diff options
Diffstat (limited to 'src/fftw3/dft/codelets/standard/t1_32.c')
-rw-r--r-- | src/fftw3/dft/codelets/standard/t1_32.c | 892 |
1 files changed, 892 insertions, 0 deletions
diff --git a/src/fftw3/dft/codelets/standard/t1_32.c b/src/fftw3/dft/codelets/standard/t1_32.c new file mode 100644 index 0000000..387b955 --- /dev/null +++ b/src/fftw3/dft/codelets/standard/t1_32.c @@ -0,0 +1,892 @@ +/* + * Copyright (c) 2003 Matteo Frigo + * Copyright (c) 2003 Massachusetts Institute of Technology + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA + * + */ + +/* This file was automatically generated --- DO NOT EDIT */ +/* Generated on Sat Jul 5 21:30:07 EDT 2003 */ + +#include "codelet-dft.h" + +/* Generated by: /homee/stevenj/cvs/fftw3.0.1/genfft/gen_twiddle -compact -variables 4 -n 32 -name t1_32 -include t.h */ + +/* + * This function contains 434 FP additions, 208 FP multiplications, + * (or, 340 additions, 114 multiplications, 94 fused multiply/add), + * 96 stack variables, and 128 memory accesses + */ +/* + * Generator Id's : + * $Id: t1_32.c,v 1.1 2008/10/17 06:11:09 scuri Exp $ + * $Id: t1_32.c,v 1.1 2008/10/17 06:11:09 scuri Exp $ + * $Id: t1_32.c,v 1.1 2008/10/17 06:11:09 scuri Exp $ + */ + +#include "t.h" + +static const R *t1_32(R *ri, R *ii, const R *W, stride ios, int m, int dist) +{ + DK(KP195090322, +0.195090322016128267848284868477022240927691618); + DK(KP980785280, +0.980785280403230449126182236134239036973933731); + DK(KP555570233, +0.555570233019602224742830813948532874374937191); + DK(KP831469612, +0.831469612302545237078788377617905756738560812); + DK(KP382683432, +0.382683432365089771728459984030398866761344562); + DK(KP923879532, +0.923879532511286756128183189396788286822416626); + DK(KP707106781, +0.707106781186547524400844362104849039284835938); + int i; + for (i = m; i > 0; i = i - 1, ri = ri + dist, ii = ii + dist, W = W + 62) { + E Tj, T5F, T7C, T7Q, T35, T4T, T78, T7m, T1Q, T61, T5Y, T6J, T3K, T59, T41; + E T56, T2B, T67, T6e, T6O, T4b, T5d, T4s, T5g, TG, T7l, T5I, T73, T3a, T4U; + E T3f, T4V, T14, T5N, T5M, T6E, T3m, T4Y, T3r, T4Z, T1r, T5P, T5S, T6F, T3x; + E T51, T3C, T52, T2d, T5Z, T64, T6K, T3V, T57, T44, T5a, T2Y, T6f, T6a, T6P; + E T4m, T5h, T4v, T5e; + { + E T1, T76, T6, T75, Tc, T32, Th, T33; + T1 = ri[0]; + T76 = ii[0]; + { + E T3, T5, T2, T4; + T3 = ri[WS(ios, 16)]; + T5 = ii[WS(ios, 16)]; + T2 = W[30]; + T4 = W[31]; + T6 = FMA(T2, T3, T4 * T5); + T75 = FNMS(T4, T3, T2 * T5); + } + { + E T9, Tb, T8, Ta; + T9 = ri[WS(ios, 8)]; + Tb = ii[WS(ios, 8)]; + T8 = W[14]; + Ta = W[15]; + Tc = FMA(T8, T9, Ta * Tb); + T32 = FNMS(Ta, T9, T8 * Tb); + } + { + E Te, Tg, Td, Tf; + Te = ri[WS(ios, 24)]; + Tg = ii[WS(ios, 24)]; + Td = W[46]; + Tf = W[47]; + Th = FMA(Td, Te, Tf * Tg); + T33 = FNMS(Tf, Te, Td * Tg); + } + { + E T7, Ti, T7A, T7B; + T7 = T1 + T6; + Ti = Tc + Th; + Tj = T7 + Ti; + T5F = T7 - Ti; + T7A = T76 - T75; + T7B = Tc - Th; + T7C = T7A - T7B; + T7Q = T7B + T7A; + } + { + E T31, T34, T74, T77; + T31 = T1 - T6; + T34 = T32 - T33; + T35 = T31 - T34; + T4T = T31 + T34; + T74 = T32 + T33; + T77 = T75 + T76; + T78 = T74 + T77; + T7m = T77 - T74; + } + } + { + E T1y, T3G, T1O, T3Z, T1D, T3H, T1J, T3Y; + { + E T1v, T1x, T1u, T1w; + T1v = ri[WS(ios, 1)]; + T1x = ii[WS(ios, 1)]; + T1u = W[0]; + T1w = W[1]; + T1y = FMA(T1u, T1v, T1w * T1x); + T3G = FNMS(T1w, T1v, T1u * T1x); + } + { + E T1L, T1N, T1K, T1M; + T1L = ri[WS(ios, 25)]; + T1N = ii[WS(ios, 25)]; + T1K = W[48]; + T1M = W[49]; + T1O = FMA(T1K, T1L, T1M * T1N); + T3Z = FNMS(T1M, T1L, T1K * T1N); + } + { + E T1A, T1C, T1z, T1B; + T1A = ri[WS(ios, 17)]; + T1C = ii[WS(ios, 17)]; + T1z = W[32]; + T1B = W[33]; + T1D = FMA(T1z, T1A, T1B * T1C); + T3H = FNMS(T1B, T1A, T1z * T1C); + } + { + E T1G, T1I, T1F, T1H; + T1G = ri[WS(ios, 9)]; + T1I = ii[WS(ios, 9)]; + T1F = W[16]; + T1H = W[17]; + T1J = FMA(T1F, T1G, T1H * T1I); + T3Y = FNMS(T1H, T1G, T1F * T1I); + } + { + E T1E, T1P, T5W, T5X; + T1E = T1y + T1D; + T1P = T1J + T1O; + T1Q = T1E + T1P; + T61 = T1E - T1P; + T5W = T3G + T3H; + T5X = T3Y + T3Z; + T5Y = T5W - T5X; + T6J = T5W + T5X; + } + { + E T3I, T3J, T3X, T40; + T3I = T3G - T3H; + T3J = T1J - T1O; + T3K = T3I + T3J; + T59 = T3I - T3J; + T3X = T1y - T1D; + T40 = T3Y - T3Z; + T41 = T3X - T40; + T56 = T3X + T40; + } + } + { + E T2j, T4o, T2z, T49, T2o, T4p, T2u, T48; + { + E T2g, T2i, T2f, T2h; + T2g = ri[WS(ios, 31)]; + T2i = ii[WS(ios, 31)]; + T2f = W[60]; + T2h = W[61]; + T2j = FMA(T2f, T2g, T2h * T2i); + T4o = FNMS(T2h, T2g, T2f * T2i); + } + { + E T2w, T2y, T2v, T2x; + T2w = ri[WS(ios, 23)]; + T2y = ii[WS(ios, 23)]; + T2v = W[44]; + T2x = W[45]; + T2z = FMA(T2v, T2w, T2x * T2y); + T49 = FNMS(T2x, T2w, T2v * T2y); + } + { + E T2l, T2n, T2k, T2m; + T2l = ri[WS(ios, 15)]; + T2n = ii[WS(ios, 15)]; + T2k = W[28]; + T2m = W[29]; + T2o = FMA(T2k, T2l, T2m * T2n); + T4p = FNMS(T2m, T2l, T2k * T2n); + } + { + E T2r, T2t, T2q, T2s; + T2r = ri[WS(ios, 7)]; + T2t = ii[WS(ios, 7)]; + T2q = W[12]; + T2s = W[13]; + T2u = FMA(T2q, T2r, T2s * T2t); + T48 = FNMS(T2s, T2r, T2q * T2t); + } + { + E T2p, T2A, T6c, T6d; + T2p = T2j + T2o; + T2A = T2u + T2z; + T2B = T2p + T2A; + T67 = T2p - T2A; + T6c = T4o + T4p; + T6d = T48 + T49; + T6e = T6c - T6d; + T6O = T6c + T6d; + } + { + E T47, T4a, T4q, T4r; + T47 = T2j - T2o; + T4a = T48 - T49; + T4b = T47 - T4a; + T5d = T47 + T4a; + T4q = T4o - T4p; + T4r = T2u - T2z; + T4s = T4q + T4r; + T5g = T4q - T4r; + } + } + { + E To, T36, TE, T3d, Tt, T37, Tz, T3c; + { + E Tl, Tn, Tk, Tm; + Tl = ri[WS(ios, 4)]; + Tn = ii[WS(ios, 4)]; + Tk = W[6]; + Tm = W[7]; + To = FMA(Tk, Tl, Tm * Tn); + T36 = FNMS(Tm, Tl, Tk * Tn); + } + { + E TB, TD, TA, TC; + TB = ri[WS(ios, 12)]; + TD = ii[WS(ios, 12)]; + TA = W[22]; + TC = W[23]; + TE = FMA(TA, TB, TC * TD); + T3d = FNMS(TC, TB, TA * TD); + } + { + E Tq, Ts, Tp, Tr; + Tq = ri[WS(ios, 20)]; + Ts = ii[WS(ios, 20)]; + Tp = W[38]; + Tr = W[39]; + Tt = FMA(Tp, Tq, Tr * Ts); + T37 = FNMS(Tr, Tq, Tp * Ts); + } + { + E Tw, Ty, Tv, Tx; + Tw = ri[WS(ios, 28)]; + Ty = ii[WS(ios, 28)]; + Tv = W[54]; + Tx = W[55]; + Tz = FMA(Tv, Tw, Tx * Ty); + T3c = FNMS(Tx, Tw, Tv * Ty); + } + { + E Tu, TF, T5G, T5H; + Tu = To + Tt; + TF = Tz + TE; + TG = Tu + TF; + T7l = TF - Tu; + T5G = T36 + T37; + T5H = T3c + T3d; + T5I = T5G - T5H; + T73 = T5G + T5H; + } + { + E T38, T39, T3b, T3e; + T38 = T36 - T37; + T39 = To - Tt; + T3a = T38 - T39; + T4U = T39 + T38; + T3b = Tz - TE; + T3e = T3c - T3d; + T3f = T3b + T3e; + T4V = T3b - T3e; + } + } + { + E TM, T3i, T12, T3p, TR, T3j, TX, T3o; + { + E TJ, TL, TI, TK; + TJ = ri[WS(ios, 2)]; + TL = ii[WS(ios, 2)]; + TI = W[2]; + TK = W[3]; + TM = FMA(TI, TJ, TK * TL); + T3i = FNMS(TK, TJ, TI * TL); + } + { + E TZ, T11, TY, T10; + TZ = ri[WS(ios, 26)]; + T11 = ii[WS(ios, 26)]; + TY = W[50]; + T10 = W[51]; + T12 = FMA(TY, TZ, T10 * T11); + T3p = FNMS(T10, TZ, TY * T11); + } + { + E TO, TQ, TN, TP; + TO = ri[WS(ios, 18)]; + TQ = ii[WS(ios, 18)]; + TN = W[34]; + TP = W[35]; + TR = FMA(TN, TO, TP * TQ); + T3j = FNMS(TP, TO, TN * TQ); + } + { + E TU, TW, TT, TV; + TU = ri[WS(ios, 10)]; + TW = ii[WS(ios, 10)]; + TT = W[18]; + TV = W[19]; + TX = FMA(TT, TU, TV * TW); + T3o = FNMS(TV, TU, TT * TW); + } + { + E TS, T13, T5K, T5L; + TS = TM + TR; + T13 = TX + T12; + T14 = TS + T13; + T5N = TS - T13; + T5K = T3i + T3j; + T5L = T3o + T3p; + T5M = T5K - T5L; + T6E = T5K + T5L; + } + { + E T3k, T3l, T3n, T3q; + T3k = T3i - T3j; + T3l = TX - T12; + T3m = T3k + T3l; + T4Y = T3k - T3l; + T3n = TM - TR; + T3q = T3o - T3p; + T3r = T3n - T3q; + T4Z = T3n + T3q; + } + } + { + E T19, T3t, T1p, T3A, T1e, T3u, T1k, T3z; + { + E T16, T18, T15, T17; + T16 = ri[WS(ios, 30)]; + T18 = ii[WS(ios, 30)]; + T15 = W[58]; + T17 = W[59]; + T19 = FMA(T15, T16, T17 * T18); + T3t = FNMS(T17, T16, T15 * T18); + } + { + E T1m, T1o, T1l, T1n; + T1m = ri[WS(ios, 22)]; + T1o = ii[WS(ios, 22)]; + T1l = W[42]; + T1n = W[43]; + T1p = FMA(T1l, T1m, T1n * T1o); + T3A = FNMS(T1n, T1m, T1l * T1o); + } + { + E T1b, T1d, T1a, T1c; + T1b = ri[WS(ios, 14)]; + T1d = ii[WS(ios, 14)]; + T1a = W[26]; + T1c = W[27]; + T1e = FMA(T1a, T1b, T1c * T1d); + T3u = FNMS(T1c, T1b, T1a * T1d); + } + { + E T1h, T1j, T1g, T1i; + T1h = ri[WS(ios, 6)]; + T1j = ii[WS(ios, 6)]; + T1g = W[10]; + T1i = W[11]; + T1k = FMA(T1g, T1h, T1i * T1j); + T3z = FNMS(T1i, T1h, T1g * T1j); + } + { + E T1f, T1q, T5Q, T5R; + T1f = T19 + T1e; + T1q = T1k + T1p; + T1r = T1f + T1q; + T5P = T1f - T1q; + T5Q = T3t + T3u; + T5R = T3z + T3A; + T5S = T5Q - T5R; + T6F = T5Q + T5R; + } + { + E T3v, T3w, T3y, T3B; + T3v = T3t - T3u; + T3w = T1k - T1p; + T3x = T3v + T3w; + T51 = T3v - T3w; + T3y = T19 - T1e; + T3B = T3z - T3A; + T3C = T3y - T3B; + T52 = T3y + T3B; + } + } + { + E T1V, T3R, T20, T3S, T3Q, T3T, T26, T3M, T2b, T3N, T3L, T3O; + { + E T1S, T1U, T1R, T1T; + T1S = ri[WS(ios, 5)]; + T1U = ii[WS(ios, 5)]; + T1R = W[8]; + T1T = W[9]; + T1V = FMA(T1R, T1S, T1T * T1U); + T3R = FNMS(T1T, T1S, T1R * T1U); + } + { + E T1X, T1Z, T1W, T1Y; + T1X = ri[WS(ios, 21)]; + T1Z = ii[WS(ios, 21)]; + T1W = W[40]; + T1Y = W[41]; + T20 = FMA(T1W, T1X, T1Y * T1Z); + T3S = FNMS(T1Y, T1X, T1W * T1Z); + } + T3Q = T1V - T20; + T3T = T3R - T3S; + { + E T23, T25, T22, T24; + T23 = ri[WS(ios, 29)]; + T25 = ii[WS(ios, 29)]; + T22 = W[56]; + T24 = W[57]; + T26 = FMA(T22, T23, T24 * T25); + T3M = FNMS(T24, T23, T22 * T25); + } + { + E T28, T2a, T27, T29; + T28 = ri[WS(ios, 13)]; + T2a = ii[WS(ios, 13)]; + T27 = W[24]; + T29 = W[25]; + T2b = FMA(T27, T28, T29 * T2a); + T3N = FNMS(T29, T28, T27 * T2a); + } + T3L = T26 - T2b; + T3O = T3M - T3N; + { + E T21, T2c, T62, T63; + T21 = T1V + T20; + T2c = T26 + T2b; + T2d = T21 + T2c; + T5Z = T2c - T21; + T62 = T3R + T3S; + T63 = T3M + T3N; + T64 = T62 - T63; + T6K = T62 + T63; + } + { + E T3P, T3U, T42, T43; + T3P = T3L - T3O; + T3U = T3Q + T3T; + T3V = KP707106781 * (T3P - T3U); + T57 = KP707106781 * (T3U + T3P); + T42 = T3T - T3Q; + T43 = T3L + T3O; + T44 = KP707106781 * (T42 - T43); + T5a = KP707106781 * (T42 + T43); + } + } + { + E T2G, T4c, T2L, T4d, T4e, T4f, T2R, T4i, T2W, T4j, T4h, T4k; + { + E T2D, T2F, T2C, T2E; + T2D = ri[WS(ios, 3)]; + T2F = ii[WS(ios, 3)]; + T2C = W[4]; + T2E = W[5]; + T2G = FMA(T2C, T2D, T2E * T2F); + T4c = FNMS(T2E, T2D, T2C * T2F); + } + { + E T2I, T2K, T2H, T2J; + T2I = ri[WS(ios, 19)]; + T2K = ii[WS(ios, 19)]; + T2H = W[36]; + T2J = W[37]; + T2L = FMA(T2H, T2I, T2J * T2K); + T4d = FNMS(T2J, T2I, T2H * T2K); + } + T4e = T4c - T4d; + T4f = T2G - T2L; + { + E T2O, T2Q, T2N, T2P; + T2O = ri[WS(ios, 27)]; + T2Q = ii[WS(ios, 27)]; + T2N = W[52]; + T2P = W[53]; + T2R = FMA(T2N, T2O, T2P * T2Q); + T4i = FNMS(T2P, T2O, T2N * T2Q); + } + { + E T2T, T2V, T2S, T2U; + T2T = ri[WS(ios, 11)]; + T2V = ii[WS(ios, 11)]; + T2S = W[20]; + T2U = W[21]; + T2W = FMA(T2S, T2T, T2U * T2V); + T4j = FNMS(T2U, T2T, T2S * T2V); + } + T4h = T2R - T2W; + T4k = T4i - T4j; + { + E T2M, T2X, T68, T69; + T2M = T2G + T2L; + T2X = T2R + T2W; + T2Y = T2M + T2X; + T6f = T2X - T2M; + T68 = T4c + T4d; + T69 = T4i + T4j; + T6a = T68 - T69; + T6P = T68 + T69; + } + { + E T4g, T4l, T4t, T4u; + T4g = T4e - T4f; + T4l = T4h + T4k; + T4m = KP707106781 * (T4g - T4l); + T5h = KP707106781 * (T4g + T4l); + T4t = T4h - T4k; + T4u = T4f + T4e; + T4v = KP707106781 * (T4t - T4u); + T5e = KP707106781 * (T4u + T4t); + } + } + { + E T1t, T6X, T7a, T7c, T30, T7b, T70, T71; + { + E TH, T1s, T72, T79; + TH = Tj + TG; + T1s = T14 + T1r; + T1t = TH + T1s; + T6X = TH - T1s; + T72 = T6E + T6F; + T79 = T73 + T78; + T7a = T72 + T79; + T7c = T79 - T72; + } + { + E T2e, T2Z, T6Y, T6Z; + T2e = T1Q + T2d; + T2Z = T2B + T2Y; + T30 = T2e + T2Z; + T7b = T2Z - T2e; + T6Y = T6J + T6K; + T6Z = T6O + T6P; + T70 = T6Y - T6Z; + T71 = T6Y + T6Z; + } + ri[WS(ios, 16)] = T1t - T30; + ii[WS(ios, 16)] = T7a - T71; + ri[0] = T1t + T30; + ii[0] = T71 + T7a; + ri[WS(ios, 24)] = T6X - T70; + ii[WS(ios, 24)] = T7c - T7b; + ri[WS(ios, 8)] = T6X + T70; + ii[WS(ios, 8)] = T7b + T7c; + } + { + E T6H, T6T, T7g, T7i, T6M, T6U, T6R, T6V; + { + E T6D, T6G, T7e, T7f; + T6D = Tj - TG; + T6G = T6E - T6F; + T6H = T6D + T6G; + T6T = T6D - T6G; + T7e = T1r - T14; + T7f = T78 - T73; + T7g = T7e + T7f; + T7i = T7f - T7e; + } + { + E T6I, T6L, T6N, T6Q; + T6I = T1Q - T2d; + T6L = T6J - T6K; + T6M = T6I + T6L; + T6U = T6L - T6I; + T6N = T2B - T2Y; + T6Q = T6O - T6P; + T6R = T6N - T6Q; + T6V = T6N + T6Q; + } + { + E T6S, T7d, T6W, T7h; + T6S = KP707106781 * (T6M + T6R); + ri[WS(ios, 20)] = T6H - T6S; + ri[WS(ios, 4)] = T6H + T6S; + T7d = KP707106781 * (T6U + T6V); + ii[WS(ios, 4)] = T7d + T7g; + ii[WS(ios, 20)] = T7g - T7d; + T6W = KP707106781 * (T6U - T6V); + ri[WS(ios, 28)] = T6T - T6W; + ri[WS(ios, 12)] = T6T + T6W; + T7h = KP707106781 * (T6R - T6M); + ii[WS(ios, 12)] = T7h + T7i; + ii[WS(ios, 28)] = T7i - T7h; + } + } + { + E T5J, T7n, T7t, T6n, T5U, T7k, T6x, T6B, T6q, T7s, T66, T6k, T6u, T6A, T6h; + E T6l; + { + E T5O, T5T, T60, T65; + T5J = T5F - T5I; + T7n = T7l + T7m; + T7t = T7m - T7l; + T6n = T5F + T5I; + T5O = T5M - T5N; + T5T = T5P + T5S; + T5U = KP707106781 * (T5O - T5T); + T7k = KP707106781 * (T5O + T5T); + { + E T6v, T6w, T6o, T6p; + T6v = T67 + T6a; + T6w = T6e + T6f; + T6x = FNMS(KP382683432, T6w, KP923879532 * T6v); + T6B = FMA(KP923879532, T6w, KP382683432 * T6v); + T6o = T5N + T5M; + T6p = T5P - T5S; + T6q = KP707106781 * (T6o + T6p); + T7s = KP707106781 * (T6p - T6o); + } + T60 = T5Y - T5Z; + T65 = T61 - T64; + T66 = FMA(KP923879532, T60, KP382683432 * T65); + T6k = FNMS(KP923879532, T65, KP382683432 * T60); + { + E T6s, T6t, T6b, T6g; + T6s = T5Y + T5Z; + T6t = T61 + T64; + T6u = FMA(KP382683432, T6s, KP923879532 * T6t); + T6A = FNMS(KP382683432, T6t, KP923879532 * T6s); + T6b = T67 - T6a; + T6g = T6e - T6f; + T6h = FNMS(KP923879532, T6g, KP382683432 * T6b); + T6l = FMA(KP382683432, T6g, KP923879532 * T6b); + } + } + { + E T5V, T6i, T7r, T7u; + T5V = T5J + T5U; + T6i = T66 + T6h; + ri[WS(ios, 22)] = T5V - T6i; + ri[WS(ios, 6)] = T5V + T6i; + T7r = T6k + T6l; + T7u = T7s + T7t; + ii[WS(ios, 6)] = T7r + T7u; + ii[WS(ios, 22)] = T7u - T7r; + } + { + E T6j, T6m, T7v, T7w; + T6j = T5J - T5U; + T6m = T6k - T6l; + ri[WS(ios, 30)] = T6j - T6m; + ri[WS(ios, 14)] = T6j + T6m; + T7v = T6h - T66; + T7w = T7t - T7s; + ii[WS(ios, 14)] = T7v + T7w; + ii[WS(ios, 30)] = T7w - T7v; + } + { + E T6r, T6y, T7j, T7o; + T6r = T6n + T6q; + T6y = T6u + T6x; + ri[WS(ios, 18)] = T6r - T6y; + ri[WS(ios, 2)] = T6r + T6y; + T7j = T6A + T6B; + T7o = T7k + T7n; + ii[WS(ios, 2)] = T7j + T7o; + ii[WS(ios, 18)] = T7o - T7j; + } + { + E T6z, T6C, T7p, T7q; + T6z = T6n - T6q; + T6C = T6A - T6B; + ri[WS(ios, 26)] = T6z - T6C; + ri[WS(ios, 10)] = T6z + T6C; + T7p = T6x - T6u; + T7q = T7n - T7k; + ii[WS(ios, 10)] = T7p + T7q; + ii[WS(ios, 26)] = T7q - T7p; + } + } + { + E T3h, T4D, T7R, T7X, T3E, T7O, T4N, T4R, T46, T4A, T4G, T7W, T4K, T4Q, T4x; + E T4B, T3g, T7P; + T3g = KP707106781 * (T3a - T3f); + T3h = T35 - T3g; + T4D = T35 + T3g; + T7P = KP707106781 * (T4V - T4U); + T7R = T7P + T7Q; + T7X = T7Q - T7P; + { + E T3s, T3D, T4L, T4M; + T3s = FNMS(KP923879532, T3r, KP382683432 * T3m); + T3D = FMA(KP382683432, T3x, KP923879532 * T3C); + T3E = T3s - T3D; + T7O = T3s + T3D; + T4L = T4b + T4m; + T4M = T4s + T4v; + T4N = FNMS(KP555570233, T4M, KP831469612 * T4L); + T4R = FMA(KP831469612, T4M, KP555570233 * T4L); + } + { + E T3W, T45, T4E, T4F; + T3W = T3K - T3V; + T45 = T41 - T44; + T46 = FMA(KP980785280, T3W, KP195090322 * T45); + T4A = FNMS(KP980785280, T45, KP195090322 * T3W); + T4E = FMA(KP923879532, T3m, KP382683432 * T3r); + T4F = FNMS(KP923879532, T3x, KP382683432 * T3C); + T4G = T4E + T4F; + T7W = T4F - T4E; + } + { + E T4I, T4J, T4n, T4w; + T4I = T3K + T3V; + T4J = T41 + T44; + T4K = FMA(KP555570233, T4I, KP831469612 * T4J); + T4Q = FNMS(KP555570233, T4J, KP831469612 * T4I); + T4n = T4b - T4m; + T4w = T4s - T4v; + T4x = FNMS(KP980785280, T4w, KP195090322 * T4n); + T4B = FMA(KP195090322, T4w, KP980785280 * T4n); + } + { + E T3F, T4y, T7V, T7Y; + T3F = T3h + T3E; + T4y = T46 + T4x; + ri[WS(ios, 23)] = T3F - T4y; + ri[WS(ios, 7)] = T3F + T4y; + T7V = T4A + T4B; + T7Y = T7W + T7X; + ii[WS(ios, 7)] = T7V + T7Y; + ii[WS(ios, 23)] = T7Y - T7V; + } + { + E T4z, T4C, T7Z, T80; + T4z = T3h - T3E; + T4C = T4A - T4B; + ri[WS(ios, 31)] = T4z - T4C; + ri[WS(ios, 15)] = T4z + T4C; + T7Z = T4x - T46; + T80 = T7X - T7W; + ii[WS(ios, 15)] = T7Z + T80; + ii[WS(ios, 31)] = T80 - T7Z; + } + { + E T4H, T4O, T7N, T7S; + T4H = T4D + T4G; + T4O = T4K + T4N; + ri[WS(ios, 19)] = T4H - T4O; + ri[WS(ios, 3)] = T4H + T4O; + T7N = T4Q + T4R; + T7S = T7O + T7R; + ii[WS(ios, 3)] = T7N + T7S; + ii[WS(ios, 19)] = T7S - T7N; + } + { + E T4P, T4S, T7T, T7U; + T4P = T4D - T4G; + T4S = T4Q - T4R; + ri[WS(ios, 27)] = T4P - T4S; + ri[WS(ios, 11)] = T4P + T4S; + T7T = T4N - T4K; + T7U = T7R - T7O; + ii[WS(ios, 11)] = T7T + T7U; + ii[WS(ios, 27)] = T7U - T7T; + } + } + { + E T4X, T5p, T7D, T7J, T54, T7y, T5z, T5D, T5c, T5m, T5s, T7I, T5w, T5C, T5j; + E T5n, T4W, T7z; + T4W = KP707106781 * (T4U + T4V); + T4X = T4T - T4W; + T5p = T4T + T4W; + T7z = KP707106781 * (T3a + T3f); + T7D = T7z + T7C; + T7J = T7C - T7z; + { + E T50, T53, T5x, T5y; + T50 = FNMS(KP382683432, T4Z, KP923879532 * T4Y); + T53 = FMA(KP923879532, T51, KP382683432 * T52); + T54 = T50 - T53; + T7y = T50 + T53; + T5x = T5d + T5e; + T5y = T5g + T5h; + T5z = FNMS(KP195090322, T5y, KP980785280 * T5x); + T5D = FMA(KP195090322, T5x, KP980785280 * T5y); + } + { + E T58, T5b, T5q, T5r; + T58 = T56 - T57; + T5b = T59 - T5a; + T5c = FMA(KP555570233, T58, KP831469612 * T5b); + T5m = FNMS(KP831469612, T58, KP555570233 * T5b); + T5q = FMA(KP382683432, T4Y, KP923879532 * T4Z); + T5r = FNMS(KP382683432, T51, KP923879532 * T52); + T5s = T5q + T5r; + T7I = T5r - T5q; + } + { + E T5u, T5v, T5f, T5i; + T5u = T56 + T57; + T5v = T59 + T5a; + T5w = FMA(KP980785280, T5u, KP195090322 * T5v); + T5C = FNMS(KP195090322, T5u, KP980785280 * T5v); + T5f = T5d - T5e; + T5i = T5g - T5h; + T5j = FNMS(KP831469612, T5i, KP555570233 * T5f); + T5n = FMA(KP831469612, T5f, KP555570233 * T5i); + } + { + E T55, T5k, T7H, T7K; + T55 = T4X + T54; + T5k = T5c + T5j; + ri[WS(ios, 21)] = T55 - T5k; + ri[WS(ios, 5)] = T55 + T5k; + T7H = T5m + T5n; + T7K = T7I + T7J; + ii[WS(ios, 5)] = T7H + T7K; + ii[WS(ios, 21)] = T7K - T7H; + } + { + E T5l, T5o, T7L, T7M; + T5l = T4X - T54; + T5o = T5m - T5n; + ri[WS(ios, 29)] = T5l - T5o; + ri[WS(ios, 13)] = T5l + T5o; + T7L = T5j - T5c; + T7M = T7J - T7I; + ii[WS(ios, 13)] = T7L + T7M; + ii[WS(ios, 29)] = T7M - T7L; + } + { + E T5t, T5A, T7x, T7E; + T5t = T5p + T5s; + T5A = T5w + T5z; + ri[WS(ios, 17)] = T5t - T5A; + ri[WS(ios, 1)] = T5t + T5A; + T7x = T5C + T5D; + T7E = T7y + T7D; + ii[WS(ios, 1)] = T7x + T7E; + ii[WS(ios, 17)] = T7E - T7x; + } + { + E T5B, T5E, T7F, T7G; + T5B = T5p - T5s; + T5E = T5C - T5D; + ri[WS(ios, 25)] = T5B - T5E; + ri[WS(ios, 9)] = T5B + T5E; + T7F = T5z - T5w; + T7G = T7D - T7y; + ii[WS(ios, 9)] = T7F + T7G; + ii[WS(ios, 25)] = T7G - T7F; + } + } + } + return W; +} + +static const tw_instr twinstr[] = { + {TW_FULL, 0, 32}, + {TW_NEXT, 1, 0} +}; + +static const ct_desc desc = { 32, "t1_32", twinstr, {340, 114, 94, 0}, &GENUS, 0, 0, 0 }; + +void X(codelet_t1_32) (planner *p) { + X(kdft_dit_register) (p, t1_32, &desc); +} |