diff options
Diffstat (limited to 'src/fftw3/dft/codelets/standard/t2_32.c')
-rw-r--r-- | src/fftw3/dft/codelets/standard/t2_32.c | 853 |
1 files changed, 0 insertions, 853 deletions
diff --git a/src/fftw3/dft/codelets/standard/t2_32.c b/src/fftw3/dft/codelets/standard/t2_32.c deleted file mode 100644 index b065ecb..0000000 --- a/src/fftw3/dft/codelets/standard/t2_32.c +++ /dev/null @@ -1,853 +0,0 @@ -/* - * Copyright (c) 2003 Matteo Frigo - * Copyright (c) 2003 Massachusetts Institute of Technology - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License as published by - * the Free Software Foundation; either version 2 of the License, or - * (at your option) any later version. - * - * This program is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - * GNU General Public License for more details. - * - * You should have received a copy of the GNU General Public License - * along with this program; if not, write to the Free Software - * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA - * - */ - -/* This file was automatically generated --- DO NOT EDIT */ -/* Generated on Sat Jul 5 21:30:26 EDT 2003 */ - -#include "codelet-dft.h" - -/* Generated by: /homee/stevenj/cvs/fftw3.0.1/genfft/gen_twiddle -compact -variables 4 -twiddle-log3 -n 32 -name t2_32 -include t.h */ - -/* - * This function contains 488 FP additions, 280 FP multiplications, - * (or, 376 additions, 168 multiplications, 112 fused multiply/add), - * 204 stack variables, and 128 memory accesses - */ -/* - * Generator Id's : - * $Id: t2_32.c,v 1.1 2008/10/17 06:11:09 scuri Exp $ - * $Id: t2_32.c,v 1.1 2008/10/17 06:11:09 scuri Exp $ - * $Id: t2_32.c,v 1.1 2008/10/17 06:11:09 scuri Exp $ - */ - -#include "t.h" - -static const R *t2_32(R *ri, R *ii, const R *W, stride ios, int m, int dist) -{ - DK(KP831469612, +0.831469612302545237078788377617905756738560812); - DK(KP555570233, +0.555570233019602224742830813948532874374937191); - DK(KP195090322, +0.195090322016128267848284868477022240927691618); - DK(KP980785280, +0.980785280403230449126182236134239036973933731); - DK(KP707106781, +0.707106781186547524400844362104849039284835938); - DK(KP923879532, +0.923879532511286756128183189396788286822416626); - DK(KP382683432, +0.382683432365089771728459984030398866761344562); - int i; - for (i = m; i > 0; i = i - 1, ri = ri + dist, ii = ii + dist, W = W + 8) { - E T1, T7G, Tn, Tp, T3t, T4S, TQ, T3G, T49, T20, T2n, T4y, T1J, T43, T2w; - E T4z, T36, T4Z, TK, T8b, T40, T6l, T3U, T6k, T1h, T3L, T1D, T3V, T1s, T3X; - E T3E, T7E, T3O, T6h, T2k, T6w, T4i, T4x, T3q, T6I, T4O, T4P, T3w, T4T, T4R; - E T4U, Tm, To, TX, T4I, T3a, T3H, T31, T4Y, T3f, T4J, T2G, T4s, T4r, T2B; - E T4q, T4t, T27, T4a, T2M, T4m, T4n, T2P, T4l, T4o, T1U, T44; - T1 = ri[0]; - T7G = ii[0]; - Tn = ri[WS(ios, 16)]; - Tp = ii[WS(ios, 16)]; - { - E Tv, Tz, TE, TI, TP, TN, TU, TW, T12, T16, T1k, T1b, T1f, T1l, T24; - E T1z, T1w, T1u, T1q, T1o, T1B, T1X, T1Z, T1T, T1R, T1I, T1G, T26, T2O, T3e; - E T3m, T3o, T3u, T3v, T3c, T30, T2W, T33, T35, T38, T39, T2N, T2r, T2v, T2m; - E T2l, T2i, T2g, T2z, T2A, T2D, T2F, T2L, T2J, T2, Ti, T3, Tc, TF, TC; - E TG, TB, Tu, T1a, T15, Ty, T1t, T1Y, T1W, T1v, TH, T1y, T11, TD, T1A; - E T1e, T4g, T3k, T1n, T1p, T2e, T4M, TM, T1K, T1O, TO, T1L, T1N, Ta, Tb; - E T2t, Tk, T2o, Tf, Tg, T2s, Tj, T2p; - Tv = ri[WS(ios, 8)]; - Tz = ii[WS(ios, 8)]; - TE = ri[WS(ios, 24)]; - TI = ii[WS(ios, 24)]; - TP = ii[WS(ios, 4)]; - TN = ri[WS(ios, 4)]; - TU = ri[WS(ios, 20)]; - TW = ii[WS(ios, 20)]; - T12 = ri[WS(ios, 28)]; - T16 = ii[WS(ios, 28)]; - T1k = ri[WS(ios, 2)]; - T1b = ri[WS(ios, 12)]; - T1f = ii[WS(ios, 12)]; - T1l = ii[WS(ios, 2)]; - T24 = ri[WS(ios, 22)]; - T1z = ri[WS(ios, 26)]; - T1w = ii[WS(ios, 10)]; - T1u = ri[WS(ios, 10)]; - T1q = ii[WS(ios, 18)]; - T1o = ri[WS(ios, 18)]; - T1B = ii[WS(ios, 26)]; - T1X = ri[WS(ios, 6)]; - T1Z = ii[WS(ios, 6)]; - T1T = ii[WS(ios, 14)]; - T1R = ri[WS(ios, 14)]; - T1I = ii[WS(ios, 30)]; - T1G = ri[WS(ios, 30)]; - T26 = ii[WS(ios, 22)]; - T2O = ii[WS(ios, 13)]; - T3e = ii[WS(ios, 23)]; - T3m = ri[WS(ios, 19)]; - T3o = ii[WS(ios, 19)]; - T3u = ri[WS(ios, 11)]; - T3v = ii[WS(ios, 11)]; - T3c = ri[WS(ios, 23)]; - T30 = ii[WS(ios, 31)]; - T2W = ri[WS(ios, 31)]; - T33 = ri[WS(ios, 15)]; - T35 = ii[WS(ios, 15)]; - T38 = ri[WS(ios, 7)]; - T39 = ii[WS(ios, 7)]; - T2N = ri[WS(ios, 13)]; - T2r = ri[WS(ios, 25)]; - T2v = ii[WS(ios, 25)]; - T2m = ii[WS(ios, 9)]; - T2l = ri[WS(ios, 9)]; - T2i = ii[WS(ios, 17)]; - T2g = ri[WS(ios, 17)]; - T2z = ri[WS(ios, 5)]; - T2A = ii[WS(ios, 5)]; - T2D = ri[WS(ios, 21)]; - T2F = ii[WS(ios, 21)]; - T2L = ii[WS(ios, 29)]; - T2J = ri[WS(ios, 29)]; - { - E T2c, T2d, T3i, T3j, T3s, T3r, T4, T7, T5, T8, T6, T9, T14, T1d, Ts; - E T18, T19, T1c, Te, Td, Tt, Tw, T13, TZ, T10, Tx; - T2c = ri[WS(ios, 1)]; - T2d = ii[WS(ios, 1)]; - T3i = ri[WS(ios, 3)]; - T3j = ii[WS(ios, 3)]; - T3s = ii[WS(ios, 27)]; - T3r = ri[WS(ios, 27)]; - T2 = W[6]; - Ti = W[7]; - T3 = W[4]; - Tc = W[5]; - T4 = W[2]; - T7 = W[3]; - T5 = W[0]; - T8 = W[1]; - T6 = T4 * T5; - T9 = T7 * T8; - T14 = Ti * T5; - T1d = Tc * T4; - Ts = T3 * T5; - T18 = T3 * T4; - T19 = Tc * T7; - T1c = T3 * T7; - Te = T7 * T5; - Td = T4 * T8; - Tt = Tc * T8; - Tw = T3 * T8; - TF = T2 * T7; - T13 = T2 * T8; - TC = Ti * T7; - TG = Ti * T4; - TZ = T2 * T5; - T10 = Ti * T8; - TB = T2 * T4; - Tx = Tc * T5; - Tu = Ts + Tt; - T1a = T18 - T19; - T15 = T13 + T14; - Ty = Tw - Tx; - T1t = Ts - Tt; - T1Y = T1c - T1d; - T1W = T18 + T19; - T1v = Tw + Tx; - TH = TF - TG; - T1y = TZ + T10; - T11 = TZ - T10; - TD = TB + TC; - T1A = T13 - T14; - T1e = T1c + T1d; - T3t = FMA(T2, T3r, Ti * T3s); - T4g = FNMS(T8, T2c, T5 * T2d); - T4S = FNMS(Ti, T3r, T2 * T3s); - T3k = FMA(T4, T3i, T7 * T3j); - T1n = FMA(T2, T3, Ti * Tc); - T1p = FNMS(Ti, T3, T2 * Tc); - T2e = FMA(T5, T2c, T8 * T2d); - T4M = FNMS(T7, T3i, T4 * T3j); - TM = T6 - T9; - T1K = T3 * TM; - T1O = Tc * TM; - TO = Td + Te; - T1L = Tc * TO; - T1N = T3 * TO; - Ta = T6 + T9; - Tb = T3 * Ta; - T2t = Ti * Ta; - Tk = Tc * Ta; - T2o = T2 * Ta; - Tf = Td - Te; - Tg = Tc * Tf; - T2s = T2 * Tf; - Tj = T3 * Tf; - T2p = Ti * Tf; - } - TQ = FMA(TM, TN, TO * TP); - T3G = FNMS(TO, TN, TM * TP); - T49 = FMA(T1Y, T1X, T1W * T1Z); - T20 = FNMS(T1Y, T1Z, T1W * T1X); - T2n = FMA(T3, T2l, Tc * T2m); - T4y = FNMS(Tc, T2l, T3 * T2m); - { - E T1F, T1H, TA, TJ; - T1F = TB - TC; - T1H = TF + TG; - T1J = FMA(T1F, T1G, T1H * T1I); - T43 = FNMS(T1H, T1G, T1F * T1I); - { - E T2q, T2u, T32, T34; - T2q = T2o - T2p; - T2u = T2s + T2t; - T2w = FMA(T2q, T2r, T2u * T2v); - T4z = FNMS(T2u, T2r, T2q * T2v); - T32 = FMA(T2, T1a, Ti * T1e); - T34 = FNMS(Ti, T1a, T2 * T1e); - T36 = FNMS(T34, T35, T32 * T33); - T4Z = FMA(T34, T33, T32 * T35); - } - TA = FNMS(Ty, Tz, Tu * Tv); - TJ = FNMS(TH, TI, TD * TE); - TK = TA + TJ; - T8b = TA - TJ; - { - E T3Y, T3Z, T3S, T3T; - T3Y = FNMS(T1v, T1u, T1t * T1w); - T3Z = FMA(T1A, T1z, T1y * T1B); - T40 = T3Y - T3Z; - T6l = T3Y + T3Z; - T3S = FMA(Tf, T1k, Ta * T1l); - T3T = FMA(T1p, T1o, T1n * T1q); - T3U = T3S - T3T; - T6k = T3S + T3T; - } - } - { - E T17, T1g, Th, Tl; - T17 = FMA(T11, T12, T15 * T16); - T1g = FMA(T1a, T1b, T1e * T1f); - T1h = T17 + T1g; - T3L = T17 - T1g; - { - E T1x, T1C, T1m, T1r; - T1x = FMA(T1t, T1u, T1v * T1w); - T1C = FNMS(T1A, T1B, T1y * T1z); - T1D = T1x + T1C; - T3V = T1x - T1C; - T1m = FNMS(Tf, T1l, Ta * T1k); - T1r = FNMS(T1p, T1q, T1n * T1o); - T1s = T1m + T1r; - T3X = T1m - T1r; - } - { - E T3C, T3D, T3M, T3N; - T3C = FMA(Ty, Tv, Tu * Tz); - T3D = FMA(TH, TE, TD * TI); - T3E = T3C - T3D; - T7E = T3C + T3D; - T3M = FNMS(T15, T12, T11 * T16); - T3N = FNMS(T1e, T1b, T1a * T1f); - T3O = T3M - T3N; - T6h = T3M + T3N; - { - E T2j, T4h, T2f, T2h; - T2f = FMA(T2, T1t, Ti * T1v); - T2h = FNMS(Ti, T1t, T2 * T1v); - T2j = FNMS(T2h, T2i, T2f * T2g); - T4h = FMA(T2h, T2g, T2f * T2i); - T2k = T2e + T2j; - T6w = T4g + T4h; - T4i = T4g - T4h; - T4x = T2e - T2j; - } - } - { - E T3p, T4N, T3l, T3n; - T3l = FNMS(Ti, Ty, T2 * Tu); - T3n = FMA(T2, Ty, Ti * Tu); - T3p = FMA(T3l, T3m, T3n * T3o); - T4N = FNMS(T3n, T3m, T3l * T3o); - T3q = T3k + T3p; - T6I = T4M + T4N; - T4O = T4M - T4N; - T4P = T3k - T3p; - } - Th = Tb + Tg; - Tl = Tj - Tk; - T3w = FNMS(Tl, T3v, Th * T3u); - T4T = FMA(Tl, T3u, Th * T3v); - T4R = T3t - T3w; - T4U = T4S - T4T; - Tm = FNMS(Ti, Tl, T2 * Th); - To = FMA(T2, Tl, Ti * Th); - { - E TR, TS, TT, TV; - TR = Tb - Tg; - TS = Tj + Tk; - TT = FMA(T2, TR, Ti * TS); - TV = FNMS(Ti, TR, T2 * TS); - TX = FNMS(TV, TW, TT * TU); - T4I = FNMS(TS, T38, TR * T39); - T3a = FMA(TR, T38, TS * T39); - T3H = FMA(TV, TU, TT * TW); - } - { - E T2V, T3b, T2Z, T3d; - { - E T2T, T2U, T2X, T2Y; - T2T = T2 * TM; - T2U = Ti * TO; - T2V = T2T - T2U; - T3b = T2T + T2U; - T2X = T2 * TO; - T2Y = Ti * TM; - T2Z = T2X + T2Y; - T3d = T2X - T2Y; - } - T31 = FMA(T2V, T2W, T2Z * T30); - T4Y = FNMS(T2Z, T2W, T2V * T30); - T3f = FNMS(T3d, T3e, T3b * T3c); - T4J = FMA(T3d, T3c, T3b * T3e); - } - { - E T23, T25, T1Q, T1S; - { - E T2C, T2E, T21, T22; - T2C = FNMS(Ti, T1Y, T2 * T1W); - T2E = FMA(T2, T1Y, Ti * T1W); - T2G = FMA(T2C, T2D, T2E * T2F); - T4s = FNMS(T2E, T2D, T2C * T2F); - T21 = T1K + T1L; - T22 = T1N - T1O; - T23 = FNMS(Ti, T22, T2 * T21); - T4r = FMA(T22, T2z, T21 * T2A); - T25 = FMA(T2, T22, Ti * T21); - T2B = FNMS(T22, T2A, T21 * T2z); - } - T4q = T2B - T2G; - T4t = T4r - T4s; - T27 = FMA(T23, T24, T25 * T26); - T4a = FNMS(T25, T24, T23 * T26); - { - E T2I, T2K, T1M, T1P; - T2I = T2o + T2p; - T2K = T2s - T2t; - T2M = FNMS(T2K, T2L, T2I * T2J); - T4m = FMA(T2K, T2J, T2I * T2L); - T1M = T1K - T1L; - T1P = T1N + T1O; - T1Q = FMA(T2, T1M, Ti * T1P); - T4n = FNMS(T1P, T2N, T1M * T2O); - T1S = FNMS(Ti, T1M, T2 * T1P); - T2P = FMA(T1M, T2N, T1P * T2O); - } - T4l = T2M - T2P; - T4o = T4m - T4n; - T1U = FNMS(T1S, T1T, T1Q * T1R); - T44 = FMA(T1S, T1R, T1Q * T1T); - } - } - } - { - E T1i, T7V, T6i, T7D, T42, T5e, T5A, T60, T6o, T6Y, TL, T6f, T3F, T5t, T7I; - E T8q, T7W, T8c, T3Q, T8p, T5w, T89, T4d, T61, T5f, T5D, T2a, T6t, T7O, T7C; - E T7g, T6Z, T4w, T64, T65, T4F, T5i, T5I, T5L, T5j, T2S, T7l, T7y, T6A, T6F; - E T73, T7i, T72, T4X, T67, T68, T56, T5l, T5P, T5S, T5m, T3z, T7q, T7z, T6L; - E T6Q, T76, T7n, T75; - { - E TY, T6g, T3W, T41; - TY = TQ + TX; - T1i = TY + T1h; - T7V = T1h - TY; - T6g = T3G + T3H; - T6i = T6g - T6h; - T7D = T6g + T6h; - T3W = T3U + T3V; - T41 = T3X - T40; - T42 = FNMS(KP923879532, T41, KP382683432 * T3W); - T5e = FMA(KP923879532, T3W, KP382683432 * T41); - } - { - E T5y, T5z, T6m, T6n; - T5y = T3U - T3V; - T5z = T3X + T40; - T5A = FNMS(KP382683432, T5z, KP923879532 * T5y); - T60 = FMA(KP382683432, T5y, KP923879532 * T5z); - T6m = T6k - T6l; - T6n = T1s - T1D; - T6o = T6m - T6n; - T6Y = T6n + T6m; - } - { - E Tr, T3B, Tq, T7H, T8a, T7F; - Tq = FMA(Tm, Tn, To * Tp); - Tr = T1 + Tq; - T3B = T1 - Tq; - TL = Tr + TK; - T6f = Tr - TK; - T3F = T3B - T3E; - T5t = T3B + T3E; - T7F = FNMS(To, Tn, Tm * Tp); - T7H = T7F + T7G; - T8a = T7G - T7F; - T7I = T7E + T7H; - T8q = T8b + T8a; - T7W = T7H - T7E; - T8c = T8a - T8b; - } - { - E T3P, T5v, T3K, T5u, T3I, T3J; - T3P = T3L + T3O; - T5v = T3L - T3O; - T3I = T3G - T3H; - T3J = TQ - TX; - T3K = T3I - T3J; - T5u = T3J + T3I; - T3Q = KP707106781 * (T3K - T3P); - T8p = KP707106781 * (T5v - T5u); - T5w = KP707106781 * (T5u + T5v); - T89 = KP707106781 * (T3K + T3P); - } - { - E T47, T5B, T4c, T5C; - { - E T45, T46, T48, T4b; - T45 = T43 - T44; - T46 = T20 - T27; - T47 = T45 + T46; - T5B = T45 - T46; - T48 = T1J - T1U; - T4b = T49 - T4a; - T4c = T48 - T4b; - T5C = T48 + T4b; - } - T4d = FMA(KP382683432, T47, KP923879532 * T4c); - T61 = FNMS(KP382683432, T5B, KP923879532 * T5C); - T5f = FNMS(KP923879532, T47, KP382683432 * T4c); - T5D = FMA(KP923879532, T5B, KP382683432 * T5C); - } - { - E T1E, T7e, T29, T6p, T6s, T7f; - T1E = T1s + T1D; - T7e = T6k + T6l; - { - E T1V, T28, T6q, T6r; - T1V = T1J + T1U; - T28 = T20 + T27; - T29 = T1V + T28; - T6p = T1V - T28; - T6q = T43 + T44; - T6r = T49 + T4a; - T6s = T6q - T6r; - T7f = T6q + T6r; - } - T2a = T1E + T29; - T6t = T6p + T6s; - T7O = T29 - T1E; - T7C = T7e + T7f; - T7g = T7e - T7f; - T6Z = T6p - T6s; - } - { - E T4k, T5J, T4B, T5G, T4v, T5H, T4E, T5K, T4j, T4A; - T4j = T2n - T2w; - T4k = T4i + T4j; - T5J = T4i - T4j; - T4A = T4y - T4z; - T4B = T4x - T4A; - T5G = T4x + T4A; - { - E T4p, T4u, T4C, T4D; - T4p = T4l - T4o; - T4u = T4q + T4t; - T4v = KP707106781 * (T4p - T4u); - T5H = KP707106781 * (T4u + T4p); - T4C = T4t - T4q; - T4D = T4l + T4o; - T4E = KP707106781 * (T4C - T4D); - T5K = KP707106781 * (T4C + T4D); - } - T4w = T4k - T4v; - T64 = T5G + T5H; - T65 = T5J + T5K; - T4F = T4B - T4E; - T5i = T4k + T4v; - T5I = T5G - T5H; - T5L = T5J - T5K; - T5j = T4B + T4E; - } - { - E T2y, T6B, T6y, T7j, T2R, T6z, T6E, T7k, T2x, T6x; - T2x = T2n + T2w; - T2y = T2k + T2x; - T6B = T2k - T2x; - T6x = T4y + T4z; - T6y = T6w - T6x; - T7j = T6w + T6x; - { - E T2H, T2Q, T6C, T6D; - T2H = T2B + T2G; - T2Q = T2M + T2P; - T2R = T2H + T2Q; - T6z = T2Q - T2H; - T6C = T4r + T4s; - T6D = T4m + T4n; - T6E = T6C - T6D; - T7k = T6C + T6D; - } - T2S = T2y + T2R; - T7l = T7j - T7k; - T7y = T7j + T7k; - T6A = T6y - T6z; - T6F = T6B - T6E; - T73 = T6B + T6E; - T7i = T2y - T2R; - T72 = T6y + T6z; - } - { - E T4L, T5N, T55, T5O, T4W, T5R, T52, T5Q; - { - E T4H, T4K, T53, T54; - T4H = T31 - T36; - T4K = T4I - T4J; - T4L = T4H - T4K; - T5N = T4H + T4K; - T53 = T4R - T4U; - T54 = T4P + T4O; - T55 = KP707106781 * (T53 - T54); - T5O = KP707106781 * (T54 + T53); - } - { - E T4Q, T4V, T50, T51; - T4Q = T4O - T4P; - T4V = T4R + T4U; - T4W = KP707106781 * (T4Q - T4V); - T5R = KP707106781 * (T4Q + T4V); - T50 = T4Y - T4Z; - T51 = T3a - T3f; - T52 = T50 + T51; - T5Q = T50 - T51; - } - T4X = T4L - T4W; - T67 = T5N + T5O; - T68 = T5Q + T5R; - T56 = T52 - T55; - T5l = T4L + T4W; - T5P = T5N - T5O; - T5S = T5Q - T5R; - T5m = T52 + T55; - } - { - E T3y, T6P, T6K, T7p, T3h, T6H, T6O, T7o, T3x, T6J; - T3x = T3t + T3w; - T3y = T3q + T3x; - T6P = T3x - T3q; - T6J = T4S + T4T; - T6K = T6I - T6J; - T7p = T6I + T6J; - { - E T37, T3g, T6M, T6N; - T37 = T31 + T36; - T3g = T3a + T3f; - T3h = T37 + T3g; - T6H = T37 - T3g; - T6M = T4Y + T4Z; - T6N = T4I + T4J; - T6O = T6M - T6N; - T7o = T6M + T6N; - } - T3z = T3h + T3y; - T7q = T7o - T7p; - T7z = T7o + T7p; - T6L = T6H - T6K; - T6Q = T6O - T6P; - T76 = T6O + T6P; - T7n = T3h - T3y; - T75 = T6H + T6K; - } - { - E T3A, T7A, T2b, T7x, T1j; - T3A = T2S + T3z; - T7A = T7y - T7z; - T1j = TL + T1i; - T2b = T1j + T2a; - T7x = T1j - T2a; - ri[WS(ios, 16)] = T2b - T3A; - ri[WS(ios, 8)] = T7x + T7A; - ri[0] = T2b + T3A; - ri[WS(ios, 24)] = T7x - T7A; - } - { - E T7B, T7L, T7K, T7M, T7J; - T7B = T7y + T7z; - T7L = T3z - T2S; - T7J = T7D + T7I; - T7K = T7C + T7J; - T7M = T7J - T7C; - ii[0] = T7B + T7K; - ii[WS(ios, 24)] = T7M - T7L; - ii[WS(ios, 16)] = T7K - T7B; - ii[WS(ios, 8)] = T7L + T7M; - } - { - E T7h, T7t, T7Q, T7S, T7s, T7R, T7w, T7N, T7d, T7P; - T7d = TL - T1i; - T7h = T7d + T7g; - T7t = T7d - T7g; - T7P = T7I - T7D; - T7Q = T7O + T7P; - T7S = T7P - T7O; - { - E T7m, T7r, T7u, T7v; - T7m = T7i + T7l; - T7r = T7n - T7q; - T7s = KP707106781 * (T7m + T7r); - T7R = KP707106781 * (T7r - T7m); - T7u = T7l - T7i; - T7v = T7n + T7q; - T7w = KP707106781 * (T7u - T7v); - T7N = KP707106781 * (T7u + T7v); - } - ri[WS(ios, 20)] = T7h - T7s; - ii[WS(ios, 20)] = T7Q - T7N; - ri[WS(ios, 4)] = T7h + T7s; - ii[WS(ios, 4)] = T7N + T7Q; - ri[WS(ios, 28)] = T7t - T7w; - ii[WS(ios, 28)] = T7S - T7R; - ri[WS(ios, 12)] = T7t + T7w; - ii[WS(ios, 12)] = T7R + T7S; - } - { - E T71, T79, T7Y, T80, T78, T7Z, T7c, T7T; - { - E T6X, T70, T7U, T7X; - T6X = T6f + T6i; - T70 = KP707106781 * (T6Y + T6Z); - T71 = T6X + T70; - T79 = T6X - T70; - T7U = KP707106781 * (T6o + T6t); - T7X = T7V + T7W; - T7Y = T7U + T7X; - T80 = T7X - T7U; - } - { - E T74, T77, T7a, T7b; - T74 = FMA(KP382683432, T72, KP923879532 * T73); - T77 = FNMS(KP382683432, T76, KP923879532 * T75); - T78 = T74 + T77; - T7Z = T77 - T74; - T7a = FNMS(KP382683432, T73, KP923879532 * T72); - T7b = FMA(KP923879532, T76, KP382683432 * T75); - T7c = T7a - T7b; - T7T = T7a + T7b; - } - ri[WS(ios, 18)] = T71 - T78; - ii[WS(ios, 18)] = T7Y - T7T; - ri[WS(ios, 2)] = T71 + T78; - ii[WS(ios, 2)] = T7T + T7Y; - ri[WS(ios, 26)] = T79 - T7c; - ii[WS(ios, 26)] = T80 - T7Z; - ri[WS(ios, 10)] = T79 + T7c; - ii[WS(ios, 10)] = T7Z + T80; - } - { - E T4f, T59, T8y, T8A, T58, T8z, T5c, T8v; - { - E T3R, T4e, T8w, T8x; - T3R = T3F - T3Q; - T4e = T42 - T4d; - T4f = T3R + T4e; - T59 = T3R - T4e; - T8w = T5f - T5e; - T8x = T8q - T8p; - T8y = T8w + T8x; - T8A = T8x - T8w; - } - { - E T4G, T57, T5a, T5b; - T4G = FMA(KP980785280, T4w, KP195090322 * T4F); - T57 = FNMS(KP980785280, T56, KP195090322 * T4X); - T58 = T4G + T57; - T8z = T57 - T4G; - T5a = FNMS(KP980785280, T4F, KP195090322 * T4w); - T5b = FMA(KP195090322, T56, KP980785280 * T4X); - T5c = T5a - T5b; - T8v = T5a + T5b; - } - ri[WS(ios, 23)] = T4f - T58; - ii[WS(ios, 23)] = T8y - T8v; - ri[WS(ios, 7)] = T4f + T58; - ii[WS(ios, 7)] = T8v + T8y; - ri[WS(ios, 31)] = T59 - T5c; - ii[WS(ios, 31)] = T8A - T8z; - ri[WS(ios, 15)] = T59 + T5c; - ii[WS(ios, 15)] = T8z + T8A; - } - { - E T5F, T5V, T8k, T8m, T5U, T8l, T5Y, T8h; - { - E T5x, T5E, T8i, T8j; - T5x = T5t - T5w; - T5E = T5A - T5D; - T5F = T5x + T5E; - T5V = T5x - T5E; - T8i = T61 - T60; - T8j = T8c - T89; - T8k = T8i + T8j; - T8m = T8j - T8i; - } - { - E T5M, T5T, T5W, T5X; - T5M = FMA(KP555570233, T5I, KP831469612 * T5L); - T5T = FNMS(KP831469612, T5S, KP555570233 * T5P); - T5U = T5M + T5T; - T8l = T5T - T5M; - T5W = FNMS(KP831469612, T5I, KP555570233 * T5L); - T5X = FMA(KP831469612, T5P, KP555570233 * T5S); - T5Y = T5W - T5X; - T8h = T5W + T5X; - } - ri[WS(ios, 21)] = T5F - T5U; - ii[WS(ios, 21)] = T8k - T8h; - ri[WS(ios, 5)] = T5F + T5U; - ii[WS(ios, 5)] = T8h + T8k; - ri[WS(ios, 29)] = T5V - T5Y; - ii[WS(ios, 29)] = T8m - T8l; - ri[WS(ios, 13)] = T5V + T5Y; - ii[WS(ios, 13)] = T8l + T8m; - } - { - E T6v, T6T, T84, T86, T6S, T85, T6W, T81; - { - E T6j, T6u, T82, T83; - T6j = T6f - T6i; - T6u = KP707106781 * (T6o - T6t); - T6v = T6j + T6u; - T6T = T6j - T6u; - T82 = KP707106781 * (T6Z - T6Y); - T83 = T7W - T7V; - T84 = T82 + T83; - T86 = T83 - T82; - } - { - E T6G, T6R, T6U, T6V; - T6G = FMA(KP923879532, T6A, KP382683432 * T6F); - T6R = FNMS(KP923879532, T6Q, KP382683432 * T6L); - T6S = T6G + T6R; - T85 = T6R - T6G; - T6U = FNMS(KP923879532, T6F, KP382683432 * T6A); - T6V = FMA(KP382683432, T6Q, KP923879532 * T6L); - T6W = T6U - T6V; - T81 = T6U + T6V; - } - ri[WS(ios, 22)] = T6v - T6S; - ii[WS(ios, 22)] = T84 - T81; - ri[WS(ios, 6)] = T6v + T6S; - ii[WS(ios, 6)] = T81 + T84; - ri[WS(ios, 30)] = T6T - T6W; - ii[WS(ios, 30)] = T86 - T85; - ri[WS(ios, 14)] = T6T + T6W; - ii[WS(ios, 14)] = T85 + T86; - } - { - E T5h, T5p, T8s, T8u, T5o, T8t, T5s, T8n; - { - E T5d, T5g, T8o, T8r; - T5d = T3F + T3Q; - T5g = T5e + T5f; - T5h = T5d + T5g; - T5p = T5d - T5g; - T8o = T42 + T4d; - T8r = T8p + T8q; - T8s = T8o + T8r; - T8u = T8r - T8o; - } - { - E T5k, T5n, T5q, T5r; - T5k = FMA(KP555570233, T5i, KP831469612 * T5j); - T5n = FNMS(KP555570233, T5m, KP831469612 * T5l); - T5o = T5k + T5n; - T8t = T5n - T5k; - T5q = FNMS(KP555570233, T5j, KP831469612 * T5i); - T5r = FMA(KP831469612, T5m, KP555570233 * T5l); - T5s = T5q - T5r; - T8n = T5q + T5r; - } - ri[WS(ios, 19)] = T5h - T5o; - ii[WS(ios, 19)] = T8s - T8n; - ri[WS(ios, 3)] = T5h + T5o; - ii[WS(ios, 3)] = T8n + T8s; - ri[WS(ios, 27)] = T5p - T5s; - ii[WS(ios, 27)] = T8u - T8t; - ri[WS(ios, 11)] = T5p + T5s; - ii[WS(ios, 11)] = T8t + T8u; - } - { - E T63, T6b, T8e, T8g, T6a, T8f, T6e, T87; - { - E T5Z, T62, T88, T8d; - T5Z = T5t + T5w; - T62 = T60 + T61; - T63 = T5Z + T62; - T6b = T5Z - T62; - T88 = T5A + T5D; - T8d = T89 + T8c; - T8e = T88 + T8d; - T8g = T8d - T88; - } - { - E T66, T69, T6c, T6d; - T66 = FMA(KP980785280, T64, KP195090322 * T65); - T69 = FNMS(KP195090322, T68, KP980785280 * T67); - T6a = T66 + T69; - T8f = T69 - T66; - T6c = FNMS(KP195090322, T64, KP980785280 * T65); - T6d = FMA(KP195090322, T67, KP980785280 * T68); - T6e = T6c - T6d; - T87 = T6c + T6d; - } - ri[WS(ios, 17)] = T63 - T6a; - ii[WS(ios, 17)] = T8e - T87; - ri[WS(ios, 1)] = T63 + T6a; - ii[WS(ios, 1)] = T87 + T8e; - ri[WS(ios, 25)] = T6b - T6e; - ii[WS(ios, 25)] = T8g - T8f; - ri[WS(ios, 9)] = T6b + T6e; - ii[WS(ios, 9)] = T8f + T8g; - } - } - } - return W; -} - -static const tw_instr twinstr[] = { - {TW_COS, 0, 1}, - {TW_SIN, 0, 1}, - {TW_COS, 0, 3}, - {TW_SIN, 0, 3}, - {TW_COS, 0, 9}, - {TW_SIN, 0, 9}, - {TW_COS, 0, 27}, - {TW_SIN, 0, 27}, - {TW_NEXT, 1, 0} -}; - -static const ct_desc desc = { 32, "t2_32", twinstr, {376, 168, 112, 0}, &GENUS, 0, 0, 0 }; - -void X(codelet_t2_32) (planner *p) { - X(kdft_dit_register) (p, t2_32, &desc); -} |