu = Td2 + Td3; + Tfv = Td8 + Td9; + Tfw = Tfu - Tfv; + { + E T6O, T6P, Td7, Tda; + T6O = T6M - T6N; + T6P = T1J - T1O; + T6Q = T6O + T6P; + TaM = T6O - T6P; + Td7 = T1E - T1P; + Tda = Td8 - Td9; + Tdb = Td7 - Tda; + TeJ = Td7 + Tda; + } + { + E T6V, T70, T78, T79; + T6V = T6R - T6U; + T70 = T6W + T6Z; + T71 = KP707106781 * (T6V - T70); + TaQ = KP707106781 * (T70 + T6V); + T78 = T6Z - T6W; + T79 = T6R + T6U; + T7a = KP707106781 * (T78 - T79); + TaN = KP707106781 * (T78 + T79); + } + { + E Td4, Td5, T73, T76; + Td4 = Td2 - Td3; + Td5 = T2c - T21; + Td6 = Td4 - Td5; + TeI = Td4 + Td5; + T73 = T1y - T1D; + T76 = T74 - T75; + T77 = T73 - T76; + TaP = T73 + T76; + } + } + { + E T2j, T7d, T2o, T7e, T2p, Tdd, T2u, T7v, T2z, T7w, T2A, Tde, T2M, Tdj, T7n; + E T7q, T2X, Tdk, T7i, T7l; + { + E T2g, T2i, T2f, T2h; + T2g = rio[WS(ios, 62)]; + T2i = iio[-WS(ios, 1)]; + T2f = W[122]; + T2h = W[123]; + T2j = FMA(T2f, T2g, T2h * T2i); + T7d = FNMS(T2h, T2g, T2f * T2i); + } + { + E T2l, T2n, T2k, T2m; + T2l = rio[WS(ios, 30)]; + T2n = iio[-WS(ios, 33)]; + T2k = W[58]; + T2m = W[59]; + T2o = FMA(T2k, T2l, T2m * T2n); + T7e = FNMS(T2m, T2l, T2k * T2n); + } + T2p = T2j + T2o; + Tdd = T7d + T7e; + { + E T2r, T2t, T2q, T2s; + T2r = rio[WS(ios, 14)]; + T2t = iio[-WS(ios, 49)]; + T2q = W[26]; + T2s = W[27]; + T2u = FMA(T2q, T2r, T2s * T2t); + T7v = FNMS(T2s, T2r, T2q * T2t); + } + { + E T2w, T2y, T2v, T2x; + T2w = rio[WS(ios, 46)]; + T2y = iio[-WS(ios, 17)]; + T2v = W[90]; + T2x = W[91]; + T2z = FMA(T2v, T2w, T2x * T2y); + T7w = FNMS(T2x, T2w, T2v * T2y); + } + T2A = T2u + T2z; + Tde = T7v + T7w; + { + E T2G, T7o, T2L, T7p; + { + E T2D, T2F, T2C, T2E; + T2D = rio[WS(ios, 6)]; + T2F = iio[-WS(ios, 57)]; + T2C = W[10]; + T2E = W[11]; + T2G = FMA(T2C, T2D, T2E * T2F); + T7o = FNMS(T2E, T2D, T2C * T2F); + } + { + E T2I, T2K, T2H, T2J; + T2I = rio[WS(ios, 38)]; + T2K = iio[-WS(ios, 25)]; + T2H = W[74]; + T2J = W[75]; + T2L = FMA(T2H, T2I, T2J * T2K); + T7p = FNMS(T2J, T2I, T2H * T2K); + } + T2M = T2G + T2L; + Tdj = T7o + T7p; + T7n = T2G - T2L; + T7q = T7o - T7p; + } + { + E T2R, T7j, T2W, T7k; + { + E T2O, T2Q, T2N, T2P; + T2O = rio[WS(ios, 54)]; + T2Q = iio[-WS(ios, 9)]; + T2N = W[106]; + T2P = W[107]; + T2R = FMA(T2N, T2O, T2P * T2Q); + T7j = FNMS(T2P, T2O, T2N * T2Q); + } + { + E T2T, T2V, T2S, T2U; + T2T = rio[WS(ios, 22)]; + T2V = iio[-WS(ios, 41)]; + T2S = W[42]; + T2U = W[43]; + T2W = FMA(T2S, T2T, T2U * T2V); + T7k = FNMS(T2U, T2T, T2S * T2V); + } + T2X = T2R + T2W; + Tdk = T7j + T7k; + T7i = T2R - T2W; + T7l = T7j - T7k; + } + T2B = T2p + T2A; + T2Y = T2M + T2X; + Tfz = T2B - T2Y; + TfA = Tdd + Tde; + TfB = Tdj + Tdk; + TfC = TfA - TfB; + { + E T7f, T7g, Tdi, Tdl; + T7f = T7d - T7e; + T7g = T2u - T2z; + T7h = T7f + T7g; + TaW = T7f - T7g; + Tdi = T2p - T2A; + Tdl = Tdj - Tdk; + Tdm = Tdi - Tdl; + TeM = Tdi + Tdl; + } + { + E T7m, T7r, T7z, T7A; + T7m = T7i - T7l; + T7r = T7n + T7q; + T7s = KP707106781 * (T7m - T7r); + TaU = KP707106781 * (T7r + T7m); + T7z = T7q - T7n; + T7A = T7i + T7l; + T7B = KP707106781 * (T7z - T7A); + TaX = KP707106781 * (T7z + T7A); + } + { + E Tdf, Tdg, T7u, T7x; + Tdf = Tdd - Tde; + Tdg = T2X - T2M; + Tdh = Tdf - Tdg; + TeL = Tdf + Tdg; + T7u = T2j - T2o; + T7x = T7v - T7w; + T7y = T7u - T7x; + TaT = T7u + T7x; + } + } + { + E T36, T7G, T3b, T7H, T3c, Tdq, T3h, T8m, T3m, T8n, T3n, Tdr, T3z, TdI, T7Q; + E T7T, T3K, TdJ, T7L, T7O; + { + E T33, T35, T32, T34; + T33 = rio[WS(ios, 1)]; + T35 = iio[-WS(ios, 62)]; + T32 = W[0]; + T34 = W[1]; + T36 = FMA(T32, T33, T34 * T35); + T7G = FNMS(T34, T33, T32 * T35); + } + { + E T38, T3a, T37, T39; + T38 = rio[WS(ios, 33)]; + T3a = iio[-WS(ios, 30)]; + T37 = W[64]; + T39 = W[65]; + T3b = FMA(T37, T38, T39 * T3a); + T7H = FNMS(T39, T38, T37 * T3a); + } + T3c = T36 + T3b; + Tdq = T7G + T7H; + { + E T3e, T3g, T3d, T3f; + T3e = rio[WS(ios, 17)]; + T3g = iio[-WS(ios, 46)]; + T3d = W[32]; + T3f = W[33]; + T3h = FMA(T3d, T3e, T3f * T3g); + T8m = FNMS(T3f, T3e, T3d * T3g); + } + { + E T3j, T3l, T3i, T3k; + T3j = rio[WS(ios, 49)]; + T3l = iio[-WS(ios, 14)]; + T3i = W[96]; + T3k = W[97]; + T3m = FMA(T3i, T3j, T3k * T3l); + T8n = FNMS(T3k, T3j, T3i * T3l); + } + T3n = T3h + T3m; + Tdr = T8m + T8n; + { + E T3t, T7R, T3y, T7S; + { + E T3q, T3s, T3p, T3r; + T3q = rio[WS(ios, 9)]; + T3s = iio[-WS(ios, 54)]; + T3p = W[16]; + T3r = W[17]; + T3t = FMA(T3p, T3q, T3r * T3s); + T7R = FNMS(T3r, T3q, T3p * T3s); + } + { + E T3v, T3x, T3u, T3w; + T3v = rio[WS(ios, 41)]; + T3x = iio[-WS(ios, 22)]; + T3u = W[80]; + T3w = W[81]; + T3y = FMA(T3u, T3v, T3w * T3x); + T7S = FNMS(T3w, T3v, T3u * T3x); + } + T3z = T3t + T3y; + TdI = T7R + T7S; + T7Q = T3t - T3y; + T7T = T7R - T7S; + } + { + E T3E, T7M, T3J, T7N; + { + E T3B, T3D, T3A, T3C; + T3B = rio[WS(ios, 57)]; + T3D = iio[-WS(ios, 6)]; + T3A = W[112]; + T3C = W[113]; + T3E = FMA(T3A, T3B, T3C * T3D); + T7M = FNMS(T3C, T3B, T3A * T3D); + } + { + E T3G, T3I, T3F, T3H; + T3G = rio[WS(ios, 25)]; + T3I = iio[-WS(ios, 38)]; + T3F = W[48]; + T3H = W[49]; + T3J = FMA(T3F, T3G, T3H * T3I); + T7N = FNMS(T3H, T3G, T3F * T3I); + } + T3K = T3E + T3J; + TdJ = T7M + T7N; + T7L = T3E - T3J; + T7O = T7M - T7N; + } + { + E T3o, T3L, TdH, TdK; + T3o = T3c + T3n; + T3L = T3z + T3K; + T3M = T3o + T3L; + TfL = T3o - T3L; + TdH = T3c - T3n; + TdK = TdI - TdJ; + TdL = TdH - TdK; + TeQ = TdH + TdK; + } + { + E TfG, TfH, T7I, T7J; + TfG = Tdq + Tdr; + TfH = TdI + TdJ; + TfI = TfG - TfH; + Tgt = TfG + TfH; + T7I = T7G - T7H; + T7J = T3h - T3m; + T7K = T7I + T7J; + Tb2 = T7I - T7J; + } + { + E T7P, T7U, T8q, T8r; + T7P = T7L - T7O; + T7U = T7Q + T7T; + T7V = KP707106781 * (T7P - T7U); + Tbe = KP707106781 * (T7U + T7P); + T8q = T7T - T7Q; + T8r = T7L + T7O; + T8s = KP707106781 * (T8q - T8r); + Tb3 = KP707106781 * (T8q + T8r); + } + { + E Tds, Tdt, T8l, T8o; + Tds = Tdq - Tdr; + Tdt = T3K - T3z; + Tdu = Tds - Tdt; + TeT = Tds + Tdt; + T8l = T36 - T3b; + T8o = T8m - T8n; + T8p = T8l - T8o; + Tbd = T8l + T8o; + } + } + { + E T4D, T9e, T4I, T9f, T4J, Te8, T4O, T8A, T4T, T8B, T4U, Te9, T56, TdS, T8G; + E T8H, T5h, TdT, T8J, T8M; + { + E T4A, T4C, T4z, T4B; + T4A = rio[WS(ios, 63)]; + T4C = iio[0]; + T4z = W[124]; + T4B = W[125]; + T4D = FMA(T4z, T4A, T4B * T4C); + T9e = FNMS(T4B, T4A, T4z * T4C); + } + { + E T4F, T4H, T4E, T4G; + T4F = rio[WS(ios, 31)]; + T4H = iio[-WS(ios, 32)]; + T4E = W[60]; + T4G = W[61]; + T4I = FMA(T4E, T4F, T4G * T4H); + T9f = FNMS(T4G, T4F, T4E * T4H); + } + T4J = T4D + T4I; + Te8 = T9e + T9f; + { + E T4L, T4N, T4K, T4M; + T4L = rio[WS(ios, 15)]; + T4N = iio[-WS(ios, 48)]; + T4K = W[28]; + T4M = W[29]; + T4O = FMA(T4K, T4L, T4M * T4N); + T8A = FNMS(T4M, T4L, T4K * T4N); + } + { + E T4Q, T4S, T4P, T4R; + T4Q = rio[WS(ios, 47)]; + T4S = iio[-WS(ios, 16)]; + T4P = W[92]; + T4R = W[93]; + T4T = FMA(T4P, T4Q, T4R * T4S); + T8B = FNMS(T4R, T4Q, T4P * T4S); + } + T4U = T4O + T4T; + Te9 = T8A + T8B; + { + E T50, T8E, T55, T8F; + { + E T4X, T4Z, T4W, T4Y; + T4X = rio[WS(ios, 7)]; + T4Z = iio[-WS(ios, 56)]; + T4W = W[12]; + T4Y = W[13]; + T50 = FMA(T4W, T4X, T4Y * T4Z); + T8E = FNMS(T4Y, T4X, T4W * T4Z); + } + { + E T52, T54, T51, T53; + T52 = rio[WS(ios, 39)]; + T54 = iio[-WS(ios, 24)]; + T51 = W[76]; + T53 = W[77]; + T55 = FMA(T51, T52, T53 * T54); + T8F = FNMS(T53, T52, T51 * T54); + } + T56 = T50 + T55; + TdS = T8E + T8F; + T8G = T8E - T8F; + T8H = T50 - T55; + } + { + E T5b, T8K, T5g, T8L; + { + E T58, T5a, T57, T59; + T58 = rio[WS(ios, 55)]; + T5a = iio[-WS(ios, 8)]; + T57 = W[108]; + T59 = W[109]; + T5b = FMA(T57, T58, T59 * T5a); + T8K = FNMS(T59, T58, T57 * T5a); + } + { + E T5d, T5f, T5c, T5e; + T5d = rio[WS(ios, 23)]; + T5f = iio[-WS(ios, 40)]; + T5c = W[44]; + T5e = W[45]; + T5g = FMA(T5c, T5d, T5e * T5f); + T8L = FNMS(T5e, T5d, T5c * T5f); + } + T5h = T5b + T5g; + TdT = T8K + T8L; + T8J = T5b - T5g; + T8M = T8K - T8L; + } + { + E T4V, T5i, Tea, Teb; + T4V = T4J + T4U; + T5i = T56 + T5h; + T5j = T4V + T5i; + TfR = T4V - T5i; + Tea = Te8 - Te9; + Teb = T5h - T56; + Tec = Tea - Teb; + Tf0 = Tea + Teb; + } + { + E TfW, TfX, T8z, T8C; + TfW = Te8 + Te9; + TfX = TdS + TdT; + TfY = TfW - TfX; + Tgy = TfW + TfX; + T8z = T4D - T4I; + T8C = T8A - T8B; + T8D = T8z - T8C; + Tbl = T8z + T8C; + } + { + E T8I, T8N, T9j, T9k; + T8I = T8G - T8H; + T8N = T8J + T8M; + T8O = KP707106781 * (T8I - T8N); + Tbx = KP707106781 * (T8I + T8N); + T9j = T8J - T8M; + T9k = T8H + T8G; + T9l = KP707106781 * (T9j - T9k); + Tbm = KP707106781 * (T9k + T9j); + } + { + E TdR, TdU, T9g, T9h; + TdR = T4J - T4U; + TdU = TdS - TdT; + TdV = TdR - TdU; + TeX = TdR + TdU; + T9g = T9e - T9f; + T9h = T4O - T4T; + T9i = T9g + T9h; + Tbw = T9g - T9h; + } + } + { + E T5u, TdW, T8S, T8V, T62, Te3, T94, T99, T5F, TdX, T8T, T8Y, T5R, Te2, T93; + E T96; + { + E T5o, T8Q, T5t, T8R; + { + E T5l, T5n, T5k, T5m; + T5l = rio[WS(ios, 3)]; + T5n = iio[-WS(ios, 60)]; + T5k = W[4]; + T5m = W[5]; + T5o = FMA(T5k, T5l, T5m * T5n); + T8Q = FNMS(T5m, T5l, T5k * T5n); + } + { + E T5q, T5s, T5p, T5r; + T5q = rio[WS(ios, 35)]; + T5s = iio[-WS(ios, 28)]; + T5p = W[68]; + T5r = W[69]; + T5t = FMA(T5p, T5q, T5r * T5s); + T8R = FNMS(T5r, T5q, T5p * T5s); + } + T5u = T5o + T5t; + TdW = T8Q + T8R; + T8S = T8Q - T8R; + T8V = T5o - T5t; + } + { + E T5W, T97, T61, T98; + { + E T5T, T5V, T5S, T5U; + T5T = rio[WS(ios, 11)]; + T5V = iio[-WS(ios, 52)]; + T5S = W[20]; + T5U = W[21]; + T5W = FMA(T5S, T5T, T5U * T5V); + T97 = FNMS(T5U, T5T, T5S * T5V); + } + { + E T5Y, T60, T5X, T5Z; + T5Y = rio[WS(ios, 43)]; + T60 = iio[-WS(ios, 20)]; + T5X = W[84]; + T5Z = W[85]; + T61 = FMA(T5X, T5Y, T5Z * T60); + T98 = FNMS(T5Z, T5Y, T5X * T60); + } + T62 = T5W + T61; + Te3 = T97 + T98; + T94 = T5W - T61; + T99 = T97 - T98; + } + { + E T5z, T8W, T5E, T8X; + { + E T5w, T5y, T5v, T5x; + T5w = rio[WS(ios, 19)]; + T5y = iio[-WS(ios, 44)]; + T5v = W[36]; + T5x = W[37]; + T5z = FMA(T5v, T5w, T5x * T5y); + T8W = FNMS(T5x, T5w, T5v * T5y); + } + { + E T5B, T5D, T5A, T5C; + T5B = rio[WS(ios, 51)]; + T5D = iio[-WS(ios, 12)]; + T5A = W[100]; + T5C = W[101]; + T5E = FMA(T5A, T5B, T5C * T5D); + T8X = FNMS(T5C, T5B, T5A * T5D); + } + T5F = T5z + T5E; + TdX = T8W + T8X; + T8T = T5z - T5E; + T8Y = T8W - T8X; + } + { + E T5L, T91, T5Q, T92; + { + E T5I, T5K, T5H, T5J; + T5I = rio[WS(ios, 59)]; + T5K = iio[-WS(ios, 4)]; + T5H = W[116]; + T5J = W[117]; + T5L = FMA(T5H, T5I, T5J * T5K); + T91 = FNMS(T5J, T5I, T5H * T5K); + } + { + E T5N, T5P, T5M, T5O; + T5N = rio[WS(ios, 27)]; + T5P = iio[-WS(ios, 36)]; + T5M = W[52]; + T5O = W[53]; + T5Q = FMA(T5M, T5N, T5O * T5P); + T92 = FNMS(T5O, T5N, T5M * T5P); + } + T5R = T5L + T5Q; + Te2 = T91 + T92; + T93 = T91 - T92; + T96 = T5L - T5Q; + } + { + E T5G, T63, Te1, Te4; + T5G = T5u + T5F; + T63 = T5R + T62; + T64 = T5G + T63; + TfZ = T63 - T5G; + Te1 = T5R - T62; + Te4 = Te2 - Te3; + Te5 = Te1 + Te4; + Ted = Te1 - Te4; + } + { + E TfS, TfT, T8U, T8Z; + TfS = TdW + TdX; + TfT = Te2 + Te3; + TfU = TfS - TfT; + Tgz = TfS + TfT; + T8U = T8S + T8T; + T8Z = T8V - T8Y; + T90 = FNMS(KP923879532, T8Z, KP382683432 * T8U); + T9o = FMA(KP923879532, T8U, KP382683432 * T8Z); + } + { + E T95, T9a, Tbr, Tbs; + T95 = T93 + T94; + T9a = T96 - T99; + T9b = FMA(KP382683432, T95, KP923879532 * T9a); + T9n = FNMS(KP923879532, T95, KP382683432 * T9a); + Tbr = T93 - T94; + Tbs = T96 + T99; + Tbt = FMA(KP923879532, Tbr, KP382683432 * Tbs); + Tbz = FNMS(KP382683432, Tbr, KP923879532 * Tbs); + } + { + E TdY, TdZ, Tbo, Tbp; + TdY = TdW - TdX; + TdZ = T5u - T5F; + Te0 = TdY - TdZ; + Tee = TdZ + TdY; + Tbo = T8S - T8T; + Tbp = T8V + T8Y; + Tbq = FNMS(KP382683432, Tbp, KP923879532 * Tbo); + TbA = FMA(KP382683432, Tbo, KP923879532 * Tbp); + } + } + { + E T3X, TdB, T8a, T8d, T4v, Tdx, T80, T85, T48, TdC, T8b, T8g, T4k, Tdw, T7X; + E T84; + { + E T3R, T88, T3W, T89; + { + E T3O, T3Q, T3N, T3P; + T3O = rio[WS(ios, 5)]; + T3Q = iio[-WS(ios, 58)]; + T3N = W[8]; + T3P = W[9]; + T3R = FMA(T3N, T3O, T3P * T3Q); + T88 = FNMS(T3P, T3O, T3N * T3Q); + } + { + E T3T, T3V, T3S, T3U; + T3T = rio[WS(ios, 37)]; + T3V = iio[-WS(ios, 26)]; + T3S = W[72]; + T3U = W[73]; + T3W = FMA(T3S, T3T, T3U * T3V); + T89 = FNMS(T3U, T3T, T3S * T3V); + } + T3X = T3R + T3W; + TdB = T88 + T89; + T8a = T88 - T89; + T8d = T3R - T3W; + } + { + E T4p, T7Y, T4u, T7Z; + { + E T4m, T4o, T4l, T4n; + T4m = rio[WS(ios, 13)]; + T4o = iio[-WS(ios, 50)]; + T4l = W[24]; + T4n = W[25]; + T4p = FMA(T4l, T4m, T4n * T4o); + T7Y = FNMS(T4n, T4m, T4l * T4o); + } + { + E T4r, T4t, T4q, T4s; + T4r = rio[WS(ios, 45)]; + T4t = iio[-WS(ios, 18)]; + T4q = W[88]; + T4s = W[89]; + T4u = FMA(T4q, T4r, T4s * T4t); + T7Z = FNMS(T4s, T4r, T4q * T4t); + } + T4v = T4p + T4u; + Tdx = T7Y + T7Z; + T80 = T7Y - T7Z; + T85 = T4p - T4u; + } + { + E T42, T8e, T47, T8f; + { + E T3Z, T41, T3Y, T40; + T3Z = rio[WS(ios, 21)]; + T41 = iio[-WS(ios, 42)]; + T3Y = W[40]; + T40 = W[41]; + T42 = FMA(T3Y, T3Z, T40 * T41); + T8e = FNMS(T40, T3Z, T3Y * T41); + } + { + E T44, T46, T43, T45; + T44 = rio[WS(ios, 53)]; + T46 = iio[-WS(ios, 10)]; + T43 = W[104]; + T45 = W[105]; + T47 = FMA(T43, T44, T45 * T46); + T8f = FNMS(T45, T44, T43 * T46); + } + T48 = T42 + T47; + TdC = T8e + T8f; + T8b = T42 - T47; + T8g = T8e - T8f; + } + { + E T4e, T82, T4j, T83; + { + E T4b, T4d, T4a, T4c; + T4b = rio[WS(ios, 61)]; + T4d = iio[-WS(ios, 2)]; + T4a = W[120]; + T4c = W[121]; + T4e = FMA(T4a, T4b, T4c * T4d); + T82 = FNMS(T4c, T4b, T4a * T4d); + } + { + E T4g, T4i, T4f, T4h; + T4g = rio[WS(ios, 29)]; + T4i = iio[-WS(ios, 34)]; + T4f = W[56]; + T4h = W[57]; + T4j = FMA(T4f, T4g, T4h * T4i); + T83 = FNMS(T4h, T4g, T4f * T4i); + } + T4k = T4e + T4j; + Tdw = T82 + T83; + T7X = T4e - T4j; + T84 = T82 - T83; + } + { + E T49, T4w, TdA, TdD; + T49 = T3X + T48; + T4w = T4k + T4v; + T4x = T49 + T4w; + TfJ = T4w - T49; + TdA = T3X - T48; + TdD = TdB - TdC; + TdE = TdA + TdD; + TdM = TdD - TdA; + } + { + E TfM, TfN, T81, T86; + TfM = TdB + TdC; + TfN = Tdw + Tdx; + TfO = TfM - TfN; + Tgu = TfM + TfN; + T81 = T7X - T80; + T86 = T84 + T85; + T87 = FNMS(KP923879532, T86, KP382683432 * T81); + T8v = FMA(KP382683432, T86, KP923879532 * T81); + } + { + E T8c, T8h, Tb8, Tb9; + T8c = T8a + T8b; + T8h = T8d - T8g; + T8i = FMA(KP923879532, T8c, KP382683432 * T8h); + T8u = FNMS(KP923879532, T8h, KP382683432 * T8c); + Tb8 = T8a - T8b; + Tb9 = T8d + T8g; + Tba = FMA(KP382683432, Tb8, KP923879532 * Tb9); + Tbg = FNMS(KP382683432, Tb9, KP923879532 * Tb8); + } + { + E Tdv, Tdy, Tb5, Tb6; + Tdv = T4k - T4v; + Tdy = Tdw - Tdx; + Tdz = Tdv - Tdy; + TdN = Tdv + Tdy; + Tb5 = T7X + T80; + Tb6 = T84 - T85; + Tb7 = FNMS(KP382683432, Tb6, KP923879532 * Tb5); + Tbh = FMA(KP923879532, Tb6, KP382683432 * Tb5); + } + } + { + E T1t, Tgn, TgK, TgL, TgV, Th1, T30, Th0, T66, TgX, Tgw, TgE, TgB, TgF, Tgq; + E TgM; + { + E TH, T1s, TgI, TgJ; + TH = Tj + TG; + T1s = T14 + T1r; + T1t = TH + T1s; + Tgn = TH - T1s; + TgI = Tgt + Tgu; + TgJ = Tgy + Tgz; + TgK = TgI - TgJ; + TgL = TgI + TgJ; + } + { + E TgN, TgU, T2e, T2Z; + TgN = Tfq + Tfr; + TgU = TgO + TgT; + TgV = TgN + TgU; + Th1 = TgU - TgN; + T2e = T1Q + T2d; + T2Z = T2B + T2Y; + T30 = T2e + T2Z; + Th0 = T2Z - T2e; + } + { + E T4y, T65, Tgs, Tgv; + T4y = T3M + T4x; + T65 = T5j + T64; + T66 = T4y + T65; + TgX = T65 - T4y; + Tgs = T3M - T4x; + Tgv = Tgt - Tgu; + Tgw = Tgs + Tgv; + TgE = Tgv - Tgs; + } + { + E Tgx, TgA, Tgo, Tgp; + Tgx = T5j - T64; + TgA = Tgy - Tgz; + TgB = Tgx - TgA; + TgF = Tgx + TgA; + Tgo = Tfu + Tfv; + Tgp = TfA + TfB; + Tgq = Tgo - Tgp; + TgM = Tgo + Tgp; + } + { + E T31, TgW, TgH, TgY; + T31 = T1t + T30; + iio[-WS(ios, 32)] = T31 - T66; + rio[0] = T31 + T66; + TgW = TgM + TgV; + rio[WS(ios, 32)] = TgL - TgW; + iio[0] = TgL + TgW; + TgH = T1t - T30; + iio[-WS(ios, 48)] = TgH - TgK; + rio[WS(ios, 16)] = TgH + TgK; + TgY = TgV - TgM; + rio[WS(ios, 48)] = TgX - TgY; + iio[-WS(ios, 16)] = TgX + TgY; + } + { + E Tgr, TgC, TgZ, Th2; + Tgr = Tgn + Tgq; + TgC = KP707106781 * (Tgw + TgB); + iio[-WS(ios, 40)] = Tgr - TgC; + rio[WS(ios, 8)] = Tgr + TgC; + TgZ = KP707106781 * (TgE + TgF); + Th2 = Th0 + Th1; + rio[WS(ios, 40)] = TgZ - Th2; + iio[-WS(ios, 8)] = TgZ + Th2; + } + { + E TgD, TgG, Th3, Th4; + TgD = Tgn - Tgq; + TgG = KP707106781 * (TgE - TgF); + iio[-WS(ios, 56)] = TgD - TgG; + rio[WS(ios, 24)] = TgD + TgG; + Th3 = KP707106781 * (TgB - Tgw); + Th4 = Th1 - Th0; + rio[WS(ios, 56)] = Th3 - Th4; + iio[-WS(ios, 24)] = Th3 + Th4; + } + } + { + E Tft, Tg7, Tgh, Tgl, Th9, Thf, TfE, Th6, TfQ, Tg4, Tga, The, Tge, Tgk, Tg1; + E Tg5; + { + E Tfp, Tfs, Tgf, Tgg; + Tfp = Tj - TG; + Tfs = Tfq - Tfr; + Tft = Tfp - Tfs; + Tg7 = Tfp + Tfs; + Tgf = TfR + TfU; + Tgg = TfY + TfZ; + Tgh = FNMS(KP382683432, Tgg, KP923879532 * Tgf); + Tgl = FMA(KP923879532, Tgg, KP382683432 * Tgf); + } + { + E Th7, Th8, Tfy, TfD; + Th7 = T1r - T14; + Th8 = TgT - TgO; + Th9 = Th7 + Th8; + Thf = Th8 - Th7; + Tfy = Tfw - Tfx; + TfD = Tfz + TfC; + TfE = KP707106781 * (Tfy - TfD); + Th6 = KP707106781 * (Tfy + TfD); + } + { + E TfK, TfP, Tg8, Tg9; + TfK = TfI - TfJ; + TfP = TfL - TfO; + TfQ = FMA(KP923879532, TfK, KP382683432 * TfP); + Tg4 = FNMS(KP923879532, TfP, KP382683432 * TfK); + Tg8 = Tfx + Tfw; + Tg9 = Tfz - TfC; + Tga = KP707106781 * (Tg8 + Tg9); + The = KP707106781 * (Tg9 - Tg8); + } + { + E Tgc, Tgd, TfV, Tg0; + Tgc = TfI + TfJ; + Tgd = TfL + TfO; + Tge = FMA(KP382683432, Tgc, KP923879532 * Tgd); + Tgk = FNMS(KP382683432, Tgd, KP923879532 * Tgc); + TfV = TfR - TfU; + Tg0 = TfY - TfZ; + Tg1 = FNMS(KP923879532, Tg0, KP382683432 * TfV); + Tg5 = FMA(KP382683432, Tg0, KP923879532 * TfV); + } + { + E TfF, Tg2, Thd, Thg; + TfF = Tft + TfE; + Tg2 = TfQ + Tg1; + iio[-WS(ios, 44)] = TfF - Tg2; + rio[WS(ios, 12)] = TfF + Tg2; + Thd = Tg4 + Tg5; + Thg = The + Thf; + rio[WS(ios, 44)] = Thd - Thg; + iio[-WS(ios, 12)] = Thd + Thg; + } + { + E Tg3, Tg6, Thh, Thi; + Tg3 = Tft - TfE; + Tg6 = Tg4 - Tg5; + iio[-WS(ios, 60)] = Tg3 - Tg6; + rio[WS(ios, 28)] = Tg3 + Tg6; + Thh = Tg1 - TfQ; + Thi = Thf - The; + rio[WS(ios, 60)] = Thh - Thi; + iio[-WS(ios, 28)] = Thh + Thi; + } + { + E Tgb, Tgi, Th5, Tha; + Tgb = Tg7 + Tga; + Tgi = Tge + Tgh; + iio[-WS(ios, 36)] = Tgb - Tgi; + rio[WS(ios, 4)] = Tgb + Tgi; + Th5 = Tgk + Tgl; + Tha = Th6 + Th9; + rio[WS(ios, 36)] = Th5 - Tha; + iio[-WS(ios, 4)] = Th5 + Tha; + } + { + E Tgj, Tgm, Thb, Thc; + Tgj = Tg7 - Tga; + Tgm = Tgk - Tgl; + iio[-WS(ios, 52)] = Tgj - Tgm; + rio[WS(ios, 20)] = Tgj + Tgm; + Thb = Tgh - Tge; + Thc = Th9 - Th6; + rio[WS(ios, 52)] = Thb - Thc; + iio[-WS(ios, 20)] = Thb + Thc; + } + } + { + E Td1, Ten, Tdo, ThA, ThD, ThJ, Teq, ThI, Teh, TeB, Tel, Tex, TdQ, TeA, Tek; + E Teu; + { + E TcP, Td0, Teo, Tep; + TcP = TcL - TcO; + Td0 = KP707106781 * (TcU - TcZ); + Td1 = TcP - Td0; + Ten = TcP + Td0; + { + E Tdc, Tdn, ThB, ThC; + Tdc = FNMS(KP923879532, Tdb, KP382683432 * Td6); + Tdn = FMA(KP382683432, Tdh, KP923879532 * Tdm); + Tdo = Tdc - Tdn; + ThA = Tdc + Tdn; + ThB = KP707106781 * (TeF - TeE); + ThC = Thn - Thm; + ThD = ThB + ThC; + ThJ = ThC - ThB; + } + Teo = FMA(KP923879532, Td6, KP382683432 * Tdb); + Tep = FNMS(KP923879532, Tdh, KP382683432 * Tdm); + Teq = Teo + Tep; + ThI = Tep - Teo; + { + E Te7, Tev, Teg, Tew, Te6, Tef; + Te6 = KP707106781 * (Te0 - Te5); + Te7 = TdV - Te6; + Tev = TdV + Te6; + Tef = KP707106781 * (Ted - Tee); + Teg = Tec - Tef; + Tew = Tec + Tef; + Teh = FNMS(KP980785280, Teg, KP195090322 * Te7); + TeB = FMA(KP831469612, Tew, KP555570233 * Tev); + Tel = FMA(KP195090322, Teg, KP980785280 * Te7); + Tex = FNMS(KP555570233, Tew, KP831469612 * Tev); + } + { + E TdG, Tes, TdP, Tet, TdF, TdO; + TdF = KP707106781 * (Tdz - TdE); + TdG = Tdu - TdF; + Tes = Tdu + TdF; + TdO = KP707106781 * (TdM - TdN); + TdP = TdL - TdO; + Tet = TdL + TdO; + TdQ = FMA(KP980785280, TdG, KP195090322 * TdP); + TeA = FNMS(KP555570233, Tet, KP831469612 * Tes); + Tek = FNMS(KP980785280, TdP, KP195090322 * TdG); + Teu = FMA(KP555570233, Tes, KP831469612 * Tet); + } + } + { + E Tdp, Tei, ThH, ThK; + Tdp = Td1 + Tdo; + Tei = TdQ + Teh; + iio[-WS(ios, 46)] = Tdp - Tei; + rio[WS(ios, 14)] = Tdp + Tei; + ThH = Tek + Tel; + ThK = ThI + ThJ; + rio[WS(ios, 46)] = ThH - ThK; + iio[-WS(ios, 14)] = ThH + ThK; + } + { + E Tej, Tem, ThL, ThM; + Tej = Td1 - Tdo; + Tem = Tek - Tel; + iio[-WS(ios, 62)] = Tej - Tem; + rio[WS(ios, 30)] = Tej + Tem; + ThL = Teh - TdQ; + ThM = ThJ - ThI; + rio[WS(ios, 62)] = ThL - ThM; + iio[-WS(ios, 30)] = ThL + ThM; + } + { + E Ter, Tey, Thz, ThE; + Ter = Ten + Teq; + Tey = Teu + Tex; + iio[-WS(ios, 38)] = Ter - Tey; + rio[WS(ios, 6)] = Ter + Tey; + Thz = TeA + TeB; + ThE = ThA + ThD; + rio[WS(ios, 38)] = Thz - ThE; + iio[-WS(ios, 6)] = Thz + ThE; + } + { + E Tez, TeC, ThF, ThG; + Tez = Ten - Teq; + TeC = TeA - TeB; + iio[-WS(ios, 54)] = Tez - TeC; + rio[WS(ios, 22)] = Tez + TeC; + ThF = Tex - Teu; + ThG = ThD - ThA; + rio[WS(ios, 54)] = ThF - ThG; + iio[-WS(ios, 22)] = ThF + ThG; + } + } + { + E TeH, Tf9, TeO, Thk, Thp, Thv, Tfc, Thu, Tf3, Tfn, Tf7, Tfj, TeW, Tfm, Tf6; + E Tfg; + { + E TeD, TeG, Tfa, Tfb; + TeD = TcL + TcO; + TeG = KP707106781 * (TeE + TeF); + TeH = TeD - TeG; + Tf9 = TeD + TeG; + { + E TeK, TeN, Thl, Tho; + TeK = FNMS(KP382683432, TeJ, KP923879532 * TeI); + TeN = FMA(KP923879532, TeL, KP382683432 * TeM); + TeO = TeK - TeN; + Thk = TeK + TeN; + Thl = KP707106781 * (TcU + TcZ); + Tho = Thm + Thn; + Thp = Thl + Tho; + Thv = Tho - Thl; + } + Tfa = FMA(KP382683432, TeI, KP923879532 * TeJ); + Tfb = FNMS(KP382683432, TeL, KP923879532 * TeM); + Tfc = Tfa + Tfb; + Thu = Tfb - Tfa; + { + E TeZ, Tfh, Tf2, Tfi, TeY, Tf1; + TeY = KP707106781 * (Tee + Ted); + TeZ = TeX - TeY; + Tfh = TeX + TeY; + Tf1 = KP707106781 * (Te0 + Te5); + Tf2 = Tf0 - Tf1; + Tfi = Tf0 + Tf1; + Tf3 = FNMS(KP831469612, Tf2, KP555570233 * TeZ); + Tfn = FMA(KP195090322, Tfh, KP980785280 * Tfi); + Tf7 = FMA(KP831469612, TeZ, KP555570233 * Tf2); + Tfj = FNMS(KP195090322, Tfi, KP980785280 * Tfh); + } + { + E TeS, Tfe, TeV, Tff, TeR, TeU; + TeR = KP707106781 * (TdE + Tdz); + TeS = TeQ - TeR; + Tfe = TeQ + TeR; + TeU = KP707106781 * (TdM + TdN); + TeV = TeT - TeU; + Tff = TeT + TeU; + TeW = FMA(KP555570233, TeS, KP831469612 * TeV); + Tfm = FNMS(KP195090322, Tfe, KP980785280 * Tff); + Tf6 = FNMS(KP831469612, TeS, KP555570233 * TeV); + Tfg = FMA(KP980785280, Tfe, KP195090322 * Tff); + } + } + { + E TeP, Tf4, Tht, Thw; + TeP = TeH + TeO; + Tf4 = TeW + Tf3; + iio[-WS(ios, 42)] = TeP - Tf4; + rio[WS(ios, 10)] = TeP + Tf4; + Tht = Tf6 + Tf7; + Thw = Thu + Thv; + rio[WS(ios, 42)] = Tht - Thw; + iio[-WS(ios, 10)] = Tht + Thw; + } + { + E Tf5, Tf8, Thx, Thy; + Tf5 = TeH - TeO; + Tf8 = Tf6 - Tf7; + iio[-WS(ios, 58)] = Tf5 - Tf8; + rio[WS(ios, 26)] = Tf5 + Tf8; + Thx = Tf3 - TeW; + Thy = Thv - Thu; + rio[WS(ios, 58)] = Thx - Thy; + iio[-WS(ios, 26)] = Thx + Thy; + } + { + E Tfd, Tfk, Thj, Thq; + Tfd = Tf9 + Tfc; + Tfk = Tfg + Tfj; + iio[-WS(ios, 34)] = Tfd - Tfk; + rio[WS(ios, 2)] = Tfd + Tfk; + Thj = Tfm + Tfn; + Thq = Thk + Thp; + rio[WS(ios, 34)] = Thj - Thq; + iio[-WS(ios, 2)] = Thj + Thq; + } + { + E Tfl, Tfo, Thr, Ths; + Tfl = Tf9 - Tfc; + Tfo = Tfm - Tfn; + iio[-WS(ios, 50)] = Tfl - Tfo; + rio[WS(ios, 18)] = Tfl + Tfo; + Thr = Tfj - Tfg; + Ths = Thp - Thk; + rio[WS(ios, 50)] = Thr - Ths; + iio[-WS(ios, 18)] = Thr + Ths; + } + } + { + E T6L, T9x, TiD, TiJ, T7E, TiI, T9A, TiA, T8y, T9K, T9u, T9E, T9r, T9L, T9v; + E T9H; + { + E T6n, T6K, TiB, TiC; + T6n = T6b - T6m; + T6K = T6y - T6J; + T6L = T6n - T6K; + T9x = T6n + T6K; + TiB = T9P - T9O; + TiC = Tin - Tim; + TiD = TiB + TiC; + TiJ = TiC - TiB; + } + { + E T7c, T9y, T7D, T9z; + { + E T72, T7b, T7t, T7C; + T72 = T6Q - T71; + T7b = T77 - T7a; + T7c = FNMS(KP980785280, T7b, KP195090322 * T72); + T9y = FMA(KP980785280, T72, KP195090322 * T7b); + T7t = T7h - T7s; + T7C = T7y - T7B; + T7D = FMA(KP195090322, T7t, KP980785280 * T7C); + T9z = FNMS(KP980785280, T7t, KP195090322 * T7C); + } + T7E = T7c - T7D; + TiI = T9z - T9y; + T9A = T9y + T9z; + TiA = T7c + T7D; + } + { + E T8k, T9C, T8x, T9D; + { + E T7W, T8j, T8t, T8w; + T7W = T7K - T7V; + T8j = T87 - T8i; + T8k = T7W - T8j; + T9C = T7W + T8j; + T8t = T8p - T8s; + T8w = T8u - T8v; + T8x = T8t - T8w; + T9D = T8t + T8w; + } + T8y = FMA(KP995184726, T8k, KP098017140 * T8x); + T9K = FNMS(KP634393284, T9D, KP773010453 * T9C); + T9u = FNMS(KP995184726, T8x, KP098017140 * T8k); + T9E = FMA(KP634393284, T9C, KP773010453 * T9D); + } + { + E T9d, T9F, T9q, T9G; + { + E T8P, T9c, T9m, T9p; + T8P = T8D - T8O; + T9c = T90 - T9b; + T9d = T8P - T9c; + T9F = T8P + T9c; + T9m = T9i - T9l; + T9p = T9n - T9o; + T9q = T9m - T9p; + T9G = T9m + T9p; + } + T9r = FNMS(KP995184726, T9q, KP098017140 * T9d); + T9L = FMA(KP773010453, T9G, KP634393284 * T9F); + T9v = FMA(KP098017140, T9q, KP995184726 * T9d); + T9H = FNMS(KP634393284, T9G, KP773010453 * T9F); + } + { + E T7F, T9s, TiH, TiK; + T7F = T6L + T7E; + T9s = T8y + T9r; + iio[-WS(ios, 47)] = T7F - T9s; + rio[WS(ios, 15)] = T7F + T9s; + TiH = T9u + T9v; + TiK = TiI + TiJ; + rio[WS(ios, 47)] = TiH - TiK; + iio[-WS(ios, 15)] = TiH + TiK; + } + { + E T9t, T9w, TiL, TiM; + T9t = T6L - T7E; + T9w = T9u - T9v; + iio[-WS(ios, 63)] = T9t - T9w; + rio[WS(ios, 31)] = T9t + T9w; + TiL = T9r - T8y; + TiM = TiJ - TiI; + rio[WS(ios, 63)] = TiL - TiM; + iio[-WS(ios, 31)] = TiL + TiM; + } + { + E T9B, T9I, Tiz, TiE; + T9B = T9x + T9A; + T9I = T9E + T9H; + iio[-WS(ios, 39)] = T9B - T9I; + rio[WS(ios, 7)] = T9B + T9I; + Tiz = T9K + T9L; + TiE = TiA + TiD; + rio[WS(ios, 39)] = Tiz - TiE; + iio[-WS(ios, 7)] = Tiz + TiE; + } + { + E T9J, T9M, TiF, TiG; + T9J = T9x - T9A; + T9M = T9K - T9L; + iio[-WS(ios, 55)] = T9J - T9M; + rio[WS(ios, 23)] = T9J + T9M; + TiF = T9H - T9E; + TiG = TiD - TiA; + rio[WS(ios, 55)] = TiF - TiG; + iio[-WS(ios, 23)] = TiF + TiG; + } + } + { + E TaL, TbJ, Ti9, Tif, Tb0, Tie, TbM, Ti6, Tbk, TbW, TbG, TbQ, TbD, TbX, TbH; + E TbT; + { + E TaD, TaK, Ti7, Ti8; + TaD = Taz - TaC; + TaK = TaG - TaJ; + TaL = TaD - TaK; + TbJ = TaD + TaK; + Ti7 = Tc1 - Tc0; + Ti8 = ThT - ThQ; + Ti9 = Ti7 + Ti8; + Tif = Ti8 - Ti7; + } + { + E TaS, TbK, TaZ, TbL; + { + E TaO, TaR, TaV, TaY; + TaO = TaM - TaN; + TaR = TaP - TaQ; + TaS = FNMS(KP831469612, TaR, KP555570233 * TaO); + TbK = FMA(KP555570233, TaR, KP831469612 * TaO); + TaV = TaT - TaU; + TaY = TaW - TaX; + TaZ = FMA(KP831469612, TaV, KP555570233 * TaY); + TbL = FNMS(KP831469612, TaY, KP555570233 * TaV); + } + Tb0 = TaS - TaZ; + Tie = TbL - TbK; + TbM = TbK + TbL; + Ti6 = TaS + TaZ; + } + { + E Tbc, TbO, Tbj, TbP; + { + E Tb4, Tbb, Tbf, Tbi; + Tb4 = Tb2 - Tb3; + Tbb = Tb7 - Tba; + Tbc = Tb4 - Tbb; + TbO = Tb4 + Tbb; + Tbf = Tbd - Tbe; + Tbi = Tbg - Tbh; + Tbj = Tbf - Tbi; + TbP = Tbf + Tbi; + } + Tbk = FMA(KP956940335, Tbc, KP290284677 * Tbj); + TbW = FNMS(KP471396736, TbP, KP881921264 * TbO); + TbG = FNMS(KP956940335, Tbj, KP290284677 * Tbc); + TbQ = FMA(KP471396736, TbO, KP881921264 * TbP); + } + { + E Tbv, TbR, TbC, TbS; + { + E Tbn, Tbu, Tby, TbB; + Tbn = Tbl - Tbm; + Tbu = Tbq - Tbt; + Tbv = Tbn - Tbu; + TbR = Tbn + Tbu; + Tby = Tbw - Tbx; + TbB = Tbz - TbA; + TbC = Tby - TbB; + TbS = Tby + TbB; + } + TbD = FNMS(KP956940335, TbC, KP290284677 * Tbv); + TbX = FMA(KP881921264, TbS, KP471396736 * TbR); + TbH = FMA(KP290284677, TbC, KP956940335 * Tbv); + TbT = FNMS(KP471396736, TbS, KP881921264 * TbR); + } + { + E Tb1, TbE, Tid, Tig; + Tb1 = TaL + Tb0; + TbE = Tbk + TbD; + iio[-WS(ios, 45)] = Tb1 - TbE; + rio[WS(ios, 13)] = Tb1 + TbE; + Tid = TbG + TbH; + Tig = Tie + Tif; + rio[WS(ios, 45)] = Tid - Tig; + iio[-WS(ios, 13)] = Tid + Tig; + } + { + E TbF, TbI, Tih, Tii; + TbF = TaL - Tb0; + TbI = TbG - TbH; + iio[-WS(ios, 61)] = TbF - TbI; + rio[WS(ios, 29)] = TbF + TbI; + Tih = TbD - Tbk; + Tii = Tif - Tie; + rio[WS(ios, 61)] = Tih - Tii; + iio[-WS(ios, 29)] = Tih + Tii; + } + { + E TbN, TbU, Ti5, Tia; + TbN = TbJ + TbM; + TbU = TbQ + TbT; + iio[-WS(ios, 37)] = TbN - TbU; + rio[WS(ios, 5)] = TbN + TbU; + Ti5 = TbW + TbX; + Tia = Ti6 + Ti9; + rio[WS(ios, 37)] = Ti5 - Tia; + iio[-WS(ios, 5)] = Ti5 + Tia; + } + { + E TbV, TbY, Tib, Tic; + TbV = TbJ - TbM; + TbY = TbW - TbX; + iio[-WS(ios, 53)] = TbV - TbY; + rio[WS(ios, 21)] = TbV + TbY; + Tib = TbT - TbQ; + Tic = Ti9 - Ti6; + rio[WS(ios, 53)] = Tib - Tic; + iio[-WS(ios, 21)] = Tib + Tic; + } + } + { + E Tc3, Tcv, ThV, Ti1, Tca, Ti0, Tcy, ThO, Tci, TcI, Tcs, TcC, Tcp, TcJ, Tct; + E TcF; + { + E TbZ, Tc2, ThP, ThU; + TbZ = Taz + TaC; + Tc2 = Tc0 + Tc1; + Tc3 = TbZ - Tc2; + Tcv = TbZ + Tc2; + ThP = TaG + TaJ; + ThU = ThQ + ThT; + ThV = ThP + ThU; + Ti1 = ThU - ThP; + } + { + E Tc6, Tcw, Tc9, Tcx; + { + E Tc4, Tc5, Tc7, Tc8; + Tc4 = TaM + TaN; + Tc5 = TaP + TaQ; + Tc6 = FNMS(KP195090322, Tc5, KP980785280 * Tc4); + Tcw = FMA(KP980785280, Tc5, KP195090322 * Tc4); + Tc7 = TaT + TaU; + Tc8 = TaW + TaX; + Tc9 = FMA(KP195090322, Tc7, KP980785280 * Tc8); + Tcx = FNMS(KP195090322, Tc8, KP980785280 * Tc7); + } + Tca = Tc6 - Tc9; + Ti0 = Tcx - Tcw; + Tcy = Tcw + Tcx; + ThO = Tc6 + Tc9; + } + { + E Tce, TcA, Tch, TcB; + { + E Tcc, Tcd, Tcf, Tcg; + Tcc = Tbd + Tbe; + Tcd = Tba + Tb7; + Tce = Tcc - Tcd; + TcA = Tcc + Tcd; + Tcf = Tb2 + Tb3; + Tcg = Tbg + Tbh; + Tch = Tcf - Tcg; + TcB = Tcf + Tcg; + } + Tci = FMA(KP634393284, Tce, KP773010453 * Tch); + TcI = FNMS(KP098017140, TcA, KP995184726 * TcB); + Tcs = FNMS(KP773010453, Tce, KP634393284 * Tch); + TcC = FMA(KP995184726, TcA, KP098017140 * TcB); + } + { + E Tcl, TcD, Tco, TcE; + { + E Tcj, Tck, Tcm, Tcn; + Tcj = Tbl + Tbm; + Tck = TbA + Tbz; + Tcl = Tcj - Tck; + TcD = Tcj + Tck; + Tcm = Tbw + Tbx; + Tcn = Tbq + Tbt; + Tco = Tcm - Tcn; + TcE = Tcm + Tcn; + } + Tcp = FNMS(KP773010453, Tco, KP634393284 * Tcl); + TcJ = FMA(KP098017140, TcD, KP995184726 * TcE); + Tct = FMA(KP773010453, Tcl, KP634393284 * Tco); + TcF = FNMS(KP098017140, TcE, KP995184726 * TcD); + } + { + E Tcb, Tcq, ThZ, Ti2; + Tcb = Tc3 + Tca; + Tcq = Tci + Tcp; + iio[-WS(ios, 41)] = Tcb - Tcq; + rio[WS(ios, 9)] = Tcb + Tcq; + ThZ = Tcs + Tct; + Ti2 = Ti0 + Ti1; + rio[WS(ios, 41)] = ThZ - Ti2; + iio[-WS(ios, 9)] = ThZ + Ti2; + } + { + E Tcr, Tcu, Ti3, Ti4; + Tcr = Tc3 - Tca; + Tcu = Tcs - Tct; + iio[-WS(ios, 57)] = Tcr - Tcu; + rio[WS(ios, 25)] = Tcr + Tcu; + Ti3 = Tcp - Tci; + Ti4 = Ti1 - Ti0; + rio[WS(ios, 57)] = Ti3 - Ti4; + iio[-WS(ios, 25)] = Ti3 + Ti4; + } + { + E Tcz, TcG, ThN, ThW; + Tcz = Tcv + Tcy; + TcG = TcC + TcF; + iio[-WS(ios, 33)] = Tcz - TcG; + rio[WS(ios, 1)] = Tcz + TcG; + ThN = TcI + TcJ; + ThW = ThO + ThV; + rio[WS(ios, 33)] = ThN - ThW; + iio[-WS(ios, 1)] = ThN + ThW; + } + { + E TcH, TcK, ThX, ThY; + TcH = Tcv - Tcy; + TcK = TcI - TcJ; + iio[-WS(ios, 49)] = TcH - TcK; + rio[WS(ios, 17)] = TcH + TcK; + ThX = TcF - TcC; + ThY = ThV - ThO; + rio[WS(ios, 49)] = ThX - ThY; + iio[-WS(ios, 17)] = ThX + ThY; + } + } + { + E T9R, Taj, Tip, Tiv, T9Y, Tiu, Tam, Tik, Ta6, Taw, Tag, Taq, Tad, Tax, Tah; + E Tat; + { + E T9N, T9Q, Til, Tio; + T9N = T6b + T6m; + T9Q = T9O + T9P; + T9R = T9N - T9Q; + Taj = T9N + T9Q; + Til = T6y + T6J; + Tio = Tim + Tin; + Tip = Til + Tio; + Tiv = Tio - Til; + } + { + E T9U, Tak, T9X, Tal; + { + E T9S, T9T, T9V, T9W; + T9S = T6Q + T71; + T9T = T77 + T7a; + T9U = FNMS(KP555570233, T9T, KP831469612 * T9S); + Tak = FMA(KP555570233, T9S, KP831469612 * T9T); + T9V = T7h + T7s; + T9W = T7y + T7B; + T9X = FMA(KP831469612, T9V, KP555570233 * T9W); + Tal = FNMS(KP555570233, T9V, KP831469612 * T9W); + } + T9Y = T9U - T9X; + Tiu = Tal - Tak; + Tam = Tak + Tal; + Tik = T9U + T9X; + } + { + E Ta2, Tao, Ta5, Tap; + { + E Ta0, Ta1, Ta3, Ta4; + Ta0 = T8p + T8s; + Ta1 = T8i + T87; + Ta2 = Ta0 - Ta1; + Tao = Ta0 + Ta1; + Ta3 = T7K + T7V; + Ta4 = T8u + T8v; + Ta5 = Ta3 - Ta4; + Tap = Ta3 + Ta4; + } + Ta6 = FMA(KP471396736, Ta2, KP881921264 * Ta5); + Taw = FNMS(KP290284677, Tao, KP956940335 * Tap); + Tag = FNMS(KP881921264, Ta2, KP471396736 * Ta5); + Taq = FMA(KP956940335, Tao, KP290284677 * Tap); + } + { + E Ta9, Tar, Tac, Tas; + { + E Ta7, Ta8, Taa, Tab; + Ta7 = T8D + T8O; + Ta8 = T9o + T9n; + Ta9 = Ta7 - Ta8; + Tar = Ta7 + Ta8; + Taa = T9i + T9l; + Tab = T90 + T9b; + Tac = Taa - Tab; + Tas = Taa + Tab; + } + Tad = FNMS(KP881921264, Tac, KP471396736 * Ta9); + Tax = FMA(KP290284677, Tar, KP956940335 * Tas); + Tah = FMA(KP881921264, Ta9, KP471396736 * Tac); + Tat = FNMS(KP290284677, Tas, KP956940335 * Tar); + } + { + E T9Z, Tae, Tit, Tiw; + T9Z = T9R + T9Y; + Tae = Ta6 + Tad; + iio[-WS(ios, 43)] = T9Z - Tae; + rio[WS(ios, 11)] = T9Z + Tae; + Tit = Tag + Tah; + Tiw = Tiu + Tiv; + rio[WS(ios, 43)] = Tit - Tiw; + iio[-WS(ios, 11)] = Tit + Tiw; + } + { + E Taf, Tai, Tix, Tiy; + Taf = T9R - T9Y; + Tai = Tag - Tah; + iio[-WS(ios, 59)] = Taf - Tai; + rio[WS(ios, 27)] = Taf + Tai; + Tix = Tad - Ta6; + Tiy = Tiv - Tiu; + rio[WS(ios, 59)] = Tix - Tiy; + iio[-WS(ios, 27)] = Tix + Tiy; + } + { + E Tan, Tau, Tij, Tiq; + Tan = Taj + Tam; + Tau = Taq + Tat; + iio[-WS(ios, 35)] = Tan - Tau; + rio[WS(ios, 3)] = Tan + Tau; + Tij = Taw + Tax; + Tiq = Tik + Tip; + rio[WS(ios, 35)] = Tij - Tiq; + iio[-WS(ios, 3)] = Tij + Tiq; + } + { + E Tav, Tay, Tir, Tis; + Tav = Taj - Tam; + Tay = Taw - Tax; + iio[-WS(ios, 51)] = Tav - Tay; + rio[WS(ios, 19)] = Tav + Tay; + Tir = Tat - Taq; + Tis = Tip - Tik; + rio[WS(ios, 51)] = Tir - Tis; + iio[-WS(ios, 19)] = Tir + Tis; + } + } + } + return W; +} + +static const tw_instr twinstr[] = { + {TW_FULL, 0, 64}, + {TW_NEXT, 1, 0} +}; + +static const hc2hc_desc desc = { 64, "hf_64", twinstr, {808, 270, 230, 0}, &GENUS, 0, 0, 0 }; + +void X(codelet_hf_64) (planner *p) { + X(khc2hc_dit_register) (p, hf_64, &desc); +} |