diff options
Diffstat (limited to 'src/fftw3/dft/codelets/standard/t1_32.c')
| -rw-r--r-- | src/fftw3/dft/codelets/standard/t1_32.c | 892 | 
1 files changed, 892 insertions, 0 deletions
| diff --git a/src/fftw3/dft/codelets/standard/t1_32.c b/src/fftw3/dft/codelets/standard/t1_32.c new file mode 100644 index 0000000..387b955 --- /dev/null +++ b/src/fftw3/dft/codelets/standard/t1_32.c @@ -0,0 +1,892 @@ +/* + * Copyright (c) 2003 Matteo Frigo + * Copyright (c) 2003 Massachusetts Institute of Technology + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA + * + */ + +/* This file was automatically generated --- DO NOT EDIT */ +/* Generated on Sat Jul  5 21:30:07 EDT 2003 */ + +#include "codelet-dft.h" + +/* Generated by: /homee/stevenj/cvs/fftw3.0.1/genfft/gen_twiddle -compact -variables 4 -n 32 -name t1_32 -include t.h */ + +/* + * This function contains 434 FP additions, 208 FP multiplications, + * (or, 340 additions, 114 multiplications, 94 fused multiply/add), + * 96 stack variables, and 128 memory accesses + */ +/* + * Generator Id's :  + * $Id: t1_32.c,v 1.1 2008/10/17 06:11:09 scuri Exp $ + * $Id: t1_32.c,v 1.1 2008/10/17 06:11:09 scuri Exp $ + * $Id: t1_32.c,v 1.1 2008/10/17 06:11:09 scuri Exp $ + */ + +#include "t.h" + +static const R *t1_32(R *ri, R *ii, const R *W, stride ios, int m, int dist) +{ +     DK(KP195090322, +0.195090322016128267848284868477022240927691618); +     DK(KP980785280, +0.980785280403230449126182236134239036973933731); +     DK(KP555570233, +0.555570233019602224742830813948532874374937191); +     DK(KP831469612, +0.831469612302545237078788377617905756738560812); +     DK(KP382683432, +0.382683432365089771728459984030398866761344562); +     DK(KP923879532, +0.923879532511286756128183189396788286822416626); +     DK(KP707106781, +0.707106781186547524400844362104849039284835938); +     int i; +     for (i = m; i > 0; i = i - 1, ri = ri + dist, ii = ii + dist, W = W + 62) { +	  E Tj, T5F, T7C, T7Q, T35, T4T, T78, T7m, T1Q, T61, T5Y, T6J, T3K, T59, T41; +	  E T56, T2B, T67, T6e, T6O, T4b, T5d, T4s, T5g, TG, T7l, T5I, T73, T3a, T4U; +	  E T3f, T4V, T14, T5N, T5M, T6E, T3m, T4Y, T3r, T4Z, T1r, T5P, T5S, T6F, T3x; +	  E T51, T3C, T52, T2d, T5Z, T64, T6K, T3V, T57, T44, T5a, T2Y, T6f, T6a, T6P; +	  E T4m, T5h, T4v, T5e; +	  { +	       E T1, T76, T6, T75, Tc, T32, Th, T33; +	       T1 = ri[0]; +	       T76 = ii[0]; +	       { +		    E T3, T5, T2, T4; +		    T3 = ri[WS(ios, 16)]; +		    T5 = ii[WS(ios, 16)]; +		    T2 = W[30]; +		    T4 = W[31]; +		    T6 = FMA(T2, T3, T4 * T5); +		    T75 = FNMS(T4, T3, T2 * T5); +	       } +	       { +		    E T9, Tb, T8, Ta; +		    T9 = ri[WS(ios, 8)]; +		    Tb = ii[WS(ios, 8)]; +		    T8 = W[14]; +		    Ta = W[15]; +		    Tc = FMA(T8, T9, Ta * Tb); +		    T32 = FNMS(Ta, T9, T8 * Tb); +	       } +	       { +		    E Te, Tg, Td, Tf; +		    Te = ri[WS(ios, 24)]; +		    Tg = ii[WS(ios, 24)]; +		    Td = W[46]; +		    Tf = W[47]; +		    Th = FMA(Td, Te, Tf * Tg); +		    T33 = FNMS(Tf, Te, Td * Tg); +	       } +	       { +		    E T7, Ti, T7A, T7B; +		    T7 = T1 + T6; +		    Ti = Tc + Th; +		    Tj = T7 + Ti; +		    T5F = T7 - Ti; +		    T7A = T76 - T75; +		    T7B = Tc - Th; +		    T7C = T7A - T7B; +		    T7Q = T7B + T7A; +	       } +	       { +		    E T31, T34, T74, T77; +		    T31 = T1 - T6; +		    T34 = T32 - T33; +		    T35 = T31 - T34; +		    T4T = T31 + T34; +		    T74 = T32 + T33; +		    T77 = T75 + T76; +		    T78 = T74 + T77; +		    T7m = T77 - T74; +	       } +	  } +	  { +	       E T1y, T3G, T1O, T3Z, T1D, T3H, T1J, T3Y; +	       { +		    E T1v, T1x, T1u, T1w; +		    T1v = ri[WS(ios, 1)]; +		    T1x = ii[WS(ios, 1)]; +		    T1u = W[0]; +		    T1w = W[1]; +		    T1y = FMA(T1u, T1v, T1w * T1x); +		    T3G = FNMS(T1w, T1v, T1u * T1x); +	       } +	       { +		    E T1L, T1N, T1K, T1M; +		    T1L = ri[WS(ios, 25)]; +		    T1N = ii[WS(ios, 25)]; +		    T1K = W[48]; +		    T1M = W[49]; +		    T1O = FMA(T1K, T1L, T1M * T1N); +		    T3Z = FNMS(T1M, T1L, T1K * T1N); +	       } +	       { +		    E T1A, T1C, T1z, T1B; +		    T1A = ri[WS(ios, 17)]; +		    T1C = ii[WS(ios, 17)]; +		    T1z = W[32]; +		    T1B = W[33]; +		    T1D = FMA(T1z, T1A, T1B * T1C); +		    T3H = FNMS(T1B, T1A, T1z * T1C); +	       } +	       { +		    E T1G, T1I, T1F, T1H; +		    T1G = ri[WS(ios, 9)]; +		    T1I = ii[WS(ios, 9)]; +		    T1F = W[16]; +		    T1H = W[17]; +		    T1J = FMA(T1F, T1G, T1H * T1I); +		    T3Y = FNMS(T1H, T1G, T1F * T1I); +	       } +	       { +		    E T1E, T1P, T5W, T5X; +		    T1E = T1y + T1D; +		    T1P = T1J + T1O; +		    T1Q = T1E + T1P; +		    T61 = T1E - T1P; +		    T5W = T3G + T3H; +		    T5X = T3Y + T3Z; +		    T5Y = T5W - T5X; +		    T6J = T5W + T5X; +	       } +	       { +		    E T3I, T3J, T3X, T40; +		    T3I = T3G - T3H; +		    T3J = T1J - T1O; +		    T3K = T3I + T3J; +		    T59 = T3I - T3J; +		    T3X = T1y - T1D; +		    T40 = T3Y - T3Z; +		    T41 = T3X - T40; +		    T56 = T3X + T40; +	       } +	  } +	  { +	       E T2j, T4o, T2z, T49, T2o, T4p, T2u, T48; +	       { +		    E T2g, T2i, T2f, T2h; +		    T2g = ri[WS(ios, 31)]; +		    T2i = ii[WS(ios, 31)]; +		    T2f = W[60]; +		    T2h = W[61]; +		    T2j = FMA(T2f, T2g, T2h * T2i); +		    T4o = FNMS(T2h, T2g, T2f * T2i); +	       } +	       { +		    E T2w, T2y, T2v, T2x; +		    T2w = ri[WS(ios, 23)]; +		    T2y = ii[WS(ios, 23)]; +		    T2v = W[44]; +		    T2x = W[45]; +		    T2z = FMA(T2v, T2w, T2x * T2y); +		    T49 = FNMS(T2x, T2w, T2v * T2y); +	       } +	       { +		    E T2l, T2n, T2k, T2m; +		    T2l = ri[WS(ios, 15)]; +		    T2n = ii[WS(ios, 15)]; +		    T2k = W[28]; +		    T2m = W[29]; +		    T2o = FMA(T2k, T2l, T2m * T2n); +		    T4p = FNMS(T2m, T2l, T2k * T2n); +	       } +	       { +		    E T2r, T2t, T2q, T2s; +		    T2r = ri[WS(ios, 7)]; +		    T2t = ii[WS(ios, 7)]; +		    T2q = W[12]; +		    T2s = W[13]; +		    T2u = FMA(T2q, T2r, T2s * T2t); +		    T48 = FNMS(T2s, T2r, T2q * T2t); +	       } +	       { +		    E T2p, T2A, T6c, T6d; +		    T2p = T2j + T2o; +		    T2A = T2u + T2z; +		    T2B = T2p + T2A; +		    T67 = T2p - T2A; +		    T6c = T4o + T4p; +		    T6d = T48 + T49; +		    T6e = T6c - T6d; +		    T6O = T6c + T6d; +	       } +	       { +		    E T47, T4a, T4q, T4r; +		    T47 = T2j - T2o; +		    T4a = T48 - T49; +		    T4b = T47 - T4a; +		    T5d = T47 + T4a; +		    T4q = T4o - T4p; +		    T4r = T2u - T2z; +		    T4s = T4q + T4r; +		    T5g = T4q - T4r; +	       } +	  } +	  { +	       E To, T36, TE, T3d, Tt, T37, Tz, T3c; +	       { +		    E Tl, Tn, Tk, Tm; +		    Tl = ri[WS(ios, 4)]; +		    Tn = ii[WS(ios, 4)]; +		    Tk = W[6]; +		    Tm = W[7]; +		    To = FMA(Tk, Tl, Tm * Tn); +		    T36 = FNMS(Tm, Tl, Tk * Tn); +	       } +	       { +		    E TB, TD, TA, TC; +		    TB = ri[WS(ios, 12)]; +		    TD = ii[WS(ios, 12)]; +		    TA = W[22]; +		    TC = W[23]; +		    TE = FMA(TA, TB, TC * TD); +		    T3d = FNMS(TC, TB, TA * TD); +	       } +	       { +		    E Tq, Ts, Tp, Tr; +		    Tq = ri[WS(ios, 20)]; +		    Ts = ii[WS(ios, 20)]; +		    Tp = W[38]; +		    Tr = W[39]; +		    Tt = FMA(Tp, Tq, Tr * Ts); +		    T37 = FNMS(Tr, Tq, Tp * Ts); +	       } +	       { +		    E Tw, Ty, Tv, Tx; +		    Tw = ri[WS(ios, 28)]; +		    Ty = ii[WS(ios, 28)]; +		    Tv = W[54]; +		    Tx = W[55]; +		    Tz = FMA(Tv, Tw, Tx * Ty); +		    T3c = FNMS(Tx, Tw, Tv * Ty); +	       } +	       { +		    E Tu, TF, T5G, T5H; +		    Tu = To + Tt; +		    TF = Tz + TE; +		    TG = Tu + TF; +		    T7l = TF - Tu; +		    T5G = T36 + T37; +		    T5H = T3c + T3d; +		    T5I = T5G - T5H; +		    T73 = T5G + T5H; +	       } +	       { +		    E T38, T39, T3b, T3e; +		    T38 = T36 - T37; +		    T39 = To - Tt; +		    T3a = T38 - T39; +		    T4U = T39 + T38; +		    T3b = Tz - TE; +		    T3e = T3c - T3d; +		    T3f = T3b + T3e; +		    T4V = T3b - T3e; +	       } +	  } +	  { +	       E TM, T3i, T12, T3p, TR, T3j, TX, T3o; +	       { +		    E TJ, TL, TI, TK; +		    TJ = ri[WS(ios, 2)]; +		    TL = ii[WS(ios, 2)]; +		    TI = W[2]; +		    TK = W[3]; +		    TM = FMA(TI, TJ, TK * TL); +		    T3i = FNMS(TK, TJ, TI * TL); +	       } +	       { +		    E TZ, T11, TY, T10; +		    TZ = ri[WS(ios, 26)]; +		    T11 = ii[WS(ios, 26)]; +		    TY = W[50]; +		    T10 = W[51]; +		    T12 = FMA(TY, TZ, T10 * T11); +		    T3p = FNMS(T10, TZ, TY * T11); +	       } +	       { +		    E TO, TQ, TN, TP; +		    TO = ri[WS(ios, 18)]; +		    TQ = ii[WS(ios, 18)]; +		    TN = W[34]; +		    TP = W[35]; +		    TR = FMA(TN, TO, TP * TQ); +		    T3j = FNMS(TP, TO, TN * TQ); +	       } +	       { +		    E TU, TW, TT, TV; +		    TU = ri[WS(ios, 10)]; +		    TW = ii[WS(ios, 10)]; +		    TT = W[18]; +		    TV = W[19]; +		    TX = FMA(TT, TU, TV * TW); +		    T3o = FNMS(TV, TU, TT * TW); +	       } +	       { +		    E TS, T13, T5K, T5L; +		    TS = TM + TR; +		    T13 = TX + T12; +		    T14 = TS + T13; +		    T5N = TS - T13; +		    T5K = T3i + T3j; +		    T5L = T3o + T3p; +		    T5M = T5K - T5L; +		    T6E = T5K + T5L; +	       } +	       { +		    E T3k, T3l, T3n, T3q; +		    T3k = T3i - T3j; +		    T3l = TX - T12; +		    T3m = T3k + T3l; +		    T4Y = T3k - T3l; +		    T3n = TM - TR; +		    T3q = T3o - T3p; +		    T3r = T3n - T3q; +		    T4Z = T3n + T3q; +	       } +	  } +	  { +	       E T19, T3t, T1p, T3A, T1e, T3u, T1k, T3z; +	       { +		    E T16, T18, T15, T17; +		    T16 = ri[WS(ios, 30)]; +		    T18 = ii[WS(ios, 30)]; +		    T15 = W[58]; +		    T17 = W[59]; +		    T19 = FMA(T15, T16, T17 * T18); +		    T3t = FNMS(T17, T16, T15 * T18); +	       } +	       { +		    E T1m, T1o, T1l, T1n; +		    T1m = ri[WS(ios, 22)]; +		    T1o = ii[WS(ios, 22)]; +		    T1l = W[42]; +		    T1n = W[43]; +		    T1p = FMA(T1l, T1m, T1n * T1o); +		    T3A = FNMS(T1n, T1m, T1l * T1o); +	       } +	       { +		    E T1b, T1d, T1a, T1c; +		    T1b = ri[WS(ios, 14)]; +		    T1d = ii[WS(ios, 14)]; +		    T1a = W[26]; +		    T1c = W[27]; +		    T1e = FMA(T1a, T1b, T1c * T1d); +		    T3u = FNMS(T1c, T1b, T1a * T1d); +	       } +	       { +		    E T1h, T1j, T1g, T1i; +		    T1h = ri[WS(ios, 6)]; +		    T1j = ii[WS(ios, 6)]; +		    T1g = W[10]; +		    T1i = W[11]; +		    T1k = FMA(T1g, T1h, T1i * T1j); +		    T3z = FNMS(T1i, T1h, T1g * T1j); +	       } +	       { +		    E T1f, T1q, T5Q, T5R; +		    T1f = T19 + T1e; +		    T1q = T1k + T1p; +		    T1r = T1f + T1q; +		    T5P = T1f - T1q; +		    T5Q = T3t + T3u; +		    T5R = T3z + T3A; +		    T5S = T5Q - T5R; +		    T6F = T5Q + T5R; +	       } +	       { +		    E T3v, T3w, T3y, T3B; +		    T3v = T3t - T3u; +		    T3w = T1k - T1p; +		    T3x = T3v + T3w; +		    T51 = T3v - T3w; +		    T3y = T19 - T1e; +		    T3B = T3z - T3A; +		    T3C = T3y - T3B; +		    T52 = T3y + T3B; +	       } +	  } +	  { +	       E T1V, T3R, T20, T3S, T3Q, T3T, T26, T3M, T2b, T3N, T3L, T3O; +	       { +		    E T1S, T1U, T1R, T1T; +		    T1S = ri[WS(ios, 5)]; +		    T1U = ii[WS(ios, 5)]; +		    T1R = W[8]; +		    T1T = W[9]; +		    T1V = FMA(T1R, T1S, T1T * T1U); +		    T3R = FNMS(T1T, T1S, T1R * T1U); +	       } +	       { +		    E T1X, T1Z, T1W, T1Y; +		    T1X = ri[WS(ios, 21)]; +		    T1Z = ii[WS(ios, 21)]; +		    T1W = W[40]; +		    T1Y = W[41]; +		    T20 = FMA(T1W, T1X, T1Y * T1Z); +		    T3S = FNMS(T1Y, T1X, T1W * T1Z); +	       } +	       T3Q = T1V - T20; +	       T3T = T3R - T3S; +	       { +		    E T23, T25, T22, T24; +		    T23 = ri[WS(ios, 29)]; +		    T25 = ii[WS(ios, 29)]; +		    T22 = W[56]; +		    T24 = W[57]; +		    T26 = FMA(T22, T23, T24 * T25); +		    T3M = FNMS(T24, T23, T22 * T25); +	       } +	       { +		    E T28, T2a, T27, T29; +		    T28 = ri[WS(ios, 13)]; +		    T2a = ii[WS(ios, 13)]; +		    T27 = W[24]; +		    T29 = W[25]; +		    T2b = FMA(T27, T28, T29 * T2a); +		    T3N = FNMS(T29, T28, T27 * T2a); +	       } +	       T3L = T26 - T2b; +	       T3O = T3M - T3N; +	       { +		    E T21, T2c, T62, T63; +		    T21 = T1V + T20; +		    T2c = T26 + T2b; +		    T2d = T21 + T2c; +		    T5Z = T2c - T21; +		    T62 = T3R + T3S; +		    T63 = T3M + T3N; +		    T64 = T62 - T63; +		    T6K = T62 + T63; +	       } +	       { +		    E T3P, T3U, T42, T43; +		    T3P = T3L - T3O; +		    T3U = T3Q + T3T; +		    T3V = KP707106781 * (T3P - T3U); +		    T57 = KP707106781 * (T3U + T3P); +		    T42 = T3T - T3Q; +		    T43 = T3L + T3O; +		    T44 = KP707106781 * (T42 - T43); +		    T5a = KP707106781 * (T42 + T43); +	       } +	  } +	  { +	       E T2G, T4c, T2L, T4d, T4e, T4f, T2R, T4i, T2W, T4j, T4h, T4k; +	       { +		    E T2D, T2F, T2C, T2E; +		    T2D = ri[WS(ios, 3)]; +		    T2F = ii[WS(ios, 3)]; +		    T2C = W[4]; +		    T2E = W[5]; +		    T2G = FMA(T2C, T2D, T2E * T2F); +		    T4c = FNMS(T2E, T2D, T2C * T2F); +	       } +	       { +		    E T2I, T2K, T2H, T2J; +		    T2I = ri[WS(ios, 19)]; +		    T2K = ii[WS(ios, 19)]; +		    T2H = W[36]; +		    T2J = W[37]; +		    T2L = FMA(T2H, T2I, T2J * T2K); +		    T4d = FNMS(T2J, T2I, T2H * T2K); +	       } +	       T4e = T4c - T4d; +	       T4f = T2G - T2L; +	       { +		    E T2O, T2Q, T2N, T2P; +		    T2O = ri[WS(ios, 27)]; +		    T2Q = ii[WS(ios, 27)]; +		    T2N = W[52]; +		    T2P = W[53]; +		    T2R = FMA(T2N, T2O, T2P * T2Q); +		    T4i = FNMS(T2P, T2O, T2N * T2Q); +	       } +	       { +		    E T2T, T2V, T2S, T2U; +		    T2T = ri[WS(ios, 11)]; +		    T2V = ii[WS(ios, 11)]; +		    T2S = W[20]; +		    T2U = W[21]; +		    T2W = FMA(T2S, T2T, T2U * T2V); +		    T4j = FNMS(T2U, T2T, T2S * T2V); +	       } +	       T4h = T2R - T2W; +	       T4k = T4i - T4j; +	       { +		    E T2M, T2X, T68, T69; +		    T2M = T2G + T2L; +		    T2X = T2R + T2W; +		    T2Y = T2M + T2X; +		    T6f = T2X - T2M; +		    T68 = T4c + T4d; +		    T69 = T4i + T4j; +		    T6a = T68 - T69; +		    T6P = T68 + T69; +	       } +	       { +		    E T4g, T4l, T4t, T4u; +		    T4g = T4e - T4f; +		    T4l = T4h + T4k; +		    T4m = KP707106781 * (T4g - T4l); +		    T5h = KP707106781 * (T4g + T4l); +		    T4t = T4h - T4k; +		    T4u = T4f + T4e; +		    T4v = KP707106781 * (T4t - T4u); +		    T5e = KP707106781 * (T4u + T4t); +	       } +	  } +	  { +	       E T1t, T6X, T7a, T7c, T30, T7b, T70, T71; +	       { +		    E TH, T1s, T72, T79; +		    TH = Tj + TG; +		    T1s = T14 + T1r; +		    T1t = TH + T1s; +		    T6X = TH - T1s; +		    T72 = T6E + T6F; +		    T79 = T73 + T78; +		    T7a = T72 + T79; +		    T7c = T79 - T72; +	       } +	       { +		    E T2e, T2Z, T6Y, T6Z; +		    T2e = T1Q + T2d; +		    T2Z = T2B + T2Y; +		    T30 = T2e + T2Z; +		    T7b = T2Z - T2e; +		    T6Y = T6J + T6K; +		    T6Z = T6O + T6P; +		    T70 = T6Y - T6Z; +		    T71 = T6Y + T6Z; +	       } +	       ri[WS(ios, 16)] = T1t - T30; +	       ii[WS(ios, 16)] = T7a - T71; +	       ri[0] = T1t + T30; +	       ii[0] = T71 + T7a; +	       ri[WS(ios, 24)] = T6X - T70; +	       ii[WS(ios, 24)] = T7c - T7b; +	       ri[WS(ios, 8)] = T6X + T70; +	       ii[WS(ios, 8)] = T7b + T7c; +	  } +	  { +	       E T6H, T6T, T7g, T7i, T6M, T6U, T6R, T6V; +	       { +		    E T6D, T6G, T7e, T7f; +		    T6D = Tj - TG; +		    T6G = T6E - T6F; +		    T6H = T6D + T6G; +		    T6T = T6D - T6G; +		    T7e = T1r - T14; +		    T7f = T78 - T73; +		    T7g = T7e + T7f; +		    T7i = T7f - T7e; +	       } +	       { +		    E T6I, T6L, T6N, T6Q; +		    T6I = T1Q - T2d; +		    T6L = T6J - T6K; +		    T6M = T6I + T6L; +		    T6U = T6L - T6I; +		    T6N = T2B - T2Y; +		    T6Q = T6O - T6P; +		    T6R = T6N - T6Q; +		    T6V = T6N + T6Q; +	       } +	       { +		    E T6S, T7d, T6W, T7h; +		    T6S = KP707106781 * (T6M + T6R); +		    ri[WS(ios, 20)] = T6H - T6S; +		    ri[WS(ios, 4)] = T6H + T6S; +		    T7d = KP707106781 * (T6U + T6V); +		    ii[WS(ios, 4)] = T7d + T7g; +		    ii[WS(ios, 20)] = T7g - T7d; +		    T6W = KP707106781 * (T6U - T6V); +		    ri[WS(ios, 28)] = T6T - T6W; +		    ri[WS(ios, 12)] = T6T + T6W; +		    T7h = KP707106781 * (T6R - T6M); +		    ii[WS(ios, 12)] = T7h + T7i; +		    ii[WS(ios, 28)] = T7i - T7h; +	       } +	  } +	  { +	       E T5J, T7n, T7t, T6n, T5U, T7k, T6x, T6B, T6q, T7s, T66, T6k, T6u, T6A, T6h; +	       E T6l; +	       { +		    E T5O, T5T, T60, T65; +		    T5J = T5F - T5I; +		    T7n = T7l + T7m; +		    T7t = T7m - T7l; +		    T6n = T5F + T5I; +		    T5O = T5M - T5N; +		    T5T = T5P + T5S; +		    T5U = KP707106781 * (T5O - T5T); +		    T7k = KP707106781 * (T5O + T5T); +		    { +			 E T6v, T6w, T6o, T6p; +			 T6v = T67 + T6a; +			 T6w = T6e + T6f; +			 T6x = FNMS(KP382683432, T6w, KP923879532 * T6v); +			 T6B = FMA(KP923879532, T6w, KP382683432 * T6v); +			 T6o = T5N + T5M; +			 T6p = T5P - T5S; +			 T6q = KP707106781 * (T6o + T6p); +			 T7s = KP707106781 * (T6p - T6o); +		    } +		    T60 = T5Y - T5Z; +		    T65 = T61 - T64; +		    T66 = FMA(KP923879532, T60, KP382683432 * T65); +		    T6k = FNMS(KP923879532, T65, KP382683432 * T60); +		    { +			 E T6s, T6t, T6b, T6g; +			 T6s = T5Y + T5Z; +			 T6t = T61 + T64; +			 T6u = FMA(KP382683432, T6s, KP923879532 * T6t); +			 T6A = FNMS(KP382683432, T6t, KP923879532 * T6s); +			 T6b = T67 - T6a; +			 T6g = T6e - T6f; +			 T6h = FNMS(KP923879532, T6g, KP382683432 * T6b); +			 T6l = FMA(KP382683432, T6g, KP923879532 * T6b); +		    } +	       } +	       { +		    E T5V, T6i, T7r, T7u; +		    T5V = T5J + T5U; +		    T6i = T66 + T6h; +		    ri[WS(ios, 22)] = T5V - T6i; +		    ri[WS(ios, 6)] = T5V + T6i; +		    T7r = T6k + T6l; +		    T7u = T7s + T7t; +		    ii[WS(ios, 6)] = T7r + T7u; +		    ii[WS(ios, 22)] = T7u - T7r; +	       } +	       { +		    E T6j, T6m, T7v, T7w; +		    T6j = T5J - T5U; +		    T6m = T6k - T6l; +		    ri[WS(ios, 30)] = T6j - T6m; +		    ri[WS(ios, 14)] = T6j + T6m; +		    T7v = T6h - T66; +		    T7w = T7t - T7s; +		    ii[WS(ios, 14)] = T7v + T7w; +		    ii[WS(ios, 30)] = T7w - T7v; +	       } +	       { +		    E T6r, T6y, T7j, T7o; +		    T6r = T6n + T6q; +		    T6y = T6u + T6x; +		    ri[WS(ios, 18)] = T6r - T6y; +		    ri[WS(ios, 2)] = T6r + T6y; +		    T7j = T6A + T6B; +		    T7o = T7k + T7n; +		    ii[WS(ios, 2)] = T7j + T7o; +		    ii[WS(ios, 18)] = T7o - T7j; +	       } +	       { +		    E T6z, T6C, T7p, T7q; +		    T6z = T6n - T6q; +		    T6C = T6A - T6B; +		    ri[WS(ios, 26)] = T6z - T6C; +		    ri[WS(ios, 10)] = T6z + T6C; +		    T7p = T6x - T6u; +		    T7q = T7n - T7k; +		    ii[WS(ios, 10)] = T7p + T7q; +		    ii[WS(ios, 26)] = T7q - T7p; +	       } +	  } +	  { +	       E T3h, T4D, T7R, T7X, T3E, T7O, T4N, T4R, T46, T4A, T4G, T7W, T4K, T4Q, T4x; +	       E T4B, T3g, T7P; +	       T3g = KP707106781 * (T3a - T3f); +	       T3h = T35 - T3g; +	       T4D = T35 + T3g; +	       T7P = KP707106781 * (T4V - T4U); +	       T7R = T7P + T7Q; +	       T7X = T7Q - T7P; +	       { +		    E T3s, T3D, T4L, T4M; +		    T3s = FNMS(KP923879532, T3r, KP382683432 * T3m); +		    T3D = FMA(KP382683432, T3x, KP923879532 * T3C); +		    T3E = T3s - T3D; +		    T7O = T3s + T3D; +		    T4L = T4b + T4m; +		    T4M = T4s + T4v; +		    T4N = FNMS(KP555570233, T4M, KP831469612 * T4L); +		    T4R = FMA(KP831469612, T4M, KP555570233 * T4L); +	       } +	       { +		    E T3W, T45, T4E, T4F; +		    T3W = T3K - T3V; +		    T45 = T41 - T44; +		    T46 = FMA(KP980785280, T3W, KP195090322 * T45); +		    T4A = FNMS(KP980785280, T45, KP195090322 * T3W); +		    T4E = FMA(KP923879532, T3m, KP382683432 * T3r); +		    T4F = FNMS(KP923879532, T3x, KP382683432 * T3C); +		    T4G = T4E + T4F; +		    T7W = T4F - T4E; +	       } +	       { +		    E T4I, T4J, T4n, T4w; +		    T4I = T3K + T3V; +		    T4J = T41 + T44; +		    T4K = FMA(KP555570233, T4I, KP831469612 * T4J); +		    T4Q = FNMS(KP555570233, T4J, KP831469612 * T4I); +		    T4n = T4b - T4m; +		    T4w = T4s - T4v; +		    T4x = FNMS(KP980785280, T4w, KP195090322 * T4n); +		    T4B = FMA(KP195090322, T4w, KP980785280 * T4n); +	       } +	       { +		    E T3F, T4y, T7V, T7Y; +		    T3F = T3h + T3E; +		    T4y = T46 + T4x; +		    ri[WS(ios, 23)] = T3F - T4y; +		    ri[WS(ios, 7)] = T3F + T4y; +		    T7V = T4A + T4B; +		    T7Y = T7W + T7X; +		    ii[WS(ios, 7)] = T7V + T7Y; +		    ii[WS(ios, 23)] = T7Y - T7V; +	       } +	       { +		    E T4z, T4C, T7Z, T80; +		    T4z = T3h - T3E; +		    T4C = T4A - T4B; +		    ri[WS(ios, 31)] = T4z - T4C; +		    ri[WS(ios, 15)] = T4z + T4C; +		    T7Z = T4x - T46; +		    T80 = T7X - T7W; +		    ii[WS(ios, 15)] = T7Z + T80; +		    ii[WS(ios, 31)] = T80 - T7Z; +	       } +	       { +		    E T4H, T4O, T7N, T7S; +		    T4H = T4D + T4G; +		    T4O = T4K + T4N; +		    ri[WS(ios, 19)] = T4H - T4O; +		    ri[WS(ios, 3)] = T4H + T4O; +		    T7N = T4Q + T4R; +		    T7S = T7O + T7R; +		    ii[WS(ios, 3)] = T7N + T7S; +		    ii[WS(ios, 19)] = T7S - T7N; +	       } +	       { +		    E T4P, T4S, T7T, T7U; +		    T4P = T4D - T4G; +		    T4S = T4Q - T4R; +		    ri[WS(ios, 27)] = T4P - T4S; +		    ri[WS(ios, 11)] = T4P + T4S; +		    T7T = T4N - T4K; +		    T7U = T7R - T7O; +		    ii[WS(ios, 11)] = T7T + T7U; +		    ii[WS(ios, 27)] = T7U - T7T; +	       } +	  } +	  { +	       E T4X, T5p, T7D, T7J, T54, T7y, T5z, T5D, T5c, T5m, T5s, T7I, T5w, T5C, T5j; +	       E T5n, T4W, T7z; +	       T4W = KP707106781 * (T4U + T4V); +	       T4X = T4T - T4W; +	       T5p = T4T + T4W; +	       T7z = KP707106781 * (T3a + T3f); +	       T7D = T7z + T7C; +	       T7J = T7C - T7z; +	       { +		    E T50, T53, T5x, T5y; +		    T50 = FNMS(KP382683432, T4Z, KP923879532 * T4Y); +		    T53 = FMA(KP923879532, T51, KP382683432 * T52); +		    T54 = T50 - T53; +		    T7y = T50 + T53; +		    T5x = T5d + T5e; +		    T5y = T5g + T5h; +		    T5z = FNMS(KP195090322, T5y, KP980785280 * T5x); +		    T5D = FMA(KP195090322, T5x, KP980785280 * T5y); +	       } +	       { +		    E T58, T5b, T5q, T5r; +		    T58 = T56 - T57; +		    T5b = T59 - T5a; +		    T5c = FMA(KP555570233, T58, KP831469612 * T5b); +		    T5m = FNMS(KP831469612, T58, KP555570233 * T5b); +		    T5q = FMA(KP382683432, T4Y, KP923879532 * T4Z); +		    T5r = FNMS(KP382683432, T51, KP923879532 * T52); +		    T5s = T5q + T5r; +		    T7I = T5r - T5q; +	       } +	       { +		    E T5u, T5v, T5f, T5i; +		    T5u = T56 + T57; +		    T5v = T59 + T5a; +		    T5w = FMA(KP980785280, T5u, KP195090322 * T5v); +		    T5C = FNMS(KP195090322, T5u, KP980785280 * T5v); +		    T5f = T5d - T5e; +		    T5i = T5g - T5h; +		    T5j = FNMS(KP831469612, T5i, KP555570233 * T5f); +		    T5n = FMA(KP831469612, T5f, KP555570233 * T5i); +	       } +	       { +		    E T55, T5k, T7H, T7K; +		    T55 = T4X + T54; +		    T5k = T5c + T5j; +		    ri[WS(ios, 21)] = T55 - T5k; +		    ri[WS(ios, 5)] = T55 + T5k; +		    T7H = T5m + T5n; +		    T7K = T7I + T7J; +		    ii[WS(ios, 5)] = T7H + T7K; +		    ii[WS(ios, 21)] = T7K - T7H; +	       } +	       { +		    E T5l, T5o, T7L, T7M; +		    T5l = T4X - T54; +		    T5o = T5m - T5n; +		    ri[WS(ios, 29)] = T5l - T5o; +		    ri[WS(ios, 13)] = T5l + T5o; +		    T7L = T5j - T5c; +		    T7M = T7J - T7I; +		    ii[WS(ios, 13)] = T7L + T7M; +		    ii[WS(ios, 29)] = T7M - T7L; +	       } +	       { +		    E T5t, T5A, T7x, T7E; +		    T5t = T5p + T5s; +		    T5A = T5w + T5z; +		    ri[WS(ios, 17)] = T5t - T5A; +		    ri[WS(ios, 1)] = T5t + T5A; +		    T7x = T5C + T5D; +		    T7E = T7y + T7D; +		    ii[WS(ios, 1)] = T7x + T7E; +		    ii[WS(ios, 17)] = T7E - T7x; +	       } +	       { +		    E T5B, T5E, T7F, T7G; +		    T5B = T5p - T5s; +		    T5E = T5C - T5D; +		    ri[WS(ios, 25)] = T5B - T5E; +		    ri[WS(ios, 9)] = T5B + T5E; +		    T7F = T5z - T5w; +		    T7G = T7D - T7y; +		    ii[WS(ios, 9)] = T7F + T7G; +		    ii[WS(ios, 25)] = T7G - T7F; +	       } +	  } +     } +     return W; +} + +static const tw_instr twinstr[] = { +     {TW_FULL, 0, 32}, +     {TW_NEXT, 1, 0} +}; + +static const ct_desc desc = { 32, "t1_32", twinstr, {340, 114, 94, 0}, &GENUS, 0, 0, 0 }; + +void X(codelet_t1_32) (planner *p) { +     X(kdft_dit_register) (p, t1_32, &desc); +} | 
