summaryrefslogtreecommitdiff
path: root/src/fftw3/dft/codelets/standard/t2_32.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/fftw3/dft/codelets/standard/t2_32.c')
-rw-r--r--src/fftw3/dft/codelets/standard/t2_32.c853
1 files changed, 0 insertions, 853 deletions
diff --git a/src/fftw3/dft/codelets/standard/t2_32.c b/src/fftw3/dft/codelets/standard/t2_32.c
deleted file mode 100644
index b065ecb..0000000
--- a/src/fftw3/dft/codelets/standard/t2_32.c
+++ /dev/null
@@ -1,853 +0,0 @@
-/*
- * Copyright (c) 2003 Matteo Frigo
- * Copyright (c) 2003 Massachusetts Institute of Technology
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation; either version 2 of the License, or
- * (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program; if not, write to the Free Software
- * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
- *
- */
-
-/* This file was automatically generated --- DO NOT EDIT */
-/* Generated on Sat Jul 5 21:30:26 EDT 2003 */
-
-#include "codelet-dft.h"
-
-/* Generated by: /homee/stevenj/cvs/fftw3.0.1/genfft/gen_twiddle -compact -variables 4 -twiddle-log3 -n 32 -name t2_32 -include t.h */
-
-/*
- * This function contains 488 FP additions, 280 FP multiplications,
- * (or, 376 additions, 168 multiplications, 112 fused multiply/add),
- * 204 stack variables, and 128 memory accesses
- */
-/*
- * Generator Id's :
- * $Id: t2_32.c,v 1.1 2008/10/17 06:11:09 scuri Exp $
- * $Id: t2_32.c,v 1.1 2008/10/17 06:11:09 scuri Exp $
- * $Id: t2_32.c,v 1.1 2008/10/17 06:11:09 scuri Exp $
- */
-
-#include "t.h"
-
-static const R *t2_32(R *ri, R *ii, const R *W, stride ios, int m, int dist)
-{
- DK(KP831469612, +0.831469612302545237078788377617905756738560812);
- DK(KP555570233, +0.555570233019602224742830813948532874374937191);
- DK(KP195090322, +0.195090322016128267848284868477022240927691618);
- DK(KP980785280, +0.980785280403230449126182236134239036973933731);
- DK(KP707106781, +0.707106781186547524400844362104849039284835938);
- DK(KP923879532, +0.923879532511286756128183189396788286822416626);
- DK(KP382683432, +0.382683432365089771728459984030398866761344562);
- int i;
- for (i = m; i > 0; i = i - 1, ri = ri + dist, ii = ii + dist, W = W + 8) {
- E T1, T7G, Tn, Tp, T3t, T4S, TQ, T3G, T49, T20, T2n, T4y, T1J, T43, T2w;
- E T4z, T36, T4Z, TK, T8b, T40, T6l, T3U, T6k, T1h, T3L, T1D, T3V, T1s, T3X;
- E T3E, T7E, T3O, T6h, T2k, T6w, T4i, T4x, T3q, T6I, T4O, T4P, T3w, T4T, T4R;
- E T4U, Tm, To, TX, T4I, T3a, T3H, T31, T4Y, T3f, T4J, T2G, T4s, T4r, T2B;
- E T4q, T4t, T27, T4a, T2M, T4m, T4n, T2P, T4l, T4o, T1U, T44;
- T1 = ri[0];
- T7G = ii[0];
- Tn = ri[WS(ios, 16)];
- Tp = ii[WS(ios, 16)];
- {
- E Tv, Tz, TE, TI, TP, TN, TU, TW, T12, T16, T1k, T1b, T1f, T1l, T24;
- E T1z, T1w, T1u, T1q, T1o, T1B, T1X, T1Z, T1T, T1R, T1I, T1G, T26, T2O, T3e;
- E T3m, T3o, T3u, T3v, T3c, T30, T2W, T33, T35, T38, T39, T2N, T2r, T2v, T2m;
- E T2l, T2i, T2g, T2z, T2A, T2D, T2F, T2L, T2J, T2, Ti, T3, Tc, TF, TC;
- E TG, TB, Tu, T1a, T15, Ty, T1t, T1Y, T1W, T1v, TH, T1y, T11, TD, T1A;
- E T1e, T4g, T3k, T1n, T1p, T2e, T4M, TM, T1K, T1O, TO, T1L, T1N, Ta, Tb;
- E T2t, Tk, T2o, Tf, Tg, T2s, Tj, T2p;
- Tv = ri[WS(ios, 8)];
- Tz = ii[WS(ios, 8)];
- TE = ri[WS(ios, 24)];
- TI = ii[WS(ios, 24)];
- TP = ii[WS(ios, 4)];
- TN = ri[WS(ios, 4)];
- TU = ri[WS(ios, 20)];
- TW = ii[WS(ios, 20)];
- T12 = ri[WS(ios, 28)];
- T16 = ii[WS(ios, 28)];
- T1k = ri[WS(ios, 2)];
- T1b = ri[WS(ios, 12)];
- T1f = ii[WS(ios, 12)];
- T1l = ii[WS(ios, 2)];
- T24 = ri[WS(ios, 22)];
- T1z = ri[WS(ios, 26)];
- T1w = ii[WS(ios, 10)];
- T1u = ri[WS(ios, 10)];
- T1q = ii[WS(ios, 18)];
- T1o = ri[WS(ios, 18)];
- T1B = ii[WS(ios, 26)];
- T1X = ri[WS(ios, 6)];
- T1Z = ii[WS(ios, 6)];
- T1T = ii[WS(ios, 14)];
- T1R = ri[WS(ios, 14)];
- T1I = ii[WS(ios, 30)];
- T1G = ri[WS(ios, 30)];
- T26 = ii[WS(ios, 22)];
- T2O = ii[WS(ios, 13)];
- T3e = ii[WS(ios, 23)];
- T3m = ri[WS(ios, 19)];
- T3o = ii[WS(ios, 19)];
- T3u = ri[WS(ios, 11)];
- T3v = ii[WS(ios, 11)];
- T3c = ri[WS(ios, 23)];
- T30 = ii[WS(ios, 31)];
- T2W = ri[WS(ios, 31)];
- T33 = ri[WS(ios, 15)];
- T35 = ii[WS(ios, 15)];
- T38 = ri[WS(ios, 7)];
- T39 = ii[WS(ios, 7)];
- T2N = ri[WS(ios, 13)];
- T2r = ri[WS(ios, 25)];
- T2v = ii[WS(ios, 25)];
- T2m = ii[WS(ios, 9)];
- T2l = ri[WS(ios, 9)];
- T2i = ii[WS(ios, 17)];
- T2g = ri[WS(ios, 17)];
- T2z = ri[WS(ios, 5)];
- T2A = ii[WS(ios, 5)];
- T2D = ri[WS(ios, 21)];
- T2F = ii[WS(ios, 21)];
- T2L = ii[WS(ios, 29)];
- T2J = ri[WS(ios, 29)];
- {
- E T2c, T2d, T3i, T3j, T3s, T3r, T4, T7, T5, T8, T6, T9, T14, T1d, Ts;
- E T18, T19, T1c, Te, Td, Tt, Tw, T13, TZ, T10, Tx;
- T2c = ri[WS(ios, 1)];
- T2d = ii[WS(ios, 1)];
- T3i = ri[WS(ios, 3)];
- T3j = ii[WS(ios, 3)];
- T3s = ii[WS(ios, 27)];
- T3r = ri[WS(ios, 27)];
- T2 = W[6];
- Ti = W[7];
- T3 = W[4];
- Tc = W[5];
- T4 = W[2];
- T7 = W[3];
- T5 = W[0];
- T8 = W[1];
- T6 = T4 * T5;
- T9 = T7 * T8;
- T14 = Ti * T5;
- T1d = Tc * T4;
- Ts = T3 * T5;
- T18 = T3 * T4;
- T19 = Tc * T7;
- T1c = T3 * T7;
- Te = T7 * T5;
- Td = T4 * T8;
- Tt = Tc * T8;
- Tw = T3 * T8;
- TF = T2 * T7;
- T13 = T2 * T8;
- TC = Ti * T7;
- TG = Ti * T4;
- TZ = T2 * T5;
- T10 = Ti * T8;
- TB = T2 * T4;
- Tx = Tc * T5;
- Tu = Ts + Tt;
- T1a = T18 - T19;
- T15 = T13 + T14;
- Ty = Tw - Tx;
- T1t = Ts - Tt;
- T1Y = T1c - T1d;
- T1W = T18 + T19;
- T1v = Tw + Tx;
- TH = TF - TG;
- T1y = TZ + T10;
- T11 = TZ - T10;
- TD = TB + TC;
- T1A = T13 - T14;
- T1e = T1c + T1d;
- T3t = FMA(T2, T3r, Ti * T3s);
- T4g = FNMS(T8, T2c, T5 * T2d);
- T4S = FNMS(Ti, T3r, T2 * T3s);
- T3k = FMA(T4, T3i, T7 * T3j);
- T1n = FMA(T2, T3, Ti * Tc);
- T1p = FNMS(Ti, T3, T2 * Tc);
- T2e = FMA(T5, T2c, T8 * T2d);
- T4M = FNMS(T7, T3i, T4 * T3j);
- TM = T6 - T9;
- T1K = T3 * TM;
- T1O = Tc * TM;
- TO = Td + Te;
- T1L = Tc * TO;
- T1N = T3 * TO;
- Ta = T6 + T9;
- Tb = T3 * Ta;
- T2t = Ti * Ta;
- Tk = Tc * Ta;
- T2o = T2 * Ta;
- Tf = Td - Te;
- Tg = Tc * Tf;
- T2s = T2 * Tf;
- Tj = T3 * Tf;
- T2p = Ti * Tf;
- }
- TQ = FMA(TM, TN, TO * TP);
- T3G = FNMS(TO, TN, TM * TP);
- T49 = FMA(T1Y, T1X, T1W * T1Z);
- T20 = FNMS(T1Y, T1Z, T1W * T1X);
- T2n = FMA(T3, T2l, Tc * T2m);
- T4y = FNMS(Tc, T2l, T3 * T2m);
- {
- E T1F, T1H, TA, TJ;
- T1F = TB - TC;
- T1H = TF + TG;
- T1J = FMA(T1F, T1G, T1H * T1I);
- T43 = FNMS(T1H, T1G, T1F * T1I);
- {
- E T2q, T2u, T32, T34;
- T2q = T2o - T2p;
- T2u = T2s + T2t;
- T2w = FMA(T2q, T2r, T2u * T2v);
- T4z = FNMS(T2u, T2r, T2q * T2v);
- T32 = FMA(T2, T1a, Ti * T1e);
- T34 = FNMS(Ti, T1a, T2 * T1e);
- T36 = FNMS(T34, T35, T32 * T33);
- T4Z = FMA(T34, T33, T32 * T35);
- }
- TA = FNMS(Ty, Tz, Tu * Tv);
- TJ = FNMS(TH, TI, TD * TE);
- TK = TA + TJ;
- T8b = TA - TJ;
- {
- E T3Y, T3Z, T3S, T3T;
- T3Y = FNMS(T1v, T1u, T1t * T1w);
- T3Z = FMA(T1A, T1z, T1y * T1B);
- T40 = T3Y - T3Z;
- T6l = T3Y + T3Z;
- T3S = FMA(Tf, T1k, Ta * T1l);
- T3T = FMA(T1p, T1o, T1n * T1q);
- T3U = T3S - T3T;
- T6k = T3S + T3T;
- }
- }
- {
- E T17, T1g, Th, Tl;
- T17 = FMA(T11, T12, T15 * T16);
- T1g = FMA(T1a, T1b, T1e * T1f);
- T1h = T17 + T1g;
- T3L = T17 - T1g;
- {
- E T1x, T1C, T1m, T1r;
- T1x = FMA(T1t, T1u, T1v * T1w);
- T1C = FNMS(T1A, T1B, T1y * T1z);
- T1D = T1x + T1C;
- T3V = T1x - T1C;
- T1m = FNMS(Tf, T1l, Ta * T1k);
- T1r = FNMS(T1p, T1q, T1n * T1o);
- T1s = T1m + T1r;
- T3X = T1m - T1r;
- }
- {
- E T3C, T3D, T3M, T3N;
- T3C = FMA(Ty, Tv, Tu * Tz);
- T3D = FMA(TH, TE, TD * TI);
- T3E = T3C - T3D;
- T7E = T3C + T3D;
- T3M = FNMS(T15, T12, T11 * T16);
- T3N = FNMS(T1e, T1b, T1a * T1f);
- T3O = T3M - T3N;
- T6h = T3M + T3N;
- {
- E T2j, T4h, T2f, T2h;
- T2f = FMA(T2, T1t, Ti * T1v);
- T2h = FNMS(Ti, T1t, T2 * T1v);
- T2j = FNMS(T2h, T2i, T2f * T2g);
- T4h = FMA(T2h, T2g, T2f * T2i);
- T2k = T2e + T2j;
- T6w = T4g + T4h;
- T4i = T4g - T4h;
- T4x = T2e - T2j;
- }
- }
- {
- E T3p, T4N, T3l, T3n;
- T3l = FNMS(Ti, Ty, T2 * Tu);
- T3n = FMA(T2, Ty, Ti * Tu);
- T3p = FMA(T3l, T3m, T3n * T3o);
- T4N = FNMS(T3n, T3m, T3l * T3o);
- T3q = T3k + T3p;
- T6I = T4M + T4N;
- T4O = T4M - T4N;
- T4P = T3k - T3p;
- }
- Th = Tb + Tg;
- Tl = Tj - Tk;
- T3w = FNMS(Tl, T3v, Th * T3u);
- T4T = FMA(Tl, T3u, Th * T3v);
- T4R = T3t - T3w;
- T4U = T4S - T4T;
- Tm = FNMS(Ti, Tl, T2 * Th);
- To = FMA(T2, Tl, Ti * Th);
- {
- E TR, TS, TT, TV;
- TR = Tb - Tg;
- TS = Tj + Tk;
- TT = FMA(T2, TR, Ti * TS);
- TV = FNMS(Ti, TR, T2 * TS);
- TX = FNMS(TV, TW, TT * TU);
- T4I = FNMS(TS, T38, TR * T39);
- T3a = FMA(TR, T38, TS * T39);
- T3H = FMA(TV, TU, TT * TW);
- }
- {
- E T2V, T3b, T2Z, T3d;
- {
- E T2T, T2U, T2X, T2Y;
- T2T = T2 * TM;
- T2U = Ti * TO;
- T2V = T2T - T2U;
- T3b = T2T + T2U;
- T2X = T2 * TO;
- T2Y = Ti * TM;
- T2Z = T2X + T2Y;
- T3d = T2X - T2Y;
- }
- T31 = FMA(T2V, T2W, T2Z * T30);
- T4Y = FNMS(T2Z, T2W, T2V * T30);
- T3f = FNMS(T3d, T3e, T3b * T3c);
- T4J = FMA(T3d, T3c, T3b * T3e);
- }
- {
- E T23, T25, T1Q, T1S;
- {
- E T2C, T2E, T21, T22;
- T2C = FNMS(Ti, T1Y, T2 * T1W);
- T2E = FMA(T2, T1Y, Ti * T1W);
- T2G = FMA(T2C, T2D, T2E * T2F);
- T4s = FNMS(T2E, T2D, T2C * T2F);
- T21 = T1K + T1L;
- T22 = T1N - T1O;
- T23 = FNMS(Ti, T22, T2 * T21);
- T4r = FMA(T22, T2z, T21 * T2A);
- T25 = FMA(T2, T22, Ti * T21);
- T2B = FNMS(T22, T2A, T21 * T2z);
- }
- T4q = T2B - T2G;
- T4t = T4r - T4s;
- T27 = FMA(T23, T24, T25 * T26);
- T4a = FNMS(T25, T24, T23 * T26);
- {
- E T2I, T2K, T1M, T1P;
- T2I = T2o + T2p;
- T2K = T2s - T2t;
- T2M = FNMS(T2K, T2L, T2I * T2J);
- T4m = FMA(T2K, T2J, T2I * T2L);
- T1M = T1K - T1L;
- T1P = T1N + T1O;
- T1Q = FMA(T2, T1M, Ti * T1P);
- T4n = FNMS(T1P, T2N, T1M * T2O);
- T1S = FNMS(Ti, T1M, T2 * T1P);
- T2P = FMA(T1M, T2N, T1P * T2O);
- }
- T4l = T2M - T2P;
- T4o = T4m - T4n;
- T1U = FNMS(T1S, T1T, T1Q * T1R);
- T44 = FMA(T1S, T1R, T1Q * T1T);
- }
- }
- }
- {
- E T1i, T7V, T6i, T7D, T42, T5e, T5A, T60, T6o, T6Y, TL, T6f, T3F, T5t, T7I;
- E T8q, T7W, T8c, T3Q, T8p, T5w, T89, T4d, T61, T5f, T5D, T2a, T6t, T7O, T7C;
- E T7g, T6Z, T4w, T64, T65, T4F, T5i, T5I, T5L, T5j, T2S, T7l, T7y, T6A, T6F;
- E T73, T7i, T72, T4X, T67, T68, T56, T5l, T5P, T5S, T5m, T3z, T7q, T7z, T6L;
- E T6Q, T76, T7n, T75;
- {
- E TY, T6g, T3W, T41;
- TY = TQ + TX;
- T1i = TY + T1h;
- T7V = T1h - TY;
- T6g = T3G + T3H;
- T6i = T6g - T6h;
- T7D = T6g + T6h;
- T3W = T3U + T3V;
- T41 = T3X - T40;
- T42 = FNMS(KP923879532, T41, KP382683432 * T3W);
- T5e = FMA(KP923879532, T3W, KP382683432 * T41);
- }
- {
- E T5y, T5z, T6m, T6n;
- T5y = T3U - T3V;
- T5z = T3X + T40;
- T5A = FNMS(KP382683432, T5z, KP923879532 * T5y);
- T60 = FMA(KP382683432, T5y, KP923879532 * T5z);
- T6m = T6k - T6l;
- T6n = T1s - T1D;
- T6o = T6m - T6n;
- T6Y = T6n + T6m;
- }
- {
- E Tr, T3B, Tq, T7H, T8a, T7F;
- Tq = FMA(Tm, Tn, To * Tp);
- Tr = T1 + Tq;
- T3B = T1 - Tq;
- TL = Tr + TK;
- T6f = Tr - TK;
- T3F = T3B - T3E;
- T5t = T3B + T3E;
- T7F = FNMS(To, Tn, Tm * Tp);
- T7H = T7F + T7G;
- T8a = T7G - T7F;
- T7I = T7E + T7H;
- T8q = T8b + T8a;
- T7W = T7H - T7E;
- T8c = T8a - T8b;
- }
- {
- E T3P, T5v, T3K, T5u, T3I, T3J;
- T3P = T3L + T3O;
- T5v = T3L - T3O;
- T3I = T3G - T3H;
- T3J = TQ - TX;
- T3K = T3I - T3J;
- T5u = T3J + T3I;
- T3Q = KP707106781 * (T3K - T3P);
- T8p = KP707106781 * (T5v - T5u);
- T5w = KP707106781 * (T5u + T5v);
- T89 = KP707106781 * (T3K + T3P);
- }
- {
- E T47, T5B, T4c, T5C;
- {
- E T45, T46, T48, T4b;
- T45 = T43 - T44;
- T46 = T20 - T27;
- T47 = T45 + T46;
- T5B = T45 - T46;
- T48 = T1J - T1U;
- T4b = T49 - T4a;
- T4c = T48 - T4b;
- T5C = T48 + T4b;
- }
- T4d = FMA(KP382683432, T47, KP923879532 * T4c);
- T61 = FNMS(KP382683432, T5B, KP923879532 * T5C);
- T5f = FNMS(KP923879532, T47, KP382683432 * T4c);
- T5D = FMA(KP923879532, T5B, KP382683432 * T5C);
- }
- {
- E T1E, T7e, T29, T6p, T6s, T7f;
- T1E = T1s + T1D;
- T7e = T6k + T6l;
- {
- E T1V, T28, T6q, T6r;
- T1V = T1J + T1U;
- T28 = T20 + T27;
- T29 = T1V + T28;
- T6p = T1V - T28;
- T6q = T43 + T44;
- T6r = T49 + T4a;
- T6s = T6q - T6r;
- T7f = T6q + T6r;
- }
- T2a = T1E + T29;
- T6t = T6p + T6s;
- T7O = T29 - T1E;
- T7C = T7e + T7f;
- T7g = T7e - T7f;
- T6Z = T6p - T6s;
- }
- {
- E T4k, T5J, T4B, T5G, T4v, T5H, T4E, T5K, T4j, T4A;
- T4j = T2n - T2w;
- T4k = T4i + T4j;
- T5J = T4i - T4j;
- T4A = T4y - T4z;
- T4B = T4x - T4A;
- T5G = T4x + T4A;
- {
- E T4p, T4u, T4C, T4D;
- T4p = T4l - T4o;
- T4u = T4q + T4t;
- T4v = KP707106781 * (T4p - T4u);
- T5H = KP707106781 * (T4u + T4p);
- T4C = T4t - T4q;
- T4D = T4l + T4o;
- T4E = KP707106781 * (T4C - T4D);
- T5K = KP707106781 * (T4C + T4D);
- }
- T4w = T4k - T4v;
- T64 = T5G + T5H;
- T65 = T5J + T5K;
- T4F = T4B - T4E;
- T5i = T4k + T4v;
- T5I = T5G - T5H;
- T5L = T5J - T5K;
- T5j = T4B + T4E;
- }
- {
- E T2y, T6B, T6y, T7j, T2R, T6z, T6E, T7k, T2x, T6x;
- T2x = T2n + T2w;
- T2y = T2k + T2x;
- T6B = T2k - T2x;
- T6x = T4y + T4z;
- T6y = T6w - T6x;
- T7j = T6w + T6x;
- {
- E T2H, T2Q, T6C, T6D;
- T2H = T2B + T2G;
- T2Q = T2M + T2P;
- T2R = T2H + T2Q;
- T6z = T2Q - T2H;
- T6C = T4r + T4s;
- T6D = T4m + T4n;
- T6E = T6C - T6D;
- T7k = T6C + T6D;
- }
- T2S = T2y + T2R;
- T7l = T7j - T7k;
- T7y = T7j + T7k;
- T6A = T6y - T6z;
- T6F = T6B - T6E;
- T73 = T6B + T6E;
- T7i = T2y - T2R;
- T72 = T6y + T6z;
- }
- {
- E T4L, T5N, T55, T5O, T4W, T5R, T52, T5Q;
- {
- E T4H, T4K, T53, T54;
- T4H = T31 - T36;
- T4K = T4I - T4J;
- T4L = T4H - T4K;
- T5N = T4H + T4K;
- T53 = T4R - T4U;
- T54 = T4P + T4O;
- T55 = KP707106781 * (T53 - T54);
- T5O = KP707106781 * (T54 + T53);
- }
- {
- E T4Q, T4V, T50, T51;
- T4Q = T4O - T4P;
- T4V = T4R + T4U;
- T4W = KP707106781 * (T4Q - T4V);
- T5R = KP707106781 * (T4Q + T4V);
- T50 = T4Y - T4Z;
- T51 = T3a - T3f;
- T52 = T50 + T51;
- T5Q = T50 - T51;
- }
- T4X = T4L - T4W;
- T67 = T5N + T5O;
- T68 = T5Q + T5R;
- T56 = T52 - T55;
- T5l = T4L + T4W;
- T5P = T5N - T5O;
- T5S = T5Q - T5R;
- T5m = T52 + T55;
- }
- {
- E T3y, T6P, T6K, T7p, T3h, T6H, T6O, T7o, T3x, T6J;
- T3x = T3t + T3w;
- T3y = T3q + T3x;
- T6P = T3x - T3q;
- T6J = T4S + T4T;
- T6K = T6I - T6J;
- T7p = T6I + T6J;
- {
- E T37, T3g, T6M, T6N;
- T37 = T31 + T36;
- T3g = T3a + T3f;
- T3h = T37 + T3g;
- T6H = T37 - T3g;
- T6M = T4Y + T4Z;
- T6N = T4I + T4J;
- T6O = T6M - T6N;
- T7o = T6M + T6N;
- }
- T3z = T3h + T3y;
- T7q = T7o - T7p;
- T7z = T7o + T7p;
- T6L = T6H - T6K;
- T6Q = T6O - T6P;
- T76 = T6O + T6P;
- T7n = T3h - T3y;
- T75 = T6H + T6K;
- }
- {
- E T3A, T7A, T2b, T7x, T1j;
- T3A = T2S + T3z;
- T7A = T7y - T7z;
- T1j = TL + T1i;
- T2b = T1j + T2a;
- T7x = T1j - T2a;
- ri[WS(ios, 16)] = T2b - T3A;
- ri[WS(ios, 8)] = T7x + T7A;
- ri[0] = T2b + T3A;
- ri[WS(ios, 24)] = T7x - T7A;
- }
- {
- E T7B, T7L, T7K, T7M, T7J;
- T7B = T7y + T7z;
- T7L = T3z - T2S;
- T7J = T7D + T7I;
- T7K = T7C + T7J;
- T7M = T7J - T7C;
- ii[0] = T7B + T7K;
- ii[WS(ios, 24)] = T7M - T7L;
- ii[WS(ios, 16)] = T7K - T7B;
- ii[WS(ios, 8)] = T7L + T7M;
- }
- {
- E T7h, T7t, T7Q, T7S, T7s, T7R, T7w, T7N, T7d, T7P;
- T7d = TL - T1i;
- T7h = T7d + T7g;
- T7t = T7d - T7g;
- T7P = T7I - T7D;
- T7Q = T7O + T7P;
- T7S = T7P - T7O;
- {
- E T7m, T7r, T7u, T7v;
- T7m = T7i + T7l;
- T7r = T7n - T7q;
- T7s = KP707106781 * (T7m + T7r);
- T7R = KP707106781 * (T7r - T7m);
- T7u = T7l - T7i;
- T7v = T7n + T7q;
- T7w = KP707106781 * (T7u - T7v);
- T7N = KP707106781 * (T7u + T7v);
- }
- ri[WS(ios, 20)] = T7h - T7s;
- ii[WS(ios, 20)] = T7Q - T7N;
- ri[WS(ios, 4)] = T7h + T7s;
- ii[WS(ios, 4)] = T7N + T7Q;
- ri[WS(ios, 28)] = T7t - T7w;
- ii[WS(ios, 28)] = T7S - T7R;
- ri[WS(ios, 12)] = T7t + T7w;
- ii[WS(ios, 12)] = T7R + T7S;
- }
- {
- E T71, T79, T7Y, T80, T78, T7Z, T7c, T7T;
- {
- E T6X, T70, T7U, T7X;
- T6X = T6f + T6i;
- T70 = KP707106781 * (T6Y + T6Z);
- T71 = T6X + T70;
- T79 = T6X - T70;
- T7U = KP707106781 * (T6o + T6t);
- T7X = T7V + T7W;
- T7Y = T7U + T7X;
- T80 = T7X - T7U;
- }
- {
- E T74, T77, T7a, T7b;
- T74 = FMA(KP382683432, T72, KP923879532 * T73);
- T77 = FNMS(KP382683432, T76, KP923879532 * T75);
- T78 = T74 + T77;
- T7Z = T77 - T74;
- T7a = FNMS(KP382683432, T73, KP923879532 * T72);
- T7b = FMA(KP923879532, T76, KP382683432 * T75);
- T7c = T7a - T7b;
- T7T = T7a + T7b;
- }
- ri[WS(ios, 18)] = T71 - T78;
- ii[WS(ios, 18)] = T7Y - T7T;
- ri[WS(ios, 2)] = T71 + T78;
- ii[WS(ios, 2)] = T7T + T7Y;
- ri[WS(ios, 26)] = T79 - T7c;
- ii[WS(ios, 26)] = T80 - T7Z;
- ri[WS(ios, 10)] = T79 + T7c;
- ii[WS(ios, 10)] = T7Z + T80;
- }
- {
- E T4f, T59, T8y, T8A, T58, T8z, T5c, T8v;
- {
- E T3R, T4e, T8w, T8x;
- T3R = T3F - T3Q;
- T4e = T42 - T4d;
- T4f = T3R + T4e;
- T59 = T3R - T4e;
- T8w = T5f - T5e;
- T8x = T8q - T8p;
- T8y = T8w + T8x;
- T8A = T8x - T8w;
- }
- {
- E T4G, T57, T5a, T5b;
- T4G = FMA(KP980785280, T4w, KP195090322 * T4F);
- T57 = FNMS(KP980785280, T56, KP195090322 * T4X);
- T58 = T4G + T57;
- T8z = T57 - T4G;
- T5a = FNMS(KP980785280, T4F, KP195090322 * T4w);
- T5b = FMA(KP195090322, T56, KP980785280 * T4X);
- T5c = T5a - T5b;
- T8v = T5a + T5b;
- }
- ri[WS(ios, 23)] = T4f - T58;
- ii[WS(ios, 23)] = T8y - T8v;
- ri[WS(ios, 7)] = T4f + T58;
- ii[WS(ios, 7)] = T8v + T8y;
- ri[WS(ios, 31)] = T59 - T5c;
- ii[WS(ios, 31)] = T8A - T8z;
- ri[WS(ios, 15)] = T59 + T5c;
- ii[WS(ios, 15)] = T8z + T8A;
- }
- {
- E T5F, T5V, T8k, T8m, T5U, T8l, T5Y, T8h;
- {
- E T5x, T5E, T8i, T8j;
- T5x = T5t - T5w;
- T5E = T5A - T5D;
- T5F = T5x + T5E;
- T5V = T5x - T5E;
- T8i = T61 - T60;
- T8j = T8c - T89;
- T8k = T8i + T8j;
- T8m = T8j - T8i;
- }
- {
- E T5M, T5T, T5W, T5X;
- T5M = FMA(KP555570233, T5I, KP831469612 * T5L);
- T5T = FNMS(KP831469612, T5S, KP555570233 * T5P);
- T5U = T5M + T5T;
- T8l = T5T - T5M;
- T5W = FNMS(KP831469612, T5I, KP555570233 * T5L);
- T5X = FMA(KP831469612, T5P, KP555570233 * T5S);
- T5Y = T5W - T5X;
- T8h = T5W + T5X;
- }
- ri[WS(ios, 21)] = T5F - T5U;
- ii[WS(ios, 21)] = T8k - T8h;
- ri[WS(ios, 5)] = T5F + T5U;
- ii[WS(ios, 5)] = T8h + T8k;
- ri[WS(ios, 29)] = T5V - T5Y;
- ii[WS(ios, 29)] = T8m - T8l;
- ri[WS(ios, 13)] = T5V + T5Y;
- ii[WS(ios, 13)] = T8l + T8m;
- }
- {
- E T6v, T6T, T84, T86, T6S, T85, T6W, T81;
- {
- E T6j, T6u, T82, T83;
- T6j = T6f - T6i;
- T6u = KP707106781 * (T6o - T6t);
- T6v = T6j + T6u;
- T6T = T6j - T6u;
- T82 = KP707106781 * (T6Z - T6Y);
- T83 = T7W - T7V;
- T84 = T82 + T83;
- T86 = T83 - T82;
- }
- {
- E T6G, T6R, T6U, T6V;
- T6G = FMA(KP923879532, T6A, KP382683432 * T6F);
- T6R = FNMS(KP923879532, T6Q, KP382683432 * T6L);
- T6S = T6G + T6R;
- T85 = T6R - T6G;
- T6U = FNMS(KP923879532, T6F, KP382683432 * T6A);
- T6V = FMA(KP382683432, T6Q, KP923879532 * T6L);
- T6W = T6U - T6V;
- T81 = T6U + T6V;
- }
- ri[WS(ios, 22)] = T6v - T6S;
- ii[WS(ios, 22)] = T84 - T81;
- ri[WS(ios, 6)] = T6v + T6S;
- ii[WS(ios, 6)] = T81 + T84;
- ri[WS(ios, 30)] = T6T - T6W;
- ii[WS(ios, 30)] = T86 - T85;
- ri[WS(ios, 14)] = T6T + T6W;
- ii[WS(ios, 14)] = T85 + T86;
- }
- {
- E T5h, T5p, T8s, T8u, T5o, T8t, T5s, T8n;
- {
- E T5d, T5g, T8o, T8r;
- T5d = T3F + T3Q;
- T5g = T5e + T5f;
- T5h = T5d + T5g;
- T5p = T5d - T5g;
- T8o = T42 + T4d;
- T8r = T8p + T8q;
- T8s = T8o + T8r;
- T8u = T8r - T8o;
- }
- {
- E T5k, T5n, T5q, T5r;
- T5k = FMA(KP555570233, T5i, KP831469612 * T5j);
- T5n = FNMS(KP555570233, T5m, KP831469612 * T5l);
- T5o = T5k + T5n;
- T8t = T5n - T5k;
- T5q = FNMS(KP555570233, T5j, KP831469612 * T5i);
- T5r = FMA(KP831469612, T5m, KP555570233 * T5l);
- T5s = T5q - T5r;
- T8n = T5q + T5r;
- }
- ri[WS(ios, 19)] = T5h - T5o;
- ii[WS(ios, 19)] = T8s - T8n;
- ri[WS(ios, 3)] = T5h + T5o;
- ii[WS(ios, 3)] = T8n + T8s;
- ri[WS(ios, 27)] = T5p - T5s;
- ii[WS(ios, 27)] = T8u - T8t;
- ri[WS(ios, 11)] = T5p + T5s;
- ii[WS(ios, 11)] = T8t + T8u;
- }
- {
- E T63, T6b, T8e, T8g, T6a, T8f, T6e, T87;
- {
- E T5Z, T62, T88, T8d;
- T5Z = T5t + T5w;
- T62 = T60 + T61;
- T63 = T5Z + T62;
- T6b = T5Z - T62;
- T88 = T5A + T5D;
- T8d = T89 + T8c;
- T8e = T88 + T8d;
- T8g = T8d - T88;
- }
- {
- E T66, T69, T6c, T6d;
- T66 = FMA(KP980785280, T64, KP195090322 * T65);
- T69 = FNMS(KP195090322, T68, KP980785280 * T67);
- T6a = T66 + T69;
- T8f = T69 - T66;
- T6c = FNMS(KP195090322, T64, KP980785280 * T65);
- T6d = FMA(KP195090322, T67, KP980785280 * T68);
- T6e = T6c - T6d;
- T87 = T6c + T6d;
- }
- ri[WS(ios, 17)] = T63 - T6a;
- ii[WS(ios, 17)] = T8e - T87;
- ri[WS(ios, 1)] = T63 + T6a;
- ii[WS(ios, 1)] = T87 + T8e;
- ri[WS(ios, 25)] = T6b - T6e;
- ii[WS(ios, 25)] = T8g - T8f;
- ri[WS(ios, 9)] = T6b + T6e;
- ii[WS(ios, 9)] = T8f + T8g;
- }
- }
- }
- return W;
-}
-
-static const tw_instr twinstr[] = {
- {TW_COS, 0, 1},
- {TW_SIN, 0, 1},
- {TW_COS, 0, 3},
- {TW_SIN, 0, 3},
- {TW_COS, 0, 9},
- {TW_SIN, 0, 9},
- {TW_COS, 0, 27},
- {TW_SIN, 0, 27},
- {TW_NEXT, 1, 0}
-};
-
-static const ct_desc desc = { 32, "t2_32", twinstr, {376, 168, 112, 0}, &GENUS, 0, 0, 0 };
-
-void X(codelet_t2_32) (planner *p) {
- X(kdft_dit_register) (p, t2_32, &desc);
-}