diff options
Diffstat (limited to 'src/fftw3/dft/codelets/standard/t1_9.c')
-rw-r--r-- | src/fftw3/dft/codelets/standard/t1_9.c | 256 |
1 files changed, 256 insertions, 0 deletions
diff --git a/src/fftw3/dft/codelets/standard/t1_9.c b/src/fftw3/dft/codelets/standard/t1_9.c new file mode 100644 index 0000000..924e456 --- /dev/null +++ b/src/fftw3/dft/codelets/standard/t1_9.c @@ -0,0 +1,256 @@ +/* + * Copyright (c) 2003 Matteo Frigo + * Copyright (c) 2003 Massachusetts Institute of Technology + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA + * + */ + +/* This file was automatically generated --- DO NOT EDIT */ +/* Generated on Sat Jul 5 21:30:00 EDT 2003 */ + +#include "codelet-dft.h" + +/* Generated by: /homee/stevenj/cvs/fftw3.0.1/genfft/gen_twiddle -compact -variables 4 -n 9 -name t1_9 -include t.h */ + +/* + * This function contains 96 FP additions, 72 FP multiplications, + * (or, 60 additions, 36 multiplications, 36 fused multiply/add), + * 41 stack variables, and 36 memory accesses + */ +/* + * Generator Id's : + * $Id: t1_9.c,v 1.1 2008/10/17 06:11:09 scuri Exp $ + * $Id: t1_9.c,v 1.1 2008/10/17 06:11:09 scuri Exp $ + * $Id: t1_9.c,v 1.1 2008/10/17 06:11:09 scuri Exp $ + */ + +#include "t.h" + +static const R *t1_9(R *ri, R *ii, const R *W, stride ios, int m, int dist) +{ + DK(KP939692620, +0.939692620785908384054109277324731469936208134); + DK(KP342020143, +0.342020143325668733044099614682259580763083368); + DK(KP984807753, +0.984807753012208059366743024589523013670643252); + DK(KP173648177, +0.173648177666930348851716626769314796000375677); + DK(KP642787609, +0.642787609686539326322643409907263432907559884); + DK(KP766044443, +0.766044443118978035202392650555416673935832457); + DK(KP500000000, +0.500000000000000000000000000000000000000000000); + DK(KP866025403, +0.866025403784438646763723170752936183471402627); + int i; + for (i = m; i > 0; i = i - 1, ri = ri + dist, ii = ii + dist, W = W + 16) { + E T1, T1B, TQ, T1G, Tc, TN, T1A, T1H, TL, T1x, T17, T1o, T1c, T1n, Tu; + E T1w, TW, T1k, T11, T1l; + { + E T6, TO, Tb, TP; + T1 = ri[0]; + T1B = ii[0]; + { + E T3, T5, T2, T4; + T3 = ri[WS(ios, 3)]; + T5 = ii[WS(ios, 3)]; + T2 = W[4]; + T4 = W[5]; + T6 = FMA(T2, T3, T4 * T5); + TO = FNMS(T4, T3, T2 * T5); + } + { + E T8, Ta, T7, T9; + T8 = ri[WS(ios, 6)]; + Ta = ii[WS(ios, 6)]; + T7 = W[10]; + T9 = W[11]; + Tb = FMA(T7, T8, T9 * Ta); + TP = FNMS(T9, T8, T7 * Ta); + } + TQ = KP866025403 * (TO - TP); + T1G = KP866025403 * (Tb - T6); + Tc = T6 + Tb; + TN = FNMS(KP500000000, Tc, T1); + T1A = TO + TP; + T1H = FNMS(KP500000000, T1A, T1B); + } + { + E Tz, T19, TE, T14, TJ, T15, TK, T1a; + { + E Tw, Ty, Tv, Tx; + Tw = ri[WS(ios, 2)]; + Ty = ii[WS(ios, 2)]; + Tv = W[2]; + Tx = W[3]; + Tz = FMA(Tv, Tw, Tx * Ty); + T19 = FNMS(Tx, Tw, Tv * Ty); + } + { + E TB, TD, TA, TC; + TB = ri[WS(ios, 5)]; + TD = ii[WS(ios, 5)]; + TA = W[8]; + TC = W[9]; + TE = FMA(TA, TB, TC * TD); + T14 = FNMS(TC, TB, TA * TD); + } + { + E TG, TI, TF, TH; + TG = ri[WS(ios, 8)]; + TI = ii[WS(ios, 8)]; + TF = W[14]; + TH = W[15]; + TJ = FMA(TF, TG, TH * TI); + T15 = FNMS(TH, TG, TF * TI); + } + TK = TE + TJ; + T1a = T14 + T15; + TL = Tz + TK; + T1x = T19 + T1a; + { + E T13, T16, T18, T1b; + T13 = FNMS(KP500000000, TK, Tz); + T16 = KP866025403 * (T14 - T15); + T17 = T13 + T16; + T1o = T13 - T16; + T18 = KP866025403 * (TJ - TE); + T1b = FNMS(KP500000000, T1a, T19); + T1c = T18 + T1b; + T1n = T1b - T18; + } + } + { + E Ti, TY, Tn, TT, Ts, TU, Tt, TZ; + { + E Tf, Th, Te, Tg; + Tf = ri[WS(ios, 1)]; + Th = ii[WS(ios, 1)]; + Te = W[0]; + Tg = W[1]; + Ti = FMA(Te, Tf, Tg * Th); + TY = FNMS(Tg, Tf, Te * Th); + } + { + E Tk, Tm, Tj, Tl; + Tk = ri[WS(ios, 4)]; + Tm = ii[WS(ios, 4)]; + Tj = W[6]; + Tl = W[7]; + Tn = FMA(Tj, Tk, Tl * Tm); + TT = FNMS(Tl, Tk, Tj * Tm); + } + { + E Tp, Tr, To, Tq; + Tp = ri[WS(ios, 7)]; + Tr = ii[WS(ios, 7)]; + To = W[12]; + Tq = W[13]; + Ts = FMA(To, Tp, Tq * Tr); + TU = FNMS(Tq, Tp, To * Tr); + } + Tt = Tn + Ts; + TZ = TT + TU; + Tu = Ti + Tt; + T1w = TY + TZ; + { + E TS, TV, TX, T10; + TS = FNMS(KP500000000, Tt, Ti); + TV = KP866025403 * (TT - TU); + TW = TS + TV; + T1k = TS - TV; + TX = KP866025403 * (Ts - Tn); + T10 = FNMS(KP500000000, TZ, TY); + T11 = TX + T10; + T1l = T10 - TX; + } + } + { + E T1y, Td, TM, T1v; + T1y = KP866025403 * (T1w - T1x); + Td = T1 + Tc; + TM = Tu + TL; + T1v = FNMS(KP500000000, TM, Td); + ri[0] = Td + TM; + ri[WS(ios, 3)] = T1v + T1y; + ri[WS(ios, 6)] = T1v - T1y; + } + { + E T1D, T1z, T1C, T1E; + T1D = KP866025403 * (TL - Tu); + T1z = T1w + T1x; + T1C = T1A + T1B; + T1E = FNMS(KP500000000, T1z, T1C); + ii[0] = T1z + T1C; + ii[WS(ios, 6)] = T1E - T1D; + ii[WS(ios, 3)] = T1D + T1E; + } + { + E TR, T1I, T1e, T1J, T1i, T1F, T1f, T1K; + TR = TN + TQ; + T1I = T1G + T1H; + { + E T12, T1d, T1g, T1h; + T12 = FMA(KP766044443, TW, KP642787609 * T11); + T1d = FMA(KP173648177, T17, KP984807753 * T1c); + T1e = T12 + T1d; + T1J = KP866025403 * (T1d - T12); + T1g = FNMS(KP642787609, TW, KP766044443 * T11); + T1h = FNMS(KP984807753, T17, KP173648177 * T1c); + T1i = KP866025403 * (T1g - T1h); + T1F = T1g + T1h; + } + ri[WS(ios, 1)] = TR + T1e; + ii[WS(ios, 1)] = T1F + T1I; + T1f = FNMS(KP500000000, T1e, TR); + ri[WS(ios, 7)] = T1f - T1i; + ri[WS(ios, 4)] = T1f + T1i; + T1K = FNMS(KP500000000, T1F, T1I); + ii[WS(ios, 4)] = T1J + T1K; + ii[WS(ios, 7)] = T1K - T1J; + } + { + E T1j, T1M, T1q, T1N, T1u, T1L, T1r, T1O; + T1j = TN - TQ; + T1M = T1H - T1G; + { + E T1m, T1p, T1s, T1t; + T1m = FMA(KP173648177, T1k, KP984807753 * T1l); + T1p = FNMS(KP939692620, T1o, KP342020143 * T1n); + T1q = T1m + T1p; + T1N = KP866025403 * (T1p - T1m); + T1s = FNMS(KP984807753, T1k, KP173648177 * T1l); + T1t = FMA(KP342020143, T1o, KP939692620 * T1n); + T1u = KP866025403 * (T1s + T1t); + T1L = T1s - T1t; + } + ri[WS(ios, 2)] = T1j + T1q; + ii[WS(ios, 2)] = T1L + T1M; + T1r = FNMS(KP500000000, T1q, T1j); + ri[WS(ios, 8)] = T1r - T1u; + ri[WS(ios, 5)] = T1r + T1u; + T1O = FNMS(KP500000000, T1L, T1M); + ii[WS(ios, 5)] = T1N + T1O; + ii[WS(ios, 8)] = T1O - T1N; + } + } + return W; +} + +static const tw_instr twinstr[] = { + {TW_FULL, 0, 9}, + {TW_NEXT, 1, 0} +}; + +static const ct_desc desc = { 9, "t1_9", twinstr, {60, 36, 36, 0}, &GENUS, 0, 0, 0 }; + +void X(codelet_t1_9) (planner *p) { + X(kdft_dit_register) (p, t1_9, &desc); +} |