summaryrefslogtreecommitdiff
path: root/src/fftw3/rdft/codelets/r2hc/hf_64.c
diff options
context:
space:
mode:
authorscuri <scuri>2008-10-17 06:10:15 +0000
committerscuri <scuri>2008-10-17 06:10:15 +0000
commit5a422aba704c375a307a902bafe658342e209906 (patch)
tree5005011e086bb863d8fb587ad3319bbec59b2447 /src/fftw3/rdft/codelets/r2hc/hf_64.c
First commit - moving from LuaForge to SourceForge
Diffstat (limited to 'src/fftw3/rdft/codelets/r2hc/hf_64.c')
-rw-r--r--src/fftw3/rdft/codelets/r2hc/hf_64.c2001
1 files changed, 2001 insertions, 0 deletions
diff --git a/src/fftw3/rdft/codelets/r2hc/hf_64.c b/src/fftw3/rdft/codelets/r2hc/hf_64.c
new file mode 100644
index 0000000..3e99d63
--- /dev/null
+++ b/src/fftw3/rdft/codelets/r2hc/hf_64.c
@@ -0,0 +1,2001 @@
+/*
+ * Copyright (c) 2003 Matteo Frigo
+ * Copyright (c) 2003 Massachusetts Institute of Technology
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
+ *
+ */
+
+/* This file was automatically generated --- DO NOT EDIT */
+/* Generated on Sat Jul 5 21:57:11 EDT 2003 */
+
+#include "codelet-rdft.h"
+
+/* Generated by: /homee/stevenj/cvs/fftw3.0.1/genfft/gen_hc2hc -compact -variables 4 -n 64 -dit -name hf_64 -include hf.h */
+
+/*
+ * This function contains 1038 FP additions, 500 FP multiplications,
+ * (or, 808 additions, 270 multiplications, 230 fused multiply/add),
+ * 176 stack variables, and 256 memory accesses
+ */
+/*
+ * Generator Id's :
+ * $Id: hf_64.c,v 1.1 2008/10/17 06:12:34 scuri Exp $
+ * $Id: hf_64.c,v 1.1 2008/10/17 06:12:34 scuri Exp $
+ * $Id: hf_64.c,v 1.1 2008/10/17 06:12:34 scuri Exp $
+ */
+
+#include "hf.h"
+
+static const R *hf_64(R *rio, R *iio, const R *W, stride ios, int m, int dist)
+{
+ DK(KP471396736, +0.471396736825997648556387625905254377657460319);
+ DK(KP881921264, +0.881921264348355029712756863660388349508442621);
+ DK(KP290284677, +0.290284677254462367636192375817395274691476278);
+ DK(KP956940335, +0.956940335732208864935797886980269969482849206);
+ DK(KP634393284, +0.634393284163645498215171613225493370675687095);
+ DK(KP773010453, +0.773010453362736960810906609758469800971041293);
+ DK(KP098017140, +0.098017140329560601994195563888641845861136673);
+ DK(KP995184726, +0.995184726672196886244836953109479921575474869);
+ DK(KP555570233, +0.555570233019602224742830813948532874374937191);
+ DK(KP831469612, +0.831469612302545237078788377617905756738560812);
+ DK(KP980785280, +0.980785280403230449126182236134239036973933731);
+ DK(KP195090322, +0.195090322016128267848284868477022240927691618);
+ DK(KP923879532, +0.923879532511286756128183189396788286822416626);
+ DK(KP382683432, +0.382683432365089771728459984030398866761344562);
+ DK(KP707106781, +0.707106781186547524400844362104849039284835938);
+ int i;
+ for (i = m - 2; i > 0; i = i - 2, rio = rio + dist, iio = iio - dist, W = W + 126) {
+ E Tj, TcL, ThT, Tin, T6b, Taz, TgT, Thn, TG, Thm, TcO, TgO, T6m, ThQ, TaC;
+ E Tim, T14, Tfq, T6y, T9O, TaG, Tc0, TcU, TeE, T1r, Tfr, T6J, T9P, TaJ, Tc1;
+ E TcZ, TeF, T1Q, T2d, Tfx, Tfu, Tfv, Tfw, T6Q, TaM, Tdb, TeJ, T71, TaQ, T7a;
+ E TaN, Td6, TeI, T77, TaP, T2B, T2Y, Tfz, TfA, TfB, TfC, T7h, TaW, Tdm, TeM;
+ E T7s, TaU, T7B, TaX, Tdh, TeL, T7y, TaT, T3M, TfL, TdL, TeQ, TfI, Tgt, T7K;
+ E Tb2, T7V, Tbe, T8s, Tb3, Tdu, TeT, T8p, Tbd, T5j, TfR, Tec, Tf0, TfY, Tgy;
+ E T8D, Tbl, T8O, Tbx, T9l, Tbm, TdV, TeX, T9i, Tbw, T64, TfZ, Te5, Ted, TfU;
+ E Tgz, T90, T9o, T9b, T9n, Tbt, Tbz, Te0, Tee, Tbq, TbA, T4x, TfJ, TdE, TdM;
+ E TfO, Tgu, T87, T8v, T8i, T8u, Tba, Tbg, Tdz, TdN, Tb7, Tbh;
+ {
+ E T1, TgR, T6, TgQ, Tc, T68, Th, T69;
+ T1 = rio[0];
+ TgR = iio[-WS(ios, 63)];
+ {
+ E T3, T5, T2, T4;
+ T3 = rio[WS(ios, 32)];
+ T5 = iio[-WS(ios, 31)];
+ T2 = W[62];
+ T4 = W[63];
+ T6 = FMA(T2, T3, T4 * T5);
+ TgQ = FNMS(T4, T3, T2 * T5);
+ }
+ {
+ E T9, Tb, T8, Ta;
+ T9 = rio[WS(ios, 16)];
+ Tb = iio[-WS(ios, 47)];
+ T8 = W[30];
+ Ta = W[31];
+ Tc = FMA(T8, T9, Ta * Tb);
+ T68 = FNMS(Ta, T9, T8 * Tb);
+ }
+ {
+ E Te, Tg, Td, Tf;
+ Te = rio[WS(ios, 48)];
+ Tg = iio[-WS(ios, 15)];
+ Td = W[94];
+ Tf = W[95];
+ Th = FMA(Td, Te, Tf * Tg);
+ T69 = FNMS(Tf, Te, Td * Tg);
+ }
+ {
+ E T7, Ti, ThR, ThS;
+ T7 = T1 + T6;
+ Ti = Tc + Th;
+ Tj = T7 + Ti;
+ TcL = T7 - Ti;
+ ThR = TgR - TgQ;
+ ThS = Tc - Th;
+ ThT = ThR - ThS;
+ Tin = ThS + ThR;
+ }
+ {
+ E T67, T6a, TgP, TgS;
+ T67 = T1 - T6;
+ T6a = T68 - T69;
+ T6b = T67 - T6a;
+ Taz = T67 + T6a;
+ TgP = T68 + T69;
+ TgS = TgQ + TgR;
+ TgT = TgP + TgS;
+ Thn = TgS - TgP;
+ }
+ }
+ {
+ E To, T6c, Tt, T6d, T6e, T6f, Tz, T6i, TE, T6j, T6h, T6k;
+ {
+ E Tl, Tn, Tk, Tm;
+ Tl = rio[WS(ios, 8)];
+ Tn = iio[-WS(ios, 55)];
+ Tk = W[14];
+ Tm = W[15];
+ To = FMA(Tk, Tl, Tm * Tn);
+ T6c = FNMS(Tm, Tl, Tk * Tn);
+ }
+ {
+ E Tq, Ts, Tp, Tr;
+ Tq = rio[WS(ios, 40)];
+ Ts = iio[-WS(ios, 23)];
+ Tp = W[78];
+ Tr = W[79];
+ Tt = FMA(Tp, Tq, Tr * Ts);
+ T6d = FNMS(Tr, Tq, Tp * Ts);
+ }
+ T6e = T6c - T6d;
+ T6f = To - Tt;
+ {
+ E Tw, Ty, Tv, Tx;
+ Tw = rio[WS(ios, 56)];
+ Ty = iio[-WS(ios, 7)];
+ Tv = W[110];
+ Tx = W[111];
+ Tz = FMA(Tv, Tw, Tx * Ty);
+ T6i = FNMS(Tx, Tw, Tv * Ty);
+ }
+ {
+ E TB, TD, TA, TC;
+ TB = rio[WS(ios, 24)];
+ TD = iio[-WS(ios, 39)];
+ TA = W[46];
+ TC = W[47];
+ TE = FMA(TA, TB, TC * TD);
+ T6j = FNMS(TC, TB, TA * TD);
+ }
+ T6h = Tz - TE;
+ T6k = T6i - T6j;
+ {
+ E Tu, TF, TcM, TcN;
+ Tu = To + Tt;
+ TF = Tz + TE;
+ TG = Tu + TF;
+ Thm = TF - Tu;
+ TcM = T6c + T6d;
+ TcN = T6i + T6j;
+ TcO = TcM - TcN;
+ TgO = TcM + TcN;
+ }
+ {
+ E T6g, T6l, TaA, TaB;
+ T6g = T6e - T6f;
+ T6l = T6h + T6k;
+ T6m = KP707106781 * (T6g - T6l);
+ ThQ = KP707106781 * (T6g + T6l);
+ TaA = T6f + T6e;
+ TaB = T6h - T6k;
+ TaC = KP707106781 * (TaA + TaB);
+ Tim = KP707106781 * (TaB - TaA);
+ }
+ }
+ {
+ E TS, TcQ, T6q, T6t, T13, TcR, T6r, T6w, T6s, T6x;
+ {
+ E TM, T6o, TR, T6p;
+ {
+ E TJ, TL, TI, TK;
+ TJ = rio[WS(ios, 4)];
+ TL = iio[-WS(ios, 59)];
+ TI = W[6];
+ TK = W[7];
+ TM = FMA(TI, TJ, TK * TL);
+ T6o = FNMS(TK, TJ, TI * TL);
+ }
+ {
+ E TO, TQ, TN, TP;
+ TO = rio[WS(ios, 36)];
+ TQ = iio[-WS(ios, 27)];
+ TN = W[70];
+ TP = W[71];
+ TR = FMA(TN, TO, TP * TQ);
+ T6p = FNMS(TP, TO, TN * TQ);
+ }
+ TS = TM + TR;
+ TcQ = T6o + T6p;
+ T6q = T6o - T6p;
+ T6t = TM - TR;
+ }
+ {
+ E TX, T6u, T12, T6v;
+ {
+ E TU, TW, TT, TV;
+ TU = rio[WS(ios, 20)];
+ TW = iio[-WS(ios, 43)];
+ TT = W[38];
+ TV = W[39];
+ TX = FMA(TT, TU, TV * TW);
+ T6u = FNMS(TV, TU, TT * TW);
+ }
+ {
+ E TZ, T11, TY, T10;
+ TZ = rio[WS(ios, 52)];
+ T11 = iio[-WS(ios, 11)];
+ TY = W[102];
+ T10 = W[103];
+ T12 = FMA(TY, TZ, T10 * T11);
+ T6v = FNMS(T10, TZ, TY * T11);
+ }
+ T13 = TX + T12;
+ TcR = T6u + T6v;
+ T6r = TX - T12;
+ T6w = T6u - T6v;
+ }
+ T14 = TS + T13;
+ Tfq = TcQ + TcR;
+ T6s = T6q + T6r;
+ T6x = T6t - T6w;
+ T6y = FNMS(KP923879532, T6x, KP382683432 * T6s);
+ T9O = FMA(KP923879532, T6s, KP382683432 * T6x);
+ {
+ E TaE, TaF, TcS, TcT;
+ TaE = T6q - T6r;
+ TaF = T6t + T6w;
+ TaG = FNMS(KP382683432, TaF, KP923879532 * TaE);
+ Tc0 = FMA(KP382683432, TaE, KP923879532 * TaF);
+ TcS = TcQ - TcR;
+ TcT = TS - T13;
+ TcU = TcS - TcT;
+ TeE = TcT + TcS;
+ }
+ }
+ {
+ E T1f, TcW, T6B, T6E, T1q, TcX, T6C, T6H, T6D, T6I;
+ {
+ E T19, T6z, T1e, T6A;
+ {
+ E T16, T18, T15, T17;
+ T16 = rio[WS(ios, 60)];
+ T18 = iio[-WS(ios, 3)];
+ T15 = W[118];
+ T17 = W[119];
+ T19 = FMA(T15, T16, T17 * T18);
+ T6z = FNMS(T17, T16, T15 * T18);
+ }
+ {
+ E T1b, T1d, T1a, T1c;
+ T1b = rio[WS(ios, 28)];
+ T1d = iio[-WS(ios, 35)];
+ T1a = W[54];
+ T1c = W[55];
+ T1e = FMA(T1a, T1b, T1c * T1d);
+ T6A = FNMS(T1c, T1b, T1a * T1d);
+ }
+ T1f = T19 + T1e;
+ TcW = T6z + T6A;
+ T6B = T6z - T6A;
+ T6E = T19 - T1e;
+ }
+ {
+ E T1k, T6F, T1p, T6G;
+ {
+ E T1h, T1j, T1g, T1i;
+ T1h = rio[WS(ios, 12)];
+ T1j = iio[-WS(ios, 51)];
+ T1g = W[22];
+ T1i = W[23];
+ T1k = FMA(T1g, T1h, T1i * T1j);
+ T6F = FNMS(T1i, T1h, T1g * T1j);
+ }
+ {
+ E T1m, T1o, T1l, T1n;
+ T1m = rio[WS(ios, 44)];
+ T1o = iio[-WS(ios, 19)];
+ T1l = W[86];
+ T1n = W[87];
+ T1p = FMA(T1l, T1m, T1n * T1o);
+ T6G = FNMS(T1n, T1m, T1l * T1o);
+ }
+ T1q = T1k + T1p;
+ TcX = T6F + T6G;
+ T6C = T1k - T1p;
+ T6H = T6F - T6G;
+ }
+ T1r = T1f + T1q;
+ Tfr = TcW + TcX;
+ T6D = T6B + T6C;
+ T6I = T6E - T6H;
+ T6J = FMA(KP382683432, T6D, KP923879532 * T6I);
+ T9P = FNMS(KP923879532, T6D, KP382683432 * T6I);
+ {
+ E TaH, TaI, TcV, TcY;
+ TaH = T6B - T6C;
+ TaI = T6E + T6H;
+ TaJ = FMA(KP923879532, TaH, KP382683432 * TaI);
+ Tc1 = FNMS(KP382683432, TaH, KP923879532 * TaI);
+ TcV = T1f - T1q;
+ TcY = TcW - TcX;
+ TcZ = TcV + TcY;
+ TeF = TcV - TcY;
+ }
+ }
+ {
+ E T1y, T6M, T1D, T6N, T1E, Td2, T1J, T74, T1O, T75, T1P, Td3, T21, Td8, T6W;
+ E T6Z, T2c, Td9, T6R, T6U;
+ {
+ E T1v, T1x, T1u, T1w;
+ T1v = rio[WS(ios, 2)];
+ T1x = iio[-WS(ios, 61)];
+ T1u = W[2];
+ T1w = W[3];
+ T1y = FMA(T1u, T1v, T1w * T1x);
+ T6M = FNMS(T1w, T1v, T1u * T1x);
+ }
+ {
+ E T1A, T1C, T1z, T1B;
+ T1A = rio[WS(ios, 34)];
+ T1C = iio[-WS(ios, 29)];
+ T1z = W[66];
+ T1B = W[67];
+ T1D = FMA(T1z, T1A, T1B * T1C);
+ T6N = FNMS(T1B, T1A, T1z * T1C);
+ }
+ T1E = T1y + T1D;
+ Td2 = T6M + T6N;
+ {
+ E T1G, T1I, T1F, T1H;
+ T1G = rio[WS(ios, 18)];
+ T1I = iio[-WS(ios, 45)];
+ T1F = W[34];
+ T1H = W[35];
+ T1J = FMA(T1F, T1G, T1H * T1I);
+ T74 = FNMS(T1H, T1G, T1F * T1I);
+ }
+ {
+ E T1L, T1N, T1K, T1M;
+ T1L = rio[WS(ios, 50)];
+ T1N = iio[-WS(ios, 13)];
+ T1K = W[98];
+ T1M = W[99];
+ T1O = FMA(T1K, T1L, T1M * T1N);
+ T75 = FNMS(T1M, T1L, T1K * T1N);
+ }
+ T1P = T1J + T1O;
+ Td3 = T74 + T75;
+ {
+ E T1V, T6X, T20, T6Y;
+ {
+ E T1S, T1U, T1R, T1T;
+ T1S = rio[WS(ios, 10)];
+ T1U = iio[-WS(ios, 53)];
+ T1R = W[18];
+ T1T = W[19];
+ T1V = FMA(T1R, T1S, T1T * T1U);
+ T6X = FNMS(T1T, T1S, T1R * T1U);
+ }
+ {
+ E T1X, T1Z, T1W, T1Y;
+ T1X = rio[WS(ios, 42)];
+ T1Z = iio[-WS(ios, 21)];
+ T1W = W[82];
+ T1Y = W[83];
+ T20 = FMA(T1W, T1X, T1Y * T1Z);
+ T6Y = FNMS(T1Y, T1X, T1W * T1Z);
+ }
+ T21 = T1V + T20;
+ Td8 = T6X + T6Y;
+ T6W = T1V - T20;
+ T6Z = T6X - T6Y;
+ }
+ {
+ E T26, T6S, T2b, T6T;
+ {
+ E T23, T25, T22, T24;
+ T23 = rio[WS(ios, 58)];
+ T25 = iio[-WS(ios, 5)];
+ T22 = W[114];
+ T24 = W[115];
+ T26 = FMA(T22, T23, T24 * T25);
+ T6S = FNMS(T24, T23, T22 * T25);
+ }
+ {
+ E T28, T2a, T27, T29;
+ T28 = rio[WS(ios, 26)];
+ T2a = iio[-WS(ios, 37)];
+ T27 = W[50];
+ T29 = W[51];
+ T2b = FMA(T27, T28, T29 * T2a);
+ T6T = FNMS(T29, T28, T27 * T2a);
+ }
+ T2c = T26 + T2b;
+ Td9 = T6S + T6T;
+ T6R = T26 - T2b;
+ T6U = T6S - T6T;
+ }
+ T1Q = T1E + T1P;
+ T2d = T21 + T2c;
+ Tfx = T1Q - T2d;
+ Tfu = Td2 + Td3;
+ Tfv = Td8 + Td9;
+ Tfw = Tfu - Tfv;
+ {
+ E T6O, T6P, Td7, Tda;
+ T6O = T6M - T6N;
+ T6P = T1J - T1O;
+ T6Q = T6O + T6P;
+ TaM = T6O - T6P;
+ Td7 = T1E - T1P;
+ Tda = Td8 - Td9;
+ Tdb = Td7 - Tda;
+ TeJ = Td7 + Tda;
+ }
+ {
+ E T6V, T70, T78, T79;
+ T6V = T6R - T6U;
+ T70 = T6W + T6Z;
+ T71 = KP707106781 * (T6V - T70);
+ TaQ = KP707106781 * (T70 + T6V);
+ T78 = T6Z - T6W;
+ T79 = T6R + T6U;
+ T7a = KP707106781 * (T78 - T79);
+ TaN = KP707106781 * (T78 + T79);
+ }
+ {
+ E Td4, Td5, T73, T76;
+ Td4 = Td2 - Td3;
+ Td5 = T2c - T21;
+ Td6 = Td4 - Td5;
+ TeI = Td4 + Td5;
+ T73 = T1y - T1D;
+ T76 = T74 - T75;
+ T77 = T73 - T76;
+ TaP = T73 + T76;
+ }
+ }
+ {
+ E T2j, T7d, T2o, T7e, T2p, Tdd, T2u, T7v, T2z, T7w, T2A, Tde, T2M, Tdj, T7n;
+ E T7q, T2X, Tdk, T7i, T7l;
+ {
+ E T2g, T2i, T2f, T2h;
+ T2g = rio[WS(ios, 62)];
+ T2i = iio[-WS(ios, 1)];
+ T2f = W[122];
+ T2h = W[123];
+ T2j = FMA(T2f, T2g, T2h * T2i);
+ T7d = FNMS(T2h, T2g, T2f * T2i);
+ }
+ {
+ E T2l, T2n, T2k, T2m;
+ T2l = rio[WS(ios, 30)];
+ T2n = iio[-WS(ios, 33)];
+ T2k = W[58];
+ T2m = W[59];
+ T2o = FMA(T2k, T2l, T2m * T2n);
+ T7e = FNMS(T2m, T2l, T2k * T2n);
+ }
+ T2p = T2j + T2o;
+ Tdd = T7d + T7e;
+ {
+ E T2r, T2t, T2q, T2s;
+ T2r = rio[WS(ios, 14)];
+ T2t = iio[-WS(ios, 49)];
+ T2q = W[26];
+ T2s = W[27];
+ T2u = FMA(T2q, T2r, T2s * T2t);
+ T7v = FNMS(T2s, T2r, T2q * T2t);
+ }
+ {
+ E T2w, T2y, T2v, T2x;
+ T2w = rio[WS(ios, 46)];
+ T2y = iio[-WS(ios, 17)];
+ T2v = W[90];
+ T2x = W[91];
+ T2z = FMA(T2v, T2w, T2x * T2y);
+ T7w = FNMS(T2x, T2w, T2v * T2y);
+ }
+ T2A = T2u + T2z;
+ Tde = T7v + T7w;
+ {
+ E T2G, T7o, T2L, T7p;
+ {
+ E T2D, T2F, T2C, T2E;
+ T2D = rio[WS(ios, 6)];
+ T2F = iio[-WS(ios, 57)];
+ T2C = W[10];
+ T2E = W[11];
+ T2G = FMA(T2C, T2D, T2E * T2F);
+ T7o = FNMS(T2E, T2D, T2C * T2F);
+ }
+ {
+ E T2I, T2K, T2H, T2J;
+ T2I = rio[WS(ios, 38)];
+ T2K = iio[-WS(ios, 25)];
+ T2H = W[74];
+ T2J = W[75];
+ T2L = FMA(T2H, T2I, T2J * T2K);
+ T7p = FNMS(T2J, T2I, T2H * T2K);
+ }
+ T2M = T2G + T2L;
+ Tdj = T7o + T7p;
+ T7n = T2G - T2L;
+ T7q = T7o - T7p;
+ }
+ {
+ E T2R, T7j, T2W, T7k;
+ {
+ E T2O, T2Q, T2N, T2P;
+ T2O = rio[WS(ios, 54)];
+ T2Q = iio[-WS(ios, 9)];
+ T2N = W[106];
+ T2P = W[107];
+ T2R = FMA(T2N, T2O, T2P * T2Q);
+ T7j = FNMS(T2P, T2O, T2N * T2Q);
+ }
+ {
+ E T2T, T2V, T2S, T2U;
+ T2T = rio[WS(ios, 22)];
+ T2V = iio[-WS(ios, 41)];
+ T2S = W[42];
+ T2U = W[43];
+ T2W = FMA(T2S, T2T, T2U * T2V);
+ T7k = FNMS(T2U, T2T, T2S * T2V);
+ }
+ T2X = T2R + T2W;
+ Tdk = T7j + T7k;
+ T7i = T2R - T2W;
+ T7l = T7j - T7k;
+ }
+ T2B = T2p + T2A;
+ T2Y = T2M + T2X;
+ Tfz = T2B - T2Y;
+ TfA = Tdd + Tde;
+ TfB = Tdj + Tdk;
+ TfC = TfA - TfB;
+ {
+ E T7f, T7g, Tdi, Tdl;
+ T7f = T7d - T7e;
+ T7g = T2u - T2z;
+ T7h = T7f + T7g;
+ TaW = T7f - T7g;
+ Tdi = T2p - T2A;
+ Tdl = Tdj - Tdk;
+ Tdm = Tdi - Tdl;
+ TeM = Tdi + Tdl;
+ }
+ {
+ E T7m, T7r, T7z, T7A;
+ T7m = T7i - T7l;
+ T7r = T7n + T7q;
+ T7s = KP707106781 * (T7m - T7r);
+ TaU = KP707106781 * (T7r + T7m);
+ T7z = T7q - T7n;
+ T7A = T7i + T7l;
+ T7B = KP707106781 * (T7z - T7A);
+ TaX = KP707106781 * (T7z + T7A);
+ }
+ {
+ E Tdf, Tdg, T7u, T7x;
+ Tdf = Tdd - Tde;
+ Tdg = T2X - T2M;
+ Tdh = Tdf - Tdg;
+ TeL = Tdf + Tdg;
+ T7u = T2j - T2o;
+ T7x = T7v - T7w;
+ T7y = T7u - T7x;
+ TaT = T7u + T7x;
+ }
+ }
+ {
+ E T36, T7G, T3b, T7H, T3c, Tdq, T3h, T8m, T3m, T8n, T3n, Tdr, T3z, TdI, T7Q;
+ E T7T, T3K, TdJ, T7L, T7O;
+ {
+ E T33, T35, T32, T34;
+ T33 = rio[WS(ios, 1)];
+ T35 = iio[-WS(ios, 62)];
+ T32 = W[0];
+ T34 = W[1];
+ T36 = FMA(T32, T33, T34 * T35);
+ T7G = FNMS(T34, T33, T32 * T35);
+ }
+ {
+ E T38, T3a, T37, T39;
+ T38 = rio[WS(ios, 33)];
+ T3a = iio[-WS(ios, 30)];
+ T37 = W[64];
+ T39 = W[65];
+ T3b = FMA(T37, T38, T39 * T3a);
+ T7H = FNMS(T39, T38, T37 * T3a);
+ }
+ T3c = T36 + T3b;
+ Tdq = T7G + T7H;
+ {
+ E T3e, T3g, T3d, T3f;
+ T3e = rio[WS(ios, 17)];
+ T3g = iio[-WS(ios, 46)];
+ T3d = W[32];
+ T3f = W[33];
+ T3h = FMA(T3d, T3e, T3f * T3g);
+ T8m = FNMS(T3f, T3e, T3d * T3g);
+ }
+ {
+ E T3j, T3l, T3i, T3k;
+ T3j = rio[WS(ios, 49)];
+ T3l = iio[-WS(ios, 14)];
+ T3i = W[96];
+ T3k = W[97];
+ T3m = FMA(T3i, T3j, T3k * T3l);
+ T8n = FNMS(T3k, T3j, T3i * T3l);
+ }
+ T3n = T3h + T3m;
+ Tdr = T8m + T8n;
+ {
+ E T3t, T7R, T3y, T7S;
+ {
+ E T3q, T3s, T3p, T3r;
+ T3q = rio[WS(ios, 9)];
+ T3s = iio[-WS(ios, 54)];
+ T3p = W[16];
+ T3r = W[17];
+ T3t = FMA(T3p, T3q, T3r * T3s);
+ T7R = FNMS(T3r, T3q, T3p * T3s);
+ }
+ {
+ E T3v, T3x, T3u, T3w;
+ T3v = rio[WS(ios, 41)];
+ T3x = iio[-WS(ios, 22)];
+ T3u = W[80];
+ T3w = W[81];
+ T3y = FMA(T3u, T3v, T3w * T3x);
+ T7S = FNMS(T3w, T3v, T3u * T3x);
+ }
+ T3z = T3t + T3y;
+ TdI = T7R + T7S;
+ T7Q = T3t - T3y;
+ T7T = T7R - T7S;
+ }
+ {
+ E T3E, T7M, T3J, T7N;
+ {
+ E T3B, T3D, T3A, T3C;
+ T3B = rio[WS(ios, 57)];
+ T3D = iio[-WS(ios, 6)];
+ T3A = W[112];
+ T3C = W[113];
+ T3E = FMA(T3A, T3B, T3C * T3D);
+ T7M = FNMS(T3C, T3B, T3A * T3D);
+ }
+ {
+ E T3G, T3I, T3F, T3H;
+ T3G = rio[WS(ios, 25)];
+ T3I = iio[-WS(ios, 38)];
+ T3F = W[48];
+ T3H = W[49];
+ T3J = FMA(T3F, T3G, T3H * T3I);
+ T7N = FNMS(T3H, T3G, T3F * T3I);
+ }
+ T3K = T3E + T3J;
+ TdJ = T7M + T7N;
+ T7L = T3E - T3J;
+ T7O = T7M - T7N;
+ }
+ {
+ E T3o, T3L, TdH, TdK;
+ T3o = T3c + T3n;
+ T3L = T3z + T3K;
+ T3M = T3o + T3L;
+ TfL = T3o - T3L;
+ TdH = T3c - T3n;
+ TdK = TdI - TdJ;
+ TdL = TdH - TdK;
+ TeQ = TdH + TdK;
+ }
+ {
+ E TfG, TfH, T7I, T7J;
+ TfG = Tdq + Tdr;
+ TfH = TdI + TdJ;
+ TfI = TfG - TfH;
+ Tgt = TfG + TfH;
+ T7I = T7G - T7H;
+ T7J = T3h - T3m;
+ T7K = T7I + T7J;
+ Tb2 = T7I - T7J;
+ }
+ {
+ E T7P, T7U, T8q, T8r;
+ T7P = T7L - T7O;
+ T7U = T7Q + T7T;
+ T7V = KP707106781 * (T7P - T7U);
+ Tbe = KP707106781 * (T7U + T7P);
+ T8q = T7T - T7Q;
+ T8r = T7L + T7O;
+ T8s = KP707106781 * (T8q - T8r);
+ Tb3 = KP707106781 * (T8q + T8r);
+ }
+ {
+ E Tds, Tdt, T8l, T8o;
+ Tds = Tdq - Tdr;
+ Tdt = T3K - T3z;
+ Tdu = Tds - Tdt;
+ TeT = Tds + Tdt;
+ T8l = T36 - T3b;
+ T8o = T8m - T8n;
+ T8p = T8l - T8o;
+ Tbd = T8l + T8o;
+ }
+ }
+ {
+ E T4D, T9e, T4I, T9f, T4J, Te8, T4O, T8A, T4T, T8B, T4U, Te9, T56, TdS, T8G;
+ E T8H, T5h, TdT, T8J, T8M;
+ {
+ E T4A, T4C, T4z, T4B;
+ T4A = rio[WS(ios, 63)];
+ T4C = iio[0];
+ T4z = W[124];
+ T4B = W[125];
+ T4D = FMA(T4z, T4A, T4B * T4C);
+ T9e = FNMS(T4B, T4A, T4z * T4C);
+ }
+ {
+ E T4F, T4H, T4E, T4G;
+ T4F = rio[WS(ios, 31)];
+ T4H = iio[-WS(ios, 32)];
+ T4E = W[60];
+ T4G = W[61];
+ T4I = FMA(T4E, T4F, T4G * T4H);
+ T9f = FNMS(T4G, T4F, T4E * T4H);
+ }
+ T4J = T4D + T4I;
+ Te8 = T9e + T9f;
+ {
+ E T4L, T4N, T4K, T4M;
+ T4L = rio[WS(ios, 15)];
+ T4N = iio[-WS(ios, 48)];
+ T4K = W[28];
+ T4M = W[29];
+ T4O = FMA(T4K, T4L, T4M * T4N);
+ T8A = FNMS(T4M, T4L, T4K * T4N);
+ }
+ {
+ E T4Q, T4S, T4P, T4R;
+ T4Q = rio[WS(ios, 47)];
+ T4S = iio[-WS(ios, 16)];
+ T4P = W[92];
+ T4R = W[93];
+ T4T = FMA(T4P, T4Q, T4R * T4S);
+ T8B = FNMS(T4R, T4Q, T4P * T4S);
+ }
+ T4U = T4O + T4T;
+ Te9 = T8A + T8B;
+ {
+ E T50, T8E, T55, T8F;
+ {
+ E T4X, T4Z, T4W, T4Y;
+ T4X = rio[WS(ios, 7)];
+ T4Z = iio[-WS(ios, 56)];
+ T4W = W[12];
+ T4Y = W[13];
+ T50 = FMA(T4W, T4X, T4Y * T4Z);
+ T8E = FNMS(T4Y, T4X, T4W * T4Z);
+ }
+ {
+ E T52, T54, T51, T53;
+ T52 = rio[WS(ios, 39)];
+ T54 = iio[-WS(ios, 24)];
+ T51 = W[76];
+ T53 = W[77];
+ T55 = FMA(T51, T52, T53 * T54);
+ T8F = FNMS(T53, T52, T51 * T54);
+ }
+ T56 = T50 + T55;
+ TdS = T8E + T8F;
+ T8G = T8E - T8F;
+ T8H = T50 - T55;
+ }
+ {
+ E T5b, T8K, T5g, T8L;
+ {
+ E T58, T5a, T57, T59;
+ T58 = rio[WS(ios, 55)];
+ T5a = iio[-WS(ios, 8)];
+ T57 = W[108];
+ T59 = W[109];
+ T5b = FMA(T57, T58, T59 * T5a);
+ T8K = FNMS(T59, T58, T57 * T5a);
+ }
+ {
+ E T5d, T5f, T5c, T5e;
+ T5d = rio[WS(ios, 23)];
+ T5f = iio[-WS(ios, 40)];
+ T5c = W[44];
+ T5e = W[45];
+ T5g = FMA(T5c, T5d, T5e * T5f);
+ T8L = FNMS(T5e, T5d, T5c * T5f);
+ }
+ T5h = T5b + T5g;
+ TdT = T8K + T8L;
+ T8J = T5b - T5g;
+ T8M = T8K - T8L;
+ }
+ {
+ E T4V, T5i, Tea, Teb;
+ T4V = T4J + T4U;
+ T5i = T56 + T5h;
+ T5j = T4V + T5i;
+ TfR = T4V - T5i;
+ Tea = Te8 - Te9;
+ Teb = T5h - T56;
+ Tec = Tea - Teb;
+ Tf0 = Tea + Teb;
+ }
+ {
+ E TfW, TfX, T8z, T8C;
+ TfW = Te8 + Te9;
+ TfX = TdS + TdT;
+ TfY = TfW - TfX;
+ Tgy = TfW + TfX;
+ T8z = T4D - T4I;
+ T8C = T8A - T8B;
+ T8D = T8z - T8C;
+ Tbl = T8z + T8C;
+ }
+ {
+ E T8I, T8N, T9j, T9k;
+ T8I = T8G - T8H;
+ T8N = T8J + T8M;
+ T8O = KP707106781 * (T8I - T8N);
+ Tbx = KP707106781 * (T8I + T8N);
+ T9j = T8J - T8M;
+ T9k = T8H + T8G;
+ T9l = KP707106781 * (T9j - T9k);
+ Tbm = KP707106781 * (T9k + T9j);
+ }
+ {
+ E TdR, TdU, T9g, T9h;
+ TdR = T4J - T4U;
+ TdU = TdS - TdT;
+ TdV = TdR - TdU;
+ TeX = TdR + TdU;
+ T9g = T9e - T9f;
+ T9h = T4O - T4T;
+ T9i = T9g + T9h;
+ Tbw = T9g - T9h;
+ }
+ }
+ {
+ E T5u, TdW, T8S, T8V, T62, Te3, T94, T99, T5F, TdX, T8T, T8Y, T5R, Te2, T93;
+ E T96;
+ {
+ E T5o, T8Q, T5t, T8R;
+ {
+ E T5l, T5n, T5k, T5m;
+ T5l = rio[WS(ios, 3)];
+ T5n = iio[-WS(ios, 60)];
+ T5k = W[4];
+ T5m = W[5];
+ T5o = FMA(T5k, T5l, T5m * T5n);
+ T8Q = FNMS(T5m, T5l, T5k * T5n);
+ }
+ {
+ E T5q, T5s, T5p, T5r;
+ T5q = rio[WS(ios, 35)];
+ T5s = iio[-WS(ios, 28)];
+ T5p = W[68];
+ T5r = W[69];
+ T5t = FMA(T5p, T5q, T5r * T5s);
+ T8R = FNMS(T5r, T5q, T5p * T5s);
+ }
+ T5u = T5o + T5t;
+ TdW = T8Q + T8R;
+ T8S = T8Q - T8R;
+ T8V = T5o - T5t;
+ }
+ {
+ E T5W, T97, T61, T98;
+ {
+ E T5T, T5V, T5S, T5U;
+ T5T = rio[WS(ios, 11)];
+ T5V = iio[-WS(ios, 52)];
+ T5S = W[20];
+ T5U = W[21];
+ T5W = FMA(T5S, T5T, T5U * T5V);
+ T97 = FNMS(T5U, T5T, T5S * T5V);
+ }
+ {
+ E T5Y, T60, T5X, T5Z;
+ T5Y = rio[WS(ios, 43)];
+ T60 = iio[-WS(ios, 20)];
+ T5X = W[84];
+ T5Z = W[85];
+ T61 = FMA(T5X, T5Y, T5Z * T60);
+ T98 = FNMS(T5Z, T5Y, T5X * T60);
+ }
+ T62 = T5W + T61;
+ Te3 = T97 + T98;
+ T94 = T5W - T61;
+ T99 = T97 - T98;
+ }
+ {
+ E T5z, T8W, T5E, T8X;
+ {
+ E T5w, T5y, T5v, T5x;
+ T5w = rio[WS(ios, 19)];
+ T5y = iio[-WS(ios, 44)];
+ T5v = W[36];
+ T5x = W[37];
+ T5z = FMA(T5v, T5w, T5x * T5y);
+ T8W = FNMS(T5x, T5w, T5v * T5y);
+ }
+ {
+ E T5B, T5D, T5A, T5C;
+ T5B = rio[WS(ios, 51)];
+ T5D = iio[-WS(ios, 12)];
+ T5A = W[100];
+ T5C = W[101];
+ T5E = FMA(T5A, T5B, T5C * T5D);
+ T8X = FNMS(T5C, T5B, T5A * T5D);
+ }
+ T5F = T5z + T5E;
+ TdX = T8W + T8X;
+ T8T = T5z - T5E;
+ T8Y = T8W - T8X;
+ }
+ {
+ E T5L, T91, T5Q, T92;
+ {
+ E T5I, T5K, T5H, T5J;
+ T5I = rio[WS(ios, 59)];
+ T5K = iio[-WS(ios, 4)];
+ T5H = W[116];
+ T5J = W[117];
+ T5L = FMA(T5H, T5I, T5J * T5K);
+ T91 = FNMS(T5J, T5I, T5H * T5K);
+ }
+ {
+ E T5N, T5P, T5M, T5O;
+ T5N = rio[WS(ios, 27)];
+ T5P = iio[-WS(ios, 36)];
+ T5M = W[52];
+ T5O = W[53];
+ T5Q = FMA(T5M, T5N, T5O * T5P);
+ T92 = FNMS(T5O, T5N, T5M * T5P);
+ }
+ T5R = T5L + T5Q;
+ Te2 = T91 + T92;
+ T93 = T91 - T92;
+ T96 = T5L - T5Q;
+ }
+ {
+ E T5G, T63, Te1, Te4;
+ T5G = T5u + T5F;
+ T63 = T5R + T62;
+ T64 = T5G + T63;
+ TfZ = T63 - T5G;
+ Te1 = T5R - T62;
+ Te4 = Te2 - Te3;
+ Te5 = Te1 + Te4;
+ Ted = Te1 - Te4;
+ }
+ {
+ E TfS, TfT, T8U, T8Z;
+ TfS = TdW + TdX;
+ TfT = Te2 + Te3;
+ TfU = TfS - TfT;
+ Tgz = TfS + TfT;
+ T8U = T8S + T8T;
+ T8Z = T8V - T8Y;
+ T90 = FNMS(KP923879532, T8Z, KP382683432 * T8U);
+ T9o = FMA(KP923879532, T8U, KP382683432 * T8Z);
+ }
+ {
+ E T95, T9a, Tbr, Tbs;
+ T95 = T93 + T94;
+ T9a = T96 - T99;
+ T9b = FMA(KP382683432, T95, KP923879532 * T9a);
+ T9n = FNMS(KP923879532, T95, KP382683432 * T9a);
+ Tbr = T93 - T94;
+ Tbs = T96 + T99;
+ Tbt = FMA(KP923879532, Tbr, KP382683432 * Tbs);
+ Tbz = FNMS(KP382683432, Tbr, KP923879532 * Tbs);
+ }
+ {
+ E TdY, TdZ, Tbo, Tbp;
+ TdY = TdW - TdX;
+ TdZ = T5u - T5F;
+ Te0 = TdY - TdZ;
+ Tee = TdZ + TdY;
+ Tbo = T8S - T8T;
+ Tbp = T8V + T8Y;
+ Tbq = FNMS(KP382683432, Tbp, KP923879532 * Tbo);
+ TbA = FMA(KP382683432, Tbo, KP923879532 * Tbp);
+ }
+ }
+ {
+ E T3X, TdB, T8a, T8d, T4v, Tdx, T80, T85, T48, TdC, T8b, T8g, T4k, Tdw, T7X;
+ E T84;
+ {
+ E T3R, T88, T3W, T89;
+ {
+ E T3O, T3Q, T3N, T3P;
+ T3O = rio[WS(ios, 5)];
+ T3Q = iio[-WS(ios, 58)];
+ T3N = W[8];
+ T3P = W[9];
+ T3R = FMA(T3N, T3O, T3P * T3Q);
+ T88 = FNMS(T3P, T3O, T3N * T3Q);
+ }
+ {
+ E T3T, T3V, T3S, T3U;
+ T3T = rio[WS(ios, 37)];
+ T3V = iio[-WS(ios, 26)];
+ T3S = W[72];
+ T3U = W[73];
+ T3W = FMA(T3S, T3T, T3U * T3V);
+ T89 = FNMS(T3U, T3T, T3S * T3V);
+ }
+ T3X = T3R + T3W;
+ TdB = T88 + T89;
+ T8a = T88 - T89;
+ T8d = T3R - T3W;
+ }
+ {
+ E T4p, T7Y, T4u, T7Z;
+ {
+ E T4m, T4o, T4l, T4n;
+ T4m = rio[WS(ios, 13)];
+ T4o = iio[-WS(ios, 50)];
+ T4l = W[24];
+ T4n = W[25];
+ T4p = FMA(T4l, T4m, T4n * T4o);
+ T7Y = FNMS(T4n, T4m, T4l * T4o);
+ }
+ {
+ E T4r, T4t, T4q, T4s;
+ T4r = rio[WS(ios, 45)];
+ T4t = iio[-WS(ios, 18)];
+ T4q = W[88];
+ T4s = W[89];
+ T4u = FMA(T4q, T4r, T4s * T4t);
+ T7Z = FNMS(T4s, T4r, T4q * T4t);
+ }
+ T4v = T4p + T4u;
+ Tdx = T7Y + T7Z;
+ T80 = T7Y - T7Z;
+ T85 = T4p - T4u;
+ }
+ {
+ E T42, T8e, T47, T8f;
+ {
+ E T3Z, T41, T3Y, T40;
+ T3Z = rio[WS(ios, 21)];
+ T41 = iio[-WS(ios, 42)];
+ T3Y = W[40];
+ T40 = W[41];
+ T42 = FMA(T3Y, T3Z, T40 * T41);
+ T8e = FNMS(T40, T3Z, T3Y * T41);
+ }
+ {
+ E T44, T46, T43, T45;
+ T44 = rio[WS(ios, 53)];
+ T46 = iio[-WS(ios, 10)];
+ T43 = W[104];
+ T45 = W[105];
+ T47 = FMA(T43, T44, T45 * T46);
+ T8f = FNMS(T45, T44, T43 * T46);
+ }
+ T48 = T42 + T47;
+ TdC = T8e + T8f;
+ T8b = T42 - T47;
+ T8g = T8e - T8f;
+ }
+ {
+ E T4e, T82, T4j, T83;
+ {
+ E T4b, T4d, T4a, T4c;
+ T4b = rio[WS(ios, 61)];
+ T4d = iio[-WS(ios, 2)];
+ T4a = W[120];
+ T4c = W[121];
+ T4e = FMA(T4a, T4b, T4c * T4d);
+ T82 = FNMS(T4c, T4b, T4a * T4d);
+ }
+ {
+ E T4g, T4i, T4f, T4h;
+ T4g = rio[WS(ios, 29)];
+ T4i = iio[-WS(ios, 34)];
+ T4f = W[56];
+ T4h = W[57];
+ T4j = FMA(T4f, T4g, T4h * T4i);
+ T83 = FNMS(T4h, T4g, T4f * T4i);
+ }
+ T4k = T4e + T4j;
+ Tdw = T82 + T83;
+ T7X = T4e - T4j;
+ T84 = T82 - T83;
+ }
+ {
+ E T49, T4w, TdA, TdD;
+ T49 = T3X + T48;
+ T4w = T4k + T4v;
+ T4x = T49 + T4w;
+ TfJ = T4w - T49;
+ TdA = T3X - T48;
+ TdD = TdB - TdC;
+ TdE = TdA + TdD;
+ TdM = TdD - TdA;
+ }
+ {
+ E TfM, TfN, T81, T86;
+ TfM = TdB + TdC;
+ TfN = Tdw + Tdx;
+ TfO = TfM - TfN;
+ Tgu = TfM + TfN;
+ T81 = T7X - T80;
+ T86 = T84 + T85;
+ T87 = FNMS(KP923879532, T86, KP382683432 * T81);
+ T8v = FMA(KP382683432, T86, KP923879532 * T81);
+ }
+ {
+ E T8c, T8h, Tb8, Tb9;
+ T8c = T8a + T8b;
+ T8h = T8d - T8g;
+ T8i = FMA(KP923879532, T8c, KP382683432 * T8h);
+ T8u = FNMS(KP923879532, T8h, KP382683432 * T8c);
+ Tb8 = T8a - T8b;
+ Tb9 = T8d + T8g;
+ Tba = FMA(KP382683432, Tb8, KP923879532 * Tb9);
+ Tbg = FNMS(KP382683432, Tb9, KP923879532 * Tb8);
+ }
+ {
+ E Tdv, Tdy, Tb5, Tb6;
+ Tdv = T4k - T4v;
+ Tdy = Tdw - Tdx;
+ Tdz = Tdv - Tdy;
+ TdN = Tdv + Tdy;
+ Tb5 = T7X + T80;
+ Tb6 = T84 - T85;
+ Tb7 = FNMS(KP382683432, Tb6, KP923879532 * Tb5);
+ Tbh = FMA(KP923879532, Tb6, KP382683432 * Tb5);
+ }
+ }
+ {
+ E T1t, Tgn, TgK, TgL, TgV, Th1, T30, Th0, T66, TgX, Tgw, TgE, TgB, TgF, Tgq;
+ E TgM;
+ {
+ E TH, T1s, TgI, TgJ;
+ TH = Tj + TG;
+ T1s = T14 + T1r;
+ T1t = TH + T1s;
+ Tgn = TH - T1s;
+ TgI = Tgt + Tgu;
+ TgJ = Tgy + Tgz;
+ TgK = TgI - TgJ;
+ TgL = TgI + TgJ;
+ }
+ {
+ E TgN, TgU, T2e, T2Z;
+ TgN = Tfq + Tfr;
+ TgU = TgO + TgT;
+ TgV = TgN + TgU;
+ Th1 = TgU - TgN;
+ T2e = T1Q + T2d;
+ T2Z = T2B + T2Y;
+ T30 = T2e + T2Z;
+ Th0 = T2Z - T2e;
+ }
+ {
+ E T4y, T65, Tgs, Tgv;
+ T4y = T3M + T4x;
+ T65 = T5j + T64;
+ T66 = T4y + T65;
+ TgX = T65 - T4y;
+ Tgs = T3M - T4x;
+ Tgv = Tgt - Tgu;
+ Tgw = Tgs + Tgv;
+ TgE = Tgv - Tgs;
+ }
+ {
+ E Tgx, TgA, Tgo, Tgp;
+ Tgx = T5j - T64;
+ TgA = Tgy - Tgz;
+ TgB = Tgx - TgA;
+ TgF = Tgx + TgA;
+ Tgo = Tfu + Tfv;
+ Tgp = TfA + TfB;
+ Tgq = Tgo - Tgp;
+ TgM = Tgo + Tgp;
+ }
+ {
+ E T31, TgW, TgH, TgY;
+ T31 = T1t + T30;
+ iio[-WS(ios, 32)] = T31 - T66;
+ rio[0] = T31 + T66;
+ TgW = TgM + TgV;
+ rio[WS(ios, 32)] = TgL - TgW;
+ iio[0] = TgL + TgW;
+ TgH = T1t - T30;
+ iio[-WS(ios, 48)] = TgH - TgK;
+ rio[WS(ios, 16)] = TgH + TgK;
+ TgY = TgV - TgM;
+ rio[WS(ios, 48)] = TgX - TgY;
+ iio[-WS(ios, 16)] = TgX + TgY;
+ }
+ {
+ E Tgr, TgC, TgZ, Th2;
+ Tgr = Tgn + Tgq;
+ TgC = KP707106781 * (Tgw + TgB);
+ iio[-WS(ios, 40)] = Tgr - TgC;
+ rio[WS(ios, 8)] = Tgr + TgC;
+ TgZ = KP707106781 * (TgE + TgF);
+ Th2 = Th0 + Th1;
+ rio[WS(ios, 40)] = TgZ - Th2;
+ iio[-WS(ios, 8)] = TgZ + Th2;
+ }
+ {
+ E TgD, TgG, Th3, Th4;
+ TgD = Tgn - Tgq;
+ TgG = KP707106781 * (TgE - TgF);
+ iio[-WS(ios, 56)] = TgD - TgG;
+ rio[WS(ios, 24)] = TgD + TgG;
+ Th3 = KP707106781 * (TgB - Tgw);
+ Th4 = Th1 - Th0;
+ rio[WS(ios, 56)] = Th3 - Th4;
+ iio[-WS(ios, 24)] = Th3 + Th4;
+ }
+ }
+ {
+ E Tft, Tg7, Tgh, Tgl, Th9, Thf, TfE, Th6, TfQ, Tg4, Tga, The, Tge, Tgk, Tg1;
+ E Tg5;
+ {
+ E Tfp, Tfs, Tgf, Tgg;
+ Tfp = Tj - TG;
+ Tfs = Tfq - Tfr;
+ Tft = Tfp - Tfs;
+ Tg7 = Tfp + Tfs;
+ Tgf = TfR + TfU;
+ Tgg = TfY + TfZ;
+ Tgh = FNMS(KP382683432, Tgg, KP923879532 * Tgf);
+ Tgl = FMA(KP923879532, Tgg, KP382683432 * Tgf);
+ }
+ {
+ E Th7, Th8, Tfy, TfD;
+ Th7 = T1r - T14;
+ Th8 = TgT - TgO;
+ Th9 = Th7 + Th8;
+ Thf = Th8 - Th7;
+ Tfy = Tfw - Tfx;
+ TfD = Tfz + TfC;
+ TfE = KP707106781 * (Tfy - TfD);
+ Th6 = KP707106781 * (Tfy + TfD);
+ }
+ {
+ E TfK, TfP, Tg8, Tg9;
+ TfK = TfI - TfJ;
+ TfP = TfL - TfO;
+ TfQ = FMA(KP923879532, TfK, KP382683432 * TfP);
+ Tg4 = FNMS(KP923879532, TfP, KP382683432 * TfK);
+ Tg8 = Tfx + Tfw;
+ Tg9 = Tfz - TfC;
+ Tga = KP707106781 * (Tg8 + Tg9);
+ The = KP707106781 * (Tg9 - Tg8);
+ }
+ {
+ E Tgc, Tgd, TfV, Tg0;
+ Tgc = TfI + TfJ;
+ Tgd = TfL + TfO;
+ Tge = FMA(KP382683432, Tgc, KP923879532 * Tgd);
+ Tgk = FNMS(KP382683432, Tgd, KP923879532 * Tgc);
+ TfV = TfR - TfU;
+ Tg0 = TfY - TfZ;
+ Tg1 = FNMS(KP923879532, Tg0, KP382683432 * TfV);
+ Tg5 = FMA(KP382683432, Tg0, KP923879532 * TfV);
+ }
+ {
+ E TfF, Tg2, Thd, Thg;
+ TfF = Tft + TfE;
+ Tg2 = TfQ + Tg1;
+ iio[-WS(ios, 44)] = TfF - Tg2;
+ rio[WS(ios, 12)] = TfF + Tg2;
+ Thd = Tg4 + Tg5;
+ Thg = The + Thf;
+ rio[WS(ios, 44)] = Thd - Thg;
+ iio[-WS(ios, 12)] = Thd + Thg;
+ }
+ {
+ E Tg3, Tg6, Thh, Thi;
+ Tg3 = Tft - TfE;
+ Tg6 = Tg4 - Tg5;
+ iio[-WS(ios, 60)] = Tg3 - Tg6;
+ rio[WS(ios, 28)] = Tg3 + Tg6;
+ Thh = Tg1 - TfQ;
+ Thi = Thf - The;
+ rio[WS(ios, 60)] = Thh - Thi;
+ iio[-WS(ios, 28)] = Thh + Thi;
+ }
+ {
+ E Tgb, Tgi, Th5, Tha;
+ Tgb = Tg7 + Tga;
+ Tgi = Tge + Tgh;
+ iio[-WS(ios, 36)] = Tgb - Tgi;
+ rio[WS(ios, 4)] = Tgb + Tgi;
+ Th5 = Tgk + Tgl;
+ Tha = Th6 + Th9;
+ rio[WS(ios, 36)] = Th5 - Tha;
+ iio[-WS(ios, 4)] = Th5 + Tha;
+ }
+ {
+ E Tgj, Tgm, Thb, Thc;
+ Tgj = Tg7 - Tga;
+ Tgm = Tgk - Tgl;
+ iio[-WS(ios, 52)] = Tgj - Tgm;
+ rio[WS(ios, 20)] = Tgj + Tgm;
+ Thb = Tgh - Tge;
+ Thc = Th9 - Th6;
+ rio[WS(ios, 52)] = Thb - Thc;
+ iio[-WS(ios, 20)] = Thb + Thc;
+ }
+ }
+ {
+ E Td1, Ten, Tdo, ThA, ThD, ThJ, Teq, ThI, Teh, TeB, Tel, Tex, TdQ, TeA, Tek;
+ E Teu;
+ {
+ E TcP, Td0, Teo, Tep;
+ TcP = TcL - TcO;
+ Td0 = KP707106781 * (TcU - TcZ);
+ Td1 = TcP - Td0;
+ Ten = TcP + Td0;
+ {
+ E Tdc, Tdn, ThB, ThC;
+ Tdc = FNMS(KP923879532, Tdb, KP382683432 * Td6);
+ Tdn = FMA(KP382683432, Tdh, KP923879532 * Tdm);
+ Tdo = Tdc - Tdn;
+ ThA = Tdc + Tdn;
+ ThB = KP707106781 * (TeF - TeE);
+ ThC = Thn - Thm;
+ ThD = ThB + ThC;
+ ThJ = ThC - ThB;
+ }
+ Teo = FMA(KP923879532, Td6, KP382683432 * Tdb);
+ Tep = FNMS(KP923879532, Tdh, KP382683432 * Tdm);
+ Teq = Teo + Tep;
+ ThI = Tep - Teo;
+ {
+ E Te7, Tev, Teg, Tew, Te6, Tef;
+ Te6 = KP707106781 * (Te0 - Te5);
+ Te7 = TdV - Te6;
+ Tev = TdV + Te6;
+ Tef = KP707106781 * (Ted - Tee);
+ Teg = Tec - Tef;
+ Tew = Tec + Tef;
+ Teh = FNMS(KP980785280, Teg, KP195090322 * Te7);
+ TeB = FMA(KP831469612, Tew, KP555570233 * Tev);
+ Tel = FMA(KP195090322, Teg, KP980785280 * Te7);
+ Tex = FNMS(KP555570233, Tew, KP831469612 * Tev);
+ }
+ {
+ E TdG, Tes, TdP, Tet, TdF, TdO;
+ TdF = KP707106781 * (Tdz - TdE);
+ TdG = Tdu - TdF;
+ Tes = Tdu + TdF;
+ TdO = KP707106781 * (TdM - TdN);
+ TdP = TdL - TdO;
+ Tet = TdL + TdO;
+ TdQ = FMA(KP980785280, TdG, KP195090322 * TdP);
+ TeA = FNMS(KP555570233, Tet, KP831469612 * Tes);
+ Tek = FNMS(KP980785280, TdP, KP195090322 * TdG);
+ Teu = FMA(KP555570233, Tes, KP831469612 * Tet);
+ }
+ }
+ {
+ E Tdp, Tei, ThH, ThK;
+ Tdp = Td1 + Tdo;
+ Tei = TdQ + Teh;
+ iio[-WS(ios, 46)] = Tdp - Tei;
+ rio[WS(ios, 14)] = Tdp + Tei;
+ ThH = Tek + Tel;
+ ThK = ThI + ThJ;
+ rio[WS(ios, 46)] = ThH - ThK;
+ iio[-WS(ios, 14)] = ThH + ThK;
+ }
+ {
+ E Tej, Tem, ThL, ThM;
+ Tej = Td1 - Tdo;
+ Tem = Tek - Tel;
+ iio[-WS(ios, 62)] = Tej - Tem;
+ rio[WS(ios, 30)] = Tej + Tem;
+ ThL = Teh - TdQ;
+ ThM = ThJ - ThI;
+ rio[WS(ios, 62)] = ThL - ThM;
+ iio[-WS(ios, 30)] = ThL + ThM;
+ }
+ {
+ E Ter, Tey, Thz, ThE;
+ Ter = Ten + Teq;
+ Tey = Teu + Tex;
+ iio[-WS(ios, 38)] = Ter - Tey;
+ rio[WS(ios, 6)] = Ter + Tey;
+ Thz = TeA + TeB;
+ ThE = ThA + ThD;
+ rio[WS(ios, 38)] = Thz - ThE;
+ iio[-WS(ios, 6)] = Thz + ThE;
+ }
+ {
+ E Tez, TeC, ThF, ThG;
+ Tez = Ten - Teq;
+ TeC = TeA - TeB;
+ iio[-WS(ios, 54)] = Tez - TeC;
+ rio[WS(ios, 22)] = Tez + TeC;
+ ThF = Tex - Teu;
+ ThG = ThD - ThA;
+ rio[WS(ios, 54)] = ThF - ThG;
+ iio[-WS(ios, 22)] = ThF + ThG;
+ }
+ }
+ {
+ E TeH, Tf9, TeO, Thk, Thp, Thv, Tfc, Thu, Tf3, Tfn, Tf7, Tfj, TeW, Tfm, Tf6;
+ E Tfg;
+ {
+ E TeD, TeG, Tfa, Tfb;
+ TeD = TcL + TcO;
+ TeG = KP707106781 * (TeE + TeF);
+ TeH = TeD - TeG;
+ Tf9 = TeD + TeG;
+ {
+ E TeK, TeN, Thl, Tho;
+ TeK = FNMS(KP382683432, TeJ, KP923879532 * TeI);
+ TeN = FMA(KP923879532, TeL, KP382683432 * TeM);
+ TeO = TeK - TeN;
+ Thk = TeK + TeN;
+ Thl = KP707106781 * (TcU + TcZ);
+ Tho = Thm + Thn;
+ Thp = Thl + Tho;
+ Thv = Tho - Thl;
+ }
+ Tfa = FMA(KP382683432, TeI, KP923879532 * TeJ);
+ Tfb = FNMS(KP382683432, TeL, KP923879532 * TeM);
+ Tfc = Tfa + Tfb;
+ Thu = Tfb - Tfa;
+ {
+ E TeZ, Tfh, Tf2, Tfi, TeY, Tf1;
+ TeY = KP707106781 * (Tee + Ted);
+ TeZ = TeX - TeY;
+ Tfh = TeX + TeY;
+ Tf1 = KP707106781 * (Te0 + Te5);
+ Tf2 = Tf0 - Tf1;
+ Tfi = Tf0 + Tf1;
+ Tf3 = FNMS(KP831469612, Tf2, KP555570233 * TeZ);
+ Tfn = FMA(KP195090322, Tfh, KP980785280 * Tfi);
+ Tf7 = FMA(KP831469612, TeZ, KP555570233 * Tf2);
+ Tfj = FNMS(KP195090322, Tfi, KP980785280 * Tfh);
+ }
+ {
+ E TeS, Tfe, TeV, Tff, TeR, TeU;
+ TeR = KP707106781 * (TdE + Tdz);
+ TeS = TeQ - TeR;
+ Tfe = TeQ + TeR;
+ TeU = KP707106781 * (TdM + TdN);
+ TeV = TeT - TeU;
+ Tff = TeT + TeU;
+ TeW = FMA(KP555570233, TeS, KP831469612 * TeV);
+ Tfm = FNMS(KP195090322, Tfe, KP980785280 * Tff);
+ Tf6 = FNMS(KP831469612, TeS, KP555570233 * TeV);
+ Tfg = FMA(KP980785280, Tfe, KP195090322 * Tff);
+ }
+ }
+ {
+ E TeP, Tf4, Tht, Thw;
+ TeP = TeH + TeO;
+ Tf4 = TeW + Tf3;
+ iio[-WS(ios, 42)] = TeP - Tf4;
+ rio[WS(ios, 10)] = TeP + Tf4;
+ Tht = Tf6 + Tf7;
+ Thw = Thu + Thv;
+ rio[WS(ios, 42)] = Tht - Thw;
+ iio[-WS(ios, 10)] = Tht + Thw;
+ }
+ {
+ E Tf5, Tf8, Thx, Thy;
+ Tf5 = TeH - TeO;
+ Tf8 = Tf6 - Tf7;
+ iio[-WS(ios, 58)] = Tf5 - Tf8;
+ rio[WS(ios, 26)] = Tf5 + Tf8;
+ Thx = Tf3 - TeW;
+ Thy = Thv - Thu;
+ rio[WS(ios, 58)] = Thx - Thy;
+ iio[-WS(ios, 26)] = Thx + Thy;
+ }
+ {
+ E Tfd, Tfk, Thj, Thq;
+ Tfd = Tf9 + Tfc;
+ Tfk = Tfg + Tfj;
+ iio[-WS(ios, 34)] = Tfd - Tfk;
+ rio[WS(ios, 2)] = Tfd + Tfk;
+ Thj = Tfm + Tfn;
+ Thq = Thk + Thp;
+ rio[WS(ios, 34)] = Thj - Thq;
+ iio[-WS(ios, 2)] = Thj + Thq;
+ }
+ {
+ E Tfl, Tfo, Thr, Ths;
+ Tfl = Tf9 - Tfc;
+ Tfo = Tfm - Tfn;
+ iio[-WS(ios, 50)] = Tfl - Tfo;
+ rio[WS(ios, 18)] = Tfl + Tfo;
+ Thr = Tfj - Tfg;
+ Ths = Thp - Thk;
+ rio[WS(ios, 50)] = Thr - Ths;
+ iio[-WS(ios, 18)] = Thr + Ths;
+ }
+ }
+ {
+ E T6L, T9x, TiD, TiJ, T7E, TiI, T9A, TiA, T8y, T9K, T9u, T9E, T9r, T9L, T9v;
+ E T9H;
+ {
+ E T6n, T6K, TiB, TiC;
+ T6n = T6b - T6m;
+ T6K = T6y - T6J;
+ T6L = T6n - T6K;
+ T9x = T6n + T6K;
+ TiB = T9P - T9O;
+ TiC = Tin - Tim;
+ TiD = TiB + TiC;
+ TiJ = TiC - TiB;
+ }
+ {
+ E T7c, T9y, T7D, T9z;
+ {
+ E T72, T7b, T7t, T7C;
+ T72 = T6Q - T71;
+ T7b = T77 - T7a;
+ T7c = FNMS(KP980785280, T7b, KP195090322 * T72);
+ T9y = FMA(KP980785280, T72, KP195090322 * T7b);
+ T7t = T7h - T7s;
+ T7C = T7y - T7B;
+ T7D = FMA(KP195090322, T7t, KP980785280 * T7C);
+ T9z = FNMS(KP980785280, T7t, KP195090322 * T7C);
+ }
+ T7E = T7c - T7D;
+ TiI = T9z - T9y;
+ T9A = T9y + T9z;
+ TiA = T7c + T7D;
+ }
+ {
+ E T8k, T9C, T8x, T9D;
+ {
+ E T7W, T8j, T8t, T8w;
+ T7W = T7K - T7V;
+ T8j = T87 - T8i;
+ T8k = T7W - T8j;
+ T9C = T7W + T8j;
+ T8t = T8p - T8s;
+ T8w = T8u - T8v;
+ T8x = T8t - T8w;
+ T9D = T8t + T8w;
+ }
+ T8y = FMA(KP995184726, T8k, KP098017140 * T8x);
+ T9K = FNMS(KP634393284, T9D, KP773010453 * T9C);
+ T9u = FNMS(KP995184726, T8x, KP098017140 * T8k);
+ T9E = FMA(KP634393284, T9C, KP773010453 * T9D);
+ }
+ {
+ E T9d, T9F, T9q, T9G;
+ {
+ E T8P, T9c, T9m, T9p;
+ T8P = T8D - T8O;
+ T9c = T90 - T9b;
+ T9d = T8P - T9c;
+ T9F = T8P + T9c;
+ T9m = T9i - T9l;
+ T9p = T9n - T9o;
+ T9q = T9m - T9p;
+ T9G = T9m + T9p;
+ }
+ T9r = FNMS(KP995184726, T9q, KP098017140 * T9d);
+ T9L = FMA(KP773010453, T9G, KP634393284 * T9F);
+ T9v = FMA(KP098017140, T9q, KP995184726 * T9d);
+ T9H = FNMS(KP634393284, T9G, KP773010453 * T9F);
+ }
+ {
+ E T7F, T9s, TiH, TiK;
+ T7F = T6L + T7E;
+ T9s = T8y + T9r;
+ iio[-WS(ios, 47)] = T7F - T9s;
+ rio[WS(ios, 15)] = T7F + T9s;
+ TiH = T9u + T9v;
+ TiK = TiI + TiJ;
+ rio[WS(ios, 47)] = TiH - TiK;
+ iio[-WS(ios, 15)] = TiH + TiK;
+ }
+ {
+ E T9t, T9w, TiL, TiM;
+ T9t = T6L - T7E;
+ T9w = T9u - T9v;
+ iio[-WS(ios, 63)] = T9t - T9w;
+ rio[WS(ios, 31)] = T9t + T9w;
+ TiL = T9r - T8y;
+ TiM = TiJ - TiI;
+ rio[WS(ios, 63)] = TiL - TiM;
+ iio[-WS(ios, 31)] = TiL + TiM;
+ }
+ {
+ E T9B, T9I, Tiz, TiE;
+ T9B = T9x + T9A;
+ T9I = T9E + T9H;
+ iio[-WS(ios, 39)] = T9B - T9I;
+ rio[WS(ios, 7)] = T9B + T9I;
+ Tiz = T9K + T9L;
+ TiE = TiA + TiD;
+ rio[WS(ios, 39)] = Tiz - TiE;
+ iio[-WS(ios, 7)] = Tiz + TiE;
+ }
+ {
+ E T9J, T9M, TiF, TiG;
+ T9J = T9x - T9A;
+ T9M = T9K - T9L;
+ iio[-WS(ios, 55)] = T9J - T9M;
+ rio[WS(ios, 23)] = T9J + T9M;
+ TiF = T9H - T9E;
+ TiG = TiD - TiA;
+ rio[WS(ios, 55)] = TiF - TiG;
+ iio[-WS(ios, 23)] = TiF + TiG;
+ }
+ }
+ {
+ E TaL, TbJ, Ti9, Tif, Tb0, Tie, TbM, Ti6, Tbk, TbW, TbG, TbQ, TbD, TbX, TbH;
+ E TbT;
+ {
+ E TaD, TaK, Ti7, Ti8;
+ TaD = Taz - TaC;
+ TaK = TaG - TaJ;
+ TaL = TaD - TaK;
+ TbJ = TaD + TaK;
+ Ti7 = Tc1 - Tc0;
+ Ti8 = ThT - ThQ;
+ Ti9 = Ti7 + Ti8;
+ Tif = Ti8 - Ti7;
+ }
+ {
+ E TaS, TbK, TaZ, TbL;
+ {
+ E TaO, TaR, TaV, TaY;
+ TaO = TaM - TaN;
+ TaR = TaP - TaQ;
+ TaS = FNMS(KP831469612, TaR, KP555570233 * TaO);
+ TbK = FMA(KP555570233, TaR, KP831469612 * TaO);
+ TaV = TaT - TaU;
+ TaY = TaW - TaX;
+ TaZ = FMA(KP831469612, TaV, KP555570233 * TaY);
+ TbL = FNMS(KP831469612, TaY, KP555570233 * TaV);
+ }
+ Tb0 = TaS - TaZ;
+ Tie = TbL - TbK;
+ TbM = TbK + TbL;
+ Ti6 = TaS + TaZ;
+ }
+ {
+ E Tbc, TbO, Tbj, TbP;
+ {
+ E Tb4, Tbb, Tbf, Tbi;
+ Tb4 = Tb2 - Tb3;
+ Tbb = Tb7 - Tba;
+ Tbc = Tb4 - Tbb;
+ TbO = Tb4 + Tbb;
+ Tbf = Tbd - Tbe;
+ Tbi = Tbg - Tbh;
+ Tbj = Tbf - Tbi;
+ TbP = Tbf + Tbi;
+ }
+ Tbk = FMA(KP956940335, Tbc, KP290284677 * Tbj);
+ TbW = FNMS(KP471396736, TbP, KP881921264 * TbO);
+ TbG = FNMS(KP956940335, Tbj, KP290284677 * Tbc);
+ TbQ = FMA(KP471396736, TbO, KP881921264 * TbP);
+ }
+ {
+ E Tbv, TbR, TbC, TbS;
+ {
+ E Tbn, Tbu, Tby, TbB;
+ Tbn = Tbl - Tbm;
+ Tbu = Tbq - Tbt;
+ Tbv = Tbn - Tbu;
+ TbR = Tbn + Tbu;
+ Tby = Tbw - Tbx;
+ TbB = Tbz - TbA;
+ TbC = Tby - TbB;
+ TbS = Tby + TbB;
+ }
+ TbD = FNMS(KP956940335, TbC, KP290284677 * Tbv);
+ TbX = FMA(KP881921264, TbS, KP471396736 * TbR);
+ TbH = FMA(KP290284677, TbC, KP956940335 * Tbv);
+ TbT = FNMS(KP471396736, TbS, KP881921264 * TbR);
+ }
+ {
+ E Tb1, TbE, Tid, Tig;
+ Tb1 = TaL + Tb0;
+ TbE = Tbk + TbD;
+ iio[-WS(ios, 45)] = Tb1 - TbE;
+ rio[WS(ios, 13)] = Tb1 + TbE;
+ Tid = TbG + TbH;
+ Tig = Tie + Tif;
+ rio[WS(ios, 45)] = Tid - Tig;
+ iio[-WS(ios, 13)] = Tid + Tig;
+ }
+ {
+ E TbF, TbI, Tih, Tii;
+ TbF = TaL - Tb0;
+ TbI = TbG - TbH;
+ iio[-WS(ios, 61)] = TbF - TbI;
+ rio[WS(ios, 29)] = TbF + TbI;
+ Tih = TbD - Tbk;
+ Tii = Tif - Tie;
+ rio[WS(ios, 61)] = Tih - Tii;
+ iio[-WS(ios, 29)] = Tih + Tii;
+ }
+ {
+ E TbN, TbU, Ti5, Tia;
+ TbN = TbJ + TbM;
+ TbU = TbQ + TbT;
+ iio[-WS(ios, 37)] = TbN - TbU;
+ rio[WS(ios, 5)] = TbN + TbU;
+ Ti5 = TbW + TbX;
+ Tia = Ti6 + Ti9;
+ rio[WS(ios, 37)] = Ti5 - Tia;
+ iio[-WS(ios, 5)] = Ti5 + Tia;
+ }
+ {
+ E TbV, TbY, Tib, Tic;
+ TbV = TbJ - TbM;
+ TbY = TbW - TbX;
+ iio[-WS(ios, 53)] = TbV - TbY;
+ rio[WS(ios, 21)] = TbV + TbY;
+ Tib = TbT - TbQ;
+ Tic = Ti9 - Ti6;
+ rio[WS(ios, 53)] = Tib - Tic;
+ iio[-WS(ios, 21)] = Tib + Tic;
+ }
+ }
+ {
+ E Tc3, Tcv, ThV, Ti1, Tca, Ti0, Tcy, ThO, Tci, TcI, Tcs, TcC, Tcp, TcJ, Tct;
+ E TcF;
+ {
+ E TbZ, Tc2, ThP, ThU;
+ TbZ = Taz + TaC;
+ Tc2 = Tc0 + Tc1;
+ Tc3 = TbZ - Tc2;
+ Tcv = TbZ + Tc2;
+ ThP = TaG + TaJ;
+ ThU = ThQ + ThT;
+ ThV = ThP + ThU;
+ Ti1 = ThU - ThP;
+ }
+ {
+ E Tc6, Tcw, Tc9, Tcx;
+ {
+ E Tc4, Tc5, Tc7, Tc8;
+ Tc4 = TaM + TaN;
+ Tc5 = TaP + TaQ;
+ Tc6 = FNMS(KP195090322, Tc5, KP980785280 * Tc4);
+ Tcw = FMA(KP980785280, Tc5, KP195090322 * Tc4);
+ Tc7 = TaT + TaU;
+ Tc8 = TaW + TaX;
+ Tc9 = FMA(KP195090322, Tc7, KP980785280 * Tc8);
+ Tcx = FNMS(KP195090322, Tc8, KP980785280 * Tc7);
+ }
+ Tca = Tc6 - Tc9;
+ Ti0 = Tcx - Tcw;
+ Tcy = Tcw + Tcx;
+ ThO = Tc6 + Tc9;
+ }
+ {
+ E Tce, TcA, Tch, TcB;
+ {
+ E Tcc, Tcd, Tcf, Tcg;
+ Tcc = Tbd + Tbe;
+ Tcd = Tba + Tb7;
+ Tce = Tcc - Tcd;
+ TcA = Tcc + Tcd;
+ Tcf = Tb2 + Tb3;
+ Tcg = Tbg + Tbh;
+ Tch = Tcf - Tcg;
+ TcB = Tcf + Tcg;
+ }
+ Tci = FMA(KP634393284, Tce, KP773010453 * Tch);
+ TcI = FNMS(KP098017140, TcA, KP995184726 * TcB);
+ Tcs = FNMS(KP773010453, Tce, KP634393284 * Tch);
+ TcC = FMA(KP995184726, TcA, KP098017140 * TcB);
+ }
+ {
+ E Tcl, TcD, Tco, TcE;
+ {
+ E Tcj, Tck, Tcm, Tcn;
+ Tcj = Tbl + Tbm;
+ Tck = TbA + Tbz;
+ Tcl = Tcj - Tck;
+ TcD = Tcj + Tck;
+ Tcm = Tbw + Tbx;
+ Tcn = Tbq + Tbt;
+ Tco = Tcm - Tcn;
+ TcE = Tcm + Tcn;
+ }
+ Tcp = FNMS(KP773010453, Tco, KP634393284 * Tcl);
+ TcJ = FMA(KP098017140, TcD, KP995184726 * TcE);
+ Tct = FMA(KP773010453, Tcl, KP634393284 * Tco);
+ TcF = FNMS(KP098017140, TcE, KP995184726 * TcD);
+ }
+ {
+ E Tcb, Tcq, ThZ, Ti2;
+ Tcb = Tc3 + Tca;
+ Tcq = Tci + Tcp;
+ iio[-WS(ios, 41)] = Tcb - Tcq;
+ rio[WS(ios, 9)] = Tcb + Tcq;
+ ThZ = Tcs + Tct;
+ Ti2 = Ti0 + Ti1;
+ rio[WS(ios, 41)] = ThZ - Ti2;
+ iio[-WS(ios, 9)] = ThZ + Ti2;
+ }
+ {
+ E Tcr, Tcu, Ti3, Ti4;
+ Tcr = Tc3 - Tca;
+ Tcu = Tcs - Tct;
+ iio[-WS(ios, 57)] = Tcr - Tcu;
+ rio[WS(ios, 25)] = Tcr + Tcu;
+ Ti3 = Tcp - Tci;
+ Ti4 = Ti1 - Ti0;
+ rio[WS(ios, 57)] = Ti3 - Ti4;
+ iio[-WS(ios, 25)] = Ti3 + Ti4;
+ }
+ {
+ E Tcz, TcG, ThN, ThW;
+ Tcz = Tcv + Tcy;
+ TcG = TcC + TcF;
+ iio[-WS(ios, 33)] = Tcz - TcG;
+ rio[WS(ios, 1)] = Tcz + TcG;
+ ThN = TcI + TcJ;
+ ThW = ThO + ThV;
+ rio[WS(ios, 33)] = ThN - ThW;
+ iio[-WS(ios, 1)] = ThN + ThW;
+ }
+ {
+ E TcH, TcK, ThX, ThY;
+ TcH = Tcv - Tcy;
+ TcK = TcI - TcJ;
+ iio[-WS(ios, 49)] = TcH - TcK;
+ rio[WS(ios, 17)] = TcH + TcK;
+ ThX = TcF - TcC;
+ ThY = ThV - ThO;
+ rio[WS(ios, 49)] = ThX - ThY;
+ iio[-WS(ios, 17)] = ThX + ThY;
+ }
+ }
+ {
+ E T9R, Taj, Tip, Tiv, T9Y, Tiu, Tam, Tik, Ta6, Taw, Tag, Taq, Tad, Tax, Tah;
+ E Tat;
+ {
+ E T9N, T9Q, Til, Tio;
+ T9N = T6b + T6m;
+ T9Q = T9O + T9P;
+ T9R = T9N - T9Q;
+ Taj = T9N + T9Q;
+ Til = T6y + T6J;
+ Tio = Tim + Tin;
+ Tip = Til + Tio;
+ Tiv = Tio - Til;
+ }
+ {
+ E T9U, Tak, T9X, Tal;
+ {
+ E T9S, T9T, T9V, T9W;
+ T9S = T6Q + T71;
+ T9T = T77 + T7a;
+ T9U = FNMS(KP555570233, T9T, KP831469612 * T9S);
+ Tak = FMA(KP555570233, T9S, KP831469612 * T9T);
+ T9V = T7h + T7s;
+ T9W = T7y + T7B;
+ T9X = FMA(KP831469612, T9V, KP555570233 * T9W);
+ Tal = FNMS(KP555570233, T9V, KP831469612 * T9W);
+ }
+ T9Y = T9U - T9X;
+ Tiu = Tal - Tak;
+ Tam = Tak + Tal;
+ Tik = T9U + T9X;
+ }
+ {
+ E Ta2, Tao, Ta5, Tap;
+ {
+ E Ta0, Ta1, Ta3, Ta4;
+ Ta0 = T8p + T8s;
+ Ta1 = T8i + T87;
+ Ta2 = Ta0 - Ta1;
+ Tao = Ta0 + Ta1;
+ Ta3 = T7K + T7V;
+ Ta4 = T8u + T8v;
+ Ta5 = Ta3 - Ta4;
+ Tap = Ta3 + Ta4;
+ }
+ Ta6 = FMA(KP471396736, Ta2, KP881921264 * Ta5);
+ Taw = FNMS(KP290284677, Tao, KP956940335 * Tap);
+ Tag = FNMS(KP881921264, Ta2, KP471396736 * Ta5);
+ Taq = FMA(KP956940335, Tao, KP290284677 * Tap);
+ }
+ {
+ E Ta9, Tar, Tac, Tas;
+ {
+ E Ta7, Ta8, Taa, Tab;
+ Ta7 = T8D + T8O;
+ Ta8 = T9o + T9n;
+ Ta9 = Ta7 - Ta8;
+ Tar = Ta7 + Ta8;
+ Taa = T9i + T9l;
+ Tab = T90 + T9b;
+ Tac = Taa - Tab;
+ Tas = Taa + Tab;
+ }
+ Tad = FNMS(KP881921264, Tac, KP471396736 * Ta9);
+ Tax = FMA(KP290284677, Tar, KP956940335 * Tas);
+ Tah = FMA(KP881921264, Ta9, KP471396736 * Tac);
+ Tat = FNMS(KP290284677, Tas, KP956940335 * Tar);
+ }
+ {
+ E T9Z, Tae, Tit, Tiw;
+ T9Z = T9R + T9Y;
+ Tae = Ta6 + Tad;
+ iio[-WS(ios, 43)] = T9Z - Tae;
+ rio[WS(ios, 11)] = T9Z + Tae;
+ Tit = Tag + Tah;
+ Tiw = Tiu + Tiv;
+ rio[WS(ios, 43)] = Tit - Tiw;
+ iio[-WS(ios, 11)] = Tit + Tiw;
+ }
+ {
+ E Taf, Tai, Tix, Tiy;
+ Taf = T9R - T9Y;
+ Tai = Tag - Tah;
+ iio[-WS(ios, 59)] = Taf - Tai;
+ rio[WS(ios, 27)] = Taf + Tai;
+ Tix = Tad - Ta6;
+ Tiy = Tiv - Tiu;
+ rio[WS(ios, 59)] = Tix - Tiy;
+ iio[-WS(ios, 27)] = Tix + Tiy;
+ }
+ {
+ E Tan, Tau, Tij, Tiq;
+ Tan = Taj + Tam;
+ Tau = Taq + Tat;
+ iio[-WS(ios, 35)] = Tan - Tau;
+ rio[WS(ios, 3)] = Tan + Tau;
+ Tij = Taw + Tax;
+ Tiq = Tik + Tip;
+ rio[WS(ios, 35)] = Tij - Tiq;
+ iio[-WS(ios, 3)] = Tij + Tiq;
+ }
+ {
+ E Tav, Tay, Tir, Tis;
+ Tav = Taj - Tam;
+ Tay = Taw - Tax;
+ iio[-WS(ios, 51)] = Tav - Tay;
+ rio[WS(ios, 19)] = Tav + Tay;
+ Tir = Tat - Taq;
+ Tis = Tip - Tik;
+ rio[WS(ios, 51)] = Tir - Tis;
+ iio[-WS(ios, 19)] = Tir + Tis;
+ }
+ }
+ }
+ return W;
+}
+
+static const tw_instr twinstr[] = {
+ {TW_FULL, 0, 64},
+ {TW_NEXT, 1, 0}
+};
+
+static const hc2hc_desc desc = { 64, "hf_64", twinstr, {808, 270, 230, 0}, &GENUS, 0, 0, 0 };
+
+void X(codelet_hf_64) (planner *p) {
+ X(khc2hc_dit_register) (p, hf_64, &desc);
+}