summaryrefslogtreecommitdiff
path: root/src/fftw3/dft/codelets/standard/t2_64.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/fftw3/dft/codelets/standard/t2_64.c')
-rw-r--r--src/fftw3/dft/codelets/standard/t2_64.c1906
1 files changed, 1906 insertions, 0 deletions
diff --git a/src/fftw3/dft/codelets/standard/t2_64.c b/src/fftw3/dft/codelets/standard/t2_64.c
new file mode 100644
index 0000000..6fc7efd
--- /dev/null
+++ b/src/fftw3/dft/codelets/standard/t2_64.c
@@ -0,0 +1,1906 @@
+/*
+ * Copyright (c) 2003 Matteo Frigo
+ * Copyright (c) 2003 Massachusetts Institute of Technology
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
+ *
+ */
+
+/* This file was automatically generated --- DO NOT EDIT */
+/* Generated on Sat Jul 5 21:30:32 EDT 2003 */
+
+#include "codelet-dft.h"
+
+/* Generated by: /homee/stevenj/cvs/fftw3.0.1/genfft/gen_twiddle -compact -variables 4 -twiddle-log3 -n 64 -name t2_64 -include t.h */
+
+/*
+ * This function contains 1154 FP additions, 660 FP multiplications,
+ * (or, 880 additions, 386 multiplications, 274 fused multiply/add),
+ * 382 stack variables, and 256 memory accesses
+ */
+/*
+ * Generator Id's :
+ * $Id: t2_64.c,v 1.1 2008/10/17 06:11:09 scuri Exp $
+ * $Id: t2_64.c,v 1.1 2008/10/17 06:11:09 scuri Exp $
+ * $Id: t2_64.c,v 1.1 2008/10/17 06:11:09 scuri Exp $
+ */
+
+#include "t.h"
+
+static const R *t2_64(R *ri, R *ii, const R *W, stride ios, int m, int dist)
+{
+ DK(KP290284677, +0.290284677254462367636192375817395274691476278);
+ DK(KP956940335, +0.956940335732208864935797886980269969482849206);
+ DK(KP881921264, +0.881921264348355029712756863660388349508442621);
+ DK(KP471396736, +0.471396736825997648556387625905254377657460319);
+ DK(KP098017140, +0.098017140329560601994195563888641845861136673);
+ DK(KP995184726, +0.995184726672196886244836953109479921575474869);
+ DK(KP773010453, +0.773010453362736960810906609758469800971041293);
+ DK(KP634393284, +0.634393284163645498215171613225493370675687095);
+ DK(KP555570233, +0.555570233019602224742830813948532874374937191);
+ DK(KP831469612, +0.831469612302545237078788377617905756738560812);
+ DK(KP980785280, +0.980785280403230449126182236134239036973933731);
+ DK(KP195090322, +0.195090322016128267848284868477022240927691618);
+ DK(KP707106781, +0.707106781186547524400844362104849039284835938);
+ DK(KP923879532, +0.923879532511286756128183189396788286822416626);
+ DK(KP382683432, +0.382683432365089771728459984030398866761344562);
+ int i;
+ for (i = m; i > 0; i = i - 1, ri = ri + dist, ii = ii + dist, W = W + 10) {
+ E T1, Ti1, Tp, Tt, TH, TL, T6a, T6c, T4J, T4H, T1g, T91, T7W, T7m, T2O;
+ E T4j, T7P, T4P, T8y, T2w, T8t, T2Z, T8e, T48, T1z, T7s, T1I, T7t, T8p, Ten;
+ E T1Y, T7D, T2t, T7O, T7L, Te6, T3N, T8E, T7A, Te0, T4C, TeA, T8S, T9v, T65;
+ E Tfi, T9J, Taq, T6K, Tf6, Ta2, Ta5, T73, Tfc, Tad, Tag, T3z, T83, T3u, T82;
+ E T81, T84, T15, T9K, T68, T7j, T43, T9w, T4F, T8G, T5l, TeL, T9k, T9n, T6o;
+ E Tf2, T9Q, T9R, T6z, Tf3, T9T, T9W, To, Ts, T4o, T8u, T4U, T92, T5a, TeT;
+ E T8V, T8Y, T5G, TeG, T97, T9e, T27, T7X, T2T, T7E, T7b, Tai, T6T, Ta3, Tf7;
+ E Ta8, T7Q, T2H, T2c, T76, Tah, T7F, T4d, T8z, TG, TK, T69, T6b, T3b, T87;
+ E T5u, T9l, TeM, T9q, T88, T89, T3o, T86, T5P, T9f, TeH, T9a, T34, T8f, T1r;
+ E T7n, T3S, T8F, T4G, T4I;
+ T1 = ri[0];
+ Ti1 = ii[0];
+ Tp = ri[WS(ios, 32)];
+ Tt = ii[WS(ios, 32)];
+ TH = ri[WS(ios, 16)];
+ TL = ii[WS(ios, 16)];
+ T6a = ri[WS(ios, 47)];
+ T6c = ii[WS(ios, 47)];
+ T4J = ii[WS(ios, 49)];
+ T4H = ri[WS(ios, 49)];
+ {
+ E T12, T14, T1b, T1f, T1q, T1m, T1w, T1y, T1D, T1H, T1S, T1M, T1N, T1W, T2M;
+ E T2g, T2b, T29, T26, T22, T2i, T2E, T2G, T2v, T2u, T2r, T2n, T2N, T3a, T38;
+ E T3l, T3n, T3r, T3t, T33, T31, T2Y, T2W, T4g, T2S, T2Q, T3w, T3y, T3E, T3G;
+ E T3P, T3J, T3L, T3R, T4a, T4c, T47, T46, T42, T40, T4i, T6P, T6R, T6M, T6L;
+ E T6I, T6G, T6W, T6Y, T74, T75, T5I, T78, T7a, T6x, T6v, T6s, T6q, T6h, T6m;
+ E T6k, T6g, T5N, T5L, T5Z, T63, T66, T67, T5H, T54, T4D, T4A, T4y, T4n, T4l;
+ E T4E, T4X, T4Z, T4T, T4R, T4O, T4N, T58, T5s, T5q, T5x, T5z, T5C, T5E, T5n;
+ E T5m, T5j, T5h, T5d, T5e, Ta, Ty, Tf, Tw, T2, Tj, T3, Tc, T1E, T1B;
+ E T1F, T1A, T1R, T3x, T2m, T3K, T61, T1V, T60, T3I, T51, T52, T2V, T56, T5X;
+ E T3v, T55, T2X, T2q, T5W, T4w, T6E, Ta0, T8Q, Tac, T72, Tb, Tg, Th, T3e;
+ E T3f, T3h, T1a, T2x, T2B, TU, TV, TY, T1e, T2y, T2A, TC, TD, T1u, Tk;
+ E Tl, Tm, T39, T3U, T3W, T37, T3T, T3X, TQ, TR, TZ, T3c, T3d, T3i, Tx;
+ E Tz, T1t, TN, TX, T2f, T5V, Tao, T2h, T3D, T4f, T4h, T3F, T3q, T3s;
+ T12 = ri[WS(ios, 48)];
+ T14 = ii[WS(ios, 48)];
+ T1b = ri[WS(ios, 8)];
+ T1f = ii[WS(ios, 8)];
+ T1q = ii[WS(ios, 40)];
+ T1m = ri[WS(ios, 40)];
+ T1w = ri[WS(ios, 56)];
+ T1y = ii[WS(ios, 56)];
+ T1D = ri[WS(ios, 24)];
+ T1H = ii[WS(ios, 24)];
+ T1S = ri[WS(ios, 36)];
+ T1M = ri[WS(ios, 4)];
+ T1N = ii[WS(ios, 4)];
+ T1W = ii[WS(ios, 36)];
+ T2M = ri[WS(ios, 2)];
+ T2g = ri[WS(ios, 60)];
+ T2b = ii[WS(ios, 52)];
+ T29 = ri[WS(ios, 52)];
+ T26 = ii[WS(ios, 20)];
+ T22 = ri[WS(ios, 20)];
+ T2i = ii[WS(ios, 60)];
+ T2E = ri[WS(ios, 44)];
+ T2G = ii[WS(ios, 44)];
+ T2v = ii[WS(ios, 12)];
+ T2u = ri[WS(ios, 12)];
+ T2r = ii[WS(ios, 28)];
+ T2n = ri[WS(ios, 28)];
+ T2N = ii[WS(ios, 2)];
+ T3a = ii[WS(ios, 10)];
+ T38 = ri[WS(ios, 10)];
+ T3l = ri[WS(ios, 42)];
+ T3n = ii[WS(ios, 42)];
+ T3r = ri[WS(ios, 58)];
+ T3t = ii[WS(ios, 58)];
+ T33 = ii[WS(ios, 50)];
+ T31 = ri[WS(ios, 50)];
+ T2Y = ii[WS(ios, 18)];
+ T2W = ri[WS(ios, 18)];
+ T4g = ri[WS(ios, 54)];
+ T2S = ii[WS(ios, 34)];
+ T2Q = ri[WS(ios, 34)];
+ T3w = ri[WS(ios, 26)];
+ T3y = ii[WS(ios, 26)];
+ T3E = ri[WS(ios, 62)];
+ T3G = ii[WS(ios, 62)];
+ T3P = ri[WS(ios, 14)];
+ T3J = ri[WS(ios, 30)];
+ T3L = ii[WS(ios, 30)];
+ T3R = ii[WS(ios, 14)];
+ T4a = ri[WS(ios, 38)];
+ T4c = ii[WS(ios, 38)];
+ T47 = ii[WS(ios, 6)];
+ T46 = ri[WS(ios, 6)];
+ T42 = ii[WS(ios, 46)];
+ T40 = ri[WS(ios, 46)];
+ T4i = ii[WS(ios, 54)];
+ T6P = ri[WS(ios, 51)];
+ T6R = ii[WS(ios, 51)];
+ T6M = ii[WS(ios, 19)];
+ T6L = ri[WS(ios, 19)];
+ T6I = ii[WS(ios, 35)];
+ T6G = ri[WS(ios, 35)];
+ T6W = ri[WS(ios, 59)];
+ T6Y = ii[WS(ios, 59)];
+ T74 = ri[WS(ios, 11)];
+ T75 = ii[WS(ios, 11)];
+ T5I = ii[WS(ios, 13)];
+ T78 = ri[WS(ios, 43)];
+ T7a = ii[WS(ios, 43)];
+ T6x = ii[WS(ios, 23)];
+ T6v = ri[WS(ios, 23)];
+ T6s = ii[WS(ios, 55)];
+ T6q = ri[WS(ios, 55)];
+ T6h = ii[WS(ios, 7)];
+ T6m = ii[WS(ios, 39)];
+ T6k = ri[WS(ios, 39)];
+ T6g = ri[WS(ios, 7)];
+ T5N = ii[WS(ios, 45)];
+ T5L = ri[WS(ios, 45)];
+ T5Z = ri[WS(ios, 31)];
+ T63 = ii[WS(ios, 31)];
+ T66 = ri[WS(ios, 15)];
+ T67 = ii[WS(ios, 15)];
+ T5H = ri[WS(ios, 13)];
+ T54 = ri[WS(ios, 25)];
+ T4D = ri[WS(ios, 17)];
+ T4A = ii[WS(ios, 33)];
+ T4y = ri[WS(ios, 33)];
+ T4n = ii[WS(ios, 22)];
+ T4l = ri[WS(ios, 22)];
+ T4E = ii[WS(ios, 17)];
+ T4X = ri[WS(ios, 57)];
+ T4Z = ii[WS(ios, 57)];
+ T4T = ii[WS(ios, 41)];
+ T4R = ri[WS(ios, 41)];
+ T4O = ii[WS(ios, 9)];
+ T4N = ri[WS(ios, 9)];
+ T58 = ii[WS(ios, 25)];
+ T5s = ii[WS(ios, 53)];
+ T5q = ri[WS(ios, 53)];
+ T5x = ri[WS(ios, 61)];
+ T5z = ii[WS(ios, 61)];
+ T5C = ri[WS(ios, 29)];
+ T5E = ii[WS(ios, 29)];
+ T5n = ii[WS(ios, 21)];
+ T5m = ri[WS(ios, 21)];
+ T5j = ii[WS(ios, 37)];
+ T5h = ri[WS(ios, 37)];
+ T5d = ri[WS(ios, 5)];
+ T5e = ii[WS(ios, 5)];
+ {
+ E T4u, T4v, T5T, T5U, T6C, T6D, T70, T71, T4, T7, T5, T8, TO, TP, T1U;
+ E T2p, T18, T2k, T2l, T2o, TT, TS, T19, T1c, T1T, T1P, T1Q, T1d;
+ T4u = ri[WS(ios, 1)];
+ T4v = ii[WS(ios, 1)];
+ T5T = ri[WS(ios, 63)];
+ T5U = ii[WS(ios, 63)];
+ T6C = ri[WS(ios, 3)];
+ T6D = ii[WS(ios, 3)];
+ T70 = ri[WS(ios, 27)];
+ T71 = ii[WS(ios, 27)];
+ {
+ E T6, Te, T9, Td;
+ T4 = W[2];
+ T7 = W[3];
+ T5 = W[0];
+ T8 = W[1];
+ T6 = T4 * T5;
+ Te = T7 * T5;
+ T9 = T7 * T8;
+ Td = T4 * T8;
+ Ta = T6 - T9;
+ Ty = Td - Te;
+ Tf = Td + Te;
+ Tw = T6 + T9;
+ T2 = W[6];
+ Tj = W[7];
+ T3 = W[4];
+ Tc = W[5];
+ TO = T3 * T4;
+ TP = Tc * T7;
+ T1U = Tj * T3;
+ T2p = Tj * T5;
+ T18 = T3 * T5;
+ T2k = T2 * T5;
+ T2l = Tj * T8;
+ T2o = T2 * T8;
+ TT = Tc * T4;
+ TS = T3 * T7;
+ T19 = Tc * T8;
+ T1c = T3 * T8;
+ T1E = T2 * T7;
+ T1T = T2 * Tc;
+ T1B = Tj * T7;
+ T1F = Tj * T4;
+ T1P = T2 * T3;
+ T1Q = Tj * Tc;
+ T1A = T2 * T4;
+ T1d = Tc * T5;
+ }
+ T1R = T1P - T1Q;
+ T3x = T2o - T2p;
+ T2m = T2k - T2l;
+ T3K = T1E + T1F;
+ T61 = Tj * Ta;
+ T1V = T1T + T1U;
+ T60 = T2 * Tf;
+ T3I = T1A - T1B;
+ T51 = T2 * Tw;
+ T52 = Tj * Ty;
+ T2V = T1P + T1Q;
+ T56 = Tj * Tw;
+ T5X = Tj * Tf;
+ T3v = T2k + T2l;
+ T55 = T2 * Ty;
+ T2X = T1T - T1U;
+ T2q = T2o + T2p;
+ T5W = T2 * Ta;
+ T4w = FMA(T5, T4u, T8 * T4v);
+ T6E = FMA(T4, T6C, T7 * T6D);
+ Ta0 = FNMS(T7, T6C, T4 * T6D);
+ T8Q = FNMS(T8, T4u, T5 * T4v);
+ Tac = FNMS(Tj, T70, T2 * T71);
+ T72 = FMA(T2, T70, Tj * T71);
+ Tb = T3 * Ta;
+ Tg = Tc * Tf;
+ Th = Tb + Tg;
+ T3e = TS - TT;
+ T3f = Tj * T3e;
+ T3h = T2 * T3e;
+ T1a = T18 + T19;
+ T2x = T2 * T1a;
+ T2B = Tj * T1a;
+ TU = TS + TT;
+ TV = Tj * TU;
+ TY = T2 * TU;
+ T1e = T1c - T1d;
+ T2y = Tj * T1e;
+ T2A = T2 * T1e;
+ TC = T3 * Ty;
+ TD = Tc * Tw;
+ T1u = TC + TD;
+ Tk = T3 * Tf;
+ Tl = Tc * Ta;
+ Tm = Tk - Tl;
+ T39 = T1c + T1d;
+ T3U = Tj * T39;
+ T3W = T2 * T39;
+ T37 = T18 - T19;
+ T3T = T2 * T37;
+ T3X = Tj * T37;
+ TQ = TO - TP;
+ TR = T2 * TQ;
+ TZ = Tj * TQ;
+ T3c = TO + TP;
+ T3d = T2 * T3c;
+ T3i = Tj * T3c;
+ Tx = T3 * Tw;
+ Tz = Tc * Ty;
+ T1t = Tx - Tz;
+ TN = W[8];
+ TX = W[9];
+ T2f = FMA(TN, T4, TX * T7);
+ T5V = FMA(TN, T5T, TX * T5U);
+ Tao = FNMS(TX, T5T, TN * T5U);
+ T2h = FNMS(TX, T4, TN * T7);
+ T3D = FMA(TN, T5, TX * T8);
+ T4f = FMA(TN, T3, TX * Tc);
+ T4h = FNMS(TX, T3, TN * Tc);
+ T3F = FNMS(TX, T5, TN * T8);
+ }
+ T1g = FNMS(T1e, T1f, T1a * T1b);
+ T91 = FNMS(Tc, T4N, T3 * T4O);
+ T7W = FMA(Ty, T2M, Tw * T2N);
+ T7m = FMA(T1e, T1b, T1a * T1f);
+ T2O = FNMS(Ty, T2N, Tw * T2M);
+ T4j = FNMS(T4h, T4i, T4f * T4g);
+ T7P = FNMS(TU, T2u, TQ * T2v);
+ T4P = FMA(T3, T4N, Tc * T4O);
+ T8y = FMA(T3e, T46, T3c * T47);
+ T2w = FMA(TQ, T2u, TU * T2v);
+ {
+ E T1v, T1x, T1O, T1X;
+ T8t = FMA(T4h, T4g, T4f * T4i);
+ T2Z = FNMS(T2X, T2Y, T2V * T2W);
+ T8e = FMA(T2X, T2W, T2V * T2Y);
+ T48 = FNMS(T3e, T47, T3c * T46);
+ T1v = FMA(TN, T1t, TX * T1u);
+ T1x = FNMS(TX, T1t, TN * T1u);
+ T1z = FNMS(T1x, T1y, T1v * T1w);
+ T7s = FMA(T1x, T1w, T1v * T1y);
+ {
+ E T1C, T1G, T8n, T8o;
+ T1C = T1A + T1B;
+ T1G = T1E - T1F;
+ T1I = FNMS(T1G, T1H, T1C * T1D);
+ T7t = FMA(T1G, T1D, T1C * T1H);
+ T8n = FMA(T3F, T3E, T3D * T3G);
+ T8o = FNMS(T3K, T3J, T3I * T3L);
+ T8p = T8n - T8o;
+ Ten = T8n + T8o;
+ }
+ T1O = FMA(Ta, T1M, Tf * T1N);
+ T1X = FMA(T1R, T1S, T1V * T1W);
+ T1Y = T1O + T1X;
+ T7D = T1O - T1X;
+ {
+ E T2j, T2s, T7J, T7K;
+ T2j = FNMS(T2h, T2i, T2f * T2g);
+ T2s = FMA(T2m, T2n, T2q * T2r);
+ T2t = T2j + T2s;
+ T7O = T2j - T2s;
+ T7J = FMA(T2h, T2g, T2f * T2i);
+ T7K = FNMS(T2q, T2n, T2m * T2r);
+ T7L = T7J - T7K;
+ Te6 = T7J + T7K;
+ }
+ }
+ {
+ E T3H, T3M, T7y, T7z;
+ T3H = FNMS(T3F, T3G, T3D * T3E);
+ T3M = FMA(T3I, T3J, T3K * T3L);
+ T3N = T3H + T3M;
+ T8E = T3H - T3M;
+ T7y = FNMS(Tf, T1M, Ta * T1N);
+ T7z = FNMS(T1V, T1S, T1R * T1W);
+ T7A = T7y - T7z;
+ Te0 = T7y + T7z;
+ }
+ {
+ E T4B, T8R, T4x, T4z;
+ T4x = T3d + T3f;
+ T4z = T3h - T3i;
+ T4B = FNMS(T4z, T4A, T4x * T4y);
+ T8R = FMA(T4z, T4y, T4x * T4A);
+ T4C = T4w + T4B;
+ TeA = T8Q + T8R;
+ T8S = T8Q - T8R;
+ T9v = T4w - T4B;
+ }
+ {
+ E T64, Tap, T5Y, T62;
+ T5Y = T5W - T5X;
+ T62 = T60 + T61;
+ T64 = FMA(T5Y, T5Z, T62 * T63);
+ Tap = FNMS(T62, T5Z, T5Y * T63);
+ T65 = T5V + T64;
+ Tfi = Tao + Tap;
+ T9J = T5V - T64;
+ Taq = Tao - Tap;
+ }
+ {
+ E T6J, Ta1, T6F, T6H;
+ T6F = T2x + T2y;
+ T6H = T2A - T2B;
+ T6J = FNMS(T6H, T6I, T6F * T6G);
+ Ta1 = FMA(T6H, T6G, T6F * T6I);
+ T6K = T6E + T6J;
+ Tf6 = Ta0 + Ta1;
+ Ta2 = Ta0 - Ta1;
+ Ta5 = T6E - T6J;
+ }
+ {
+ E T6Z, Tab, T6V, T6X;
+ T6V = FMA(TN, Ta, TX * Tf);
+ T6X = FNMS(TX, Ta, TN * Tf);
+ T6Z = FNMS(T6X, T6Y, T6V * T6W);
+ Tab = FMA(T6X, T6W, T6V * T6Y);
+ T73 = T6Z + T72;
+ Tfc = Tab + Tac;
+ Tad = Tab - Tac;
+ Tag = T6Z - T72;
+ }
+ T3z = FNMS(T3x, T3y, T3v * T3w);
+ T83 = FMA(T3x, T3w, T3v * T3y);
+ T3q = FNMS(TX, Tm, TN * Th);
+ T3s = FMA(TN, Tm, TX * Th);
+ T3u = FMA(T3q, T3r, T3s * T3t);
+ T82 = FNMS(T3s, T3r, T3q * T3t);
+ T81 = T3u - T3z;
+ T84 = T82 - T83;
+ {
+ E TW, T10, T11, T13;
+ TW = TR + TV;
+ T10 = TY - TZ;
+ T11 = FNMS(TX, T10, TN * TW);
+ T13 = FMA(TN, T10, TX * TW);
+ T15 = FMA(T11, T12, T13 * T14);
+ T9K = FMA(T10, T66, TW * T67);
+ T68 = FNMS(T10, T67, TW * T66);
+ T7j = FNMS(T13, T12, T11 * T14);
+ }
+ {
+ E T3V, T3Y, T3Z, T41;
+ T3V = T3T + T3U;
+ T3Y = T3W - T3X;
+ T3Z = FNMS(TX, T3Y, TN * T3V);
+ T41 = FMA(TN, T3Y, TX * T3V);
+ T43 = FMA(T3Z, T40, T41 * T42);
+ T9w = FMA(T3Y, T4D, T3V * T4E);
+ T4F = FNMS(T3Y, T4E, T3V * T4D);
+ T8G = FNMS(T41, T40, T3Z * T42);
+ }
+ {
+ E T5f, T9i, T5k, T9j, T5g, T5i;
+ T5f = FNMS(Tm, T5e, Th * T5d);
+ T9i = FMA(Tm, T5d, Th * T5e);
+ T5g = T3T - T3U;
+ T5i = T3W + T3X;
+ T5k = FMA(T5g, T5h, T5i * T5j);
+ T9j = FNMS(T5i, T5h, T5g * T5j);
+ T5l = T5f + T5k;
+ TeL = T9i + T9j;
+ T9k = T9i - T9j;
+ T9n = T5f - T5k;
+ }
+ {
+ E T6i, T9O, T6n, T9P, T6j, T6l;
+ T6i = FMA(T1t, T6g, T1u * T6h);
+ T9O = FNMS(T1u, T6g, T1t * T6h);
+ T6j = TR - TV;
+ T6l = TY + TZ;
+ T6n = FMA(T6j, T6k, T6l * T6m);
+ T9P = FNMS(T6l, T6k, T6j * T6m);
+ T6o = T6i + T6n;
+ Tf2 = T9O + T9P;
+ T9Q = T9O - T9P;
+ T9R = T6i - T6n;
+ }
+ {
+ E T6t, T9U, T6y, T9V;
+ {
+ E T6p, T6r, T6u, T6w;
+ T6p = FNMS(TX, T1e, TN * T1a);
+ T6r = FMA(TN, T1e, TX * T1a);
+ T6t = FMA(T6p, T6q, T6r * T6s);
+ T9U = FNMS(T6r, T6q, T6p * T6s);
+ T6u = T5W + T5X;
+ T6w = T60 - T61;
+ T6y = FNMS(T6w, T6x, T6u * T6v);
+ T9V = FMA(T6w, T6v, T6u * T6x);
+ }
+ T6z = T6t + T6y;
+ Tf3 = T9U + T9V;
+ T9T = T6t - T6y;
+ T9W = T9U - T9V;
+ }
+ {
+ E Ti, Tn, T4k, Tq, Tr, T4m, T4Q, T4S;
+ Ti = T2 * Th;
+ Tn = Tj * Tm;
+ T4k = Ti - Tn;
+ Tq = T2 * Tm;
+ Tr = Tj * Th;
+ T4m = Tq + Tr;
+ To = Ti + Tn;
+ Ts = Tq - Tr;
+ T4o = FMA(T4k, T4l, T4m * T4n);
+ T8u = FNMS(T4m, T4l, T4k * T4n);
+ T4Q = FMA(TN, T4k, TX * T4m);
+ T4S = FNMS(TX, T4k, TN * T4m);
+ T4U = FNMS(T4S, T4T, T4Q * T4R);
+ T92 = FMA(T4S, T4R, T4Q * T4T);
+ }
+ {
+ E T50, T8W, T59, T8X;
+ {
+ E T4W, T4Y, T53, T57;
+ T4W = FNMS(TX, T3e, TN * T3c);
+ T4Y = FMA(TN, T3e, TX * T3c);
+ T50 = FMA(T4W, T4X, T4Y * T4Z);
+ T8W = FNMS(T4Y, T4X, T4W * T4Z);
+ T53 = T51 - T52;
+ T57 = T55 + T56;
+ T59 = FMA(T53, T54, T57 * T58);
+ T8X = FNMS(T57, T54, T53 * T58);
+ }
+ T5a = T50 + T59;
+ TeT = T8W + T8X;
+ T8V = T50 - T59;
+ T8Y = T8W - T8X;
+ }
+ {
+ E T5A, T9c, T5F, T9d;
+ {
+ E T5w, T5y, T5B, T5D;
+ T5w = FNMS(TX, Ty, TN * Tw);
+ T5y = FMA(TN, Ty, TX * Tw);
+ T5A = FMA(T5w, T5x, T5y * T5z);
+ T9c = FNMS(T5y, T5x, T5w * T5z);
+ T5B = T51 + T52;
+ T5D = T55 - T56;
+ T5F = FNMS(T5D, T5E, T5B * T5C);
+ T9d = FMA(T5D, T5C, T5B * T5E);
+ }
+ T5G = T5A + T5F;
+ TeG = T9c + T9d;
+ T97 = T5A - T5F;
+ T9e = T9c - T9d;
+ }
+ {
+ E T21, T2P, T25, T2R, T77, T79;
+ {
+ E T1Z, T20, T23, T24;
+ T1Z = T2 * T1t;
+ T20 = Tj * T1u;
+ T21 = T1Z + T20;
+ T2P = T1Z - T20;
+ T23 = T2 * T1u;
+ T24 = Tj * T1t;
+ T25 = T23 - T24;
+ T2R = T23 + T24;
+ }
+ T27 = FNMS(T25, T26, T21 * T22);
+ T7X = FNMS(T2R, T2Q, T2P * T2S);
+ T2T = FMA(T2P, T2Q, T2R * T2S);
+ T7E = FMA(T25, T22, T21 * T26);
+ T77 = FNMS(TX, T25, TN * T21);
+ T79 = FMA(TN, T25, TX * T21);
+ T7b = FMA(T77, T78, T79 * T7a);
+ Tai = FNMS(T79, T78, T77 * T7a);
+ }
+ {
+ E T6S, Ta7, T2D, Ta6, T2F, T6N;
+ {
+ E T6O, T6Q, T2z, T2C;
+ T6O = FMA(TN, TQ, TX * TU);
+ T6Q = FNMS(TX, TQ, TN * TU);
+ T6S = FNMS(T6Q, T6R, T6O * T6P);
+ Ta7 = FMA(T6Q, T6P, T6O * T6R);
+ T2z = T2x - T2y;
+ T2C = T2A + T2B;
+ T2D = FMA(TN, T2z, TX * T2C);
+ Ta6 = FNMS(T2C, T6L, T2z * T6M);
+ T2F = FNMS(TX, T2z, TN * T2C);
+ T6N = FMA(T2z, T6L, T2C * T6M);
+ }
+ T6T = T6N + T6S;
+ Ta3 = T6N - T6S;
+ Tf7 = Ta6 + Ta7;
+ Ta8 = Ta6 - Ta7;
+ T7Q = FMA(T2F, T2E, T2D * T2G);
+ T2H = FNMS(T2F, T2G, T2D * T2E);
+ }
+ {
+ E TA, TE, TB, TF, TJ, TI, T2a, T28, T49, T4b;
+ TA = Tx + Tz;
+ TE = TC - TD;
+ TB = T2 * TA;
+ TF = Tj * TE;
+ TJ = Tj * TA;
+ TI = T2 * TE;
+ T2a = FMA(TN, TE, TX * TA);
+ T28 = FNMS(TX, TE, TN * TA);
+ T2c = FMA(T28, T29, T2a * T2b);
+ T76 = FNMS(TE, T75, TA * T74);
+ Tah = FMA(TE, T74, TA * T75);
+ T7F = FNMS(T2a, T29, T28 * T2b);
+ T49 = TB + TF;
+ T4b = TI - TJ;
+ T4d = FNMS(T4b, T4c, T49 * T4a);
+ T8z = FMA(T4b, T4a, T49 * T4c);
+ TG = TB - TF;
+ TK = TI + TJ;
+ T69 = FMA(TN, TG, TX * TK);
+ T6b = FNMS(TX, TG, TN * TK);
+ }
+ {
+ E T5t, T9p, T3k, T9o, T3m, T5o;
+ T3b = FMA(T37, T38, T39 * T3a);
+ T87 = FNMS(T39, T38, T37 * T3a);
+ {
+ E T5p, T5r, T3g, T3j;
+ T5p = FMA(TN, T37, TX * T39);
+ T5r = FNMS(TX, T37, TN * T39);
+ T5t = FNMS(T5r, T5s, T5p * T5q);
+ T9p = FMA(T5r, T5q, T5p * T5s);
+ T3g = T3d - T3f;
+ T3j = T3h + T3i;
+ T3k = FMA(TN, T3g, TX * T3j);
+ T9o = FNMS(T3j, T5m, T3g * T5n);
+ T3m = FNMS(TX, T3g, TN * T3j);
+ T5o = FMA(T3g, T5m, T3j * T5n);
+ }
+ T5u = T5o + T5t;
+ T9l = T5o - T5t;
+ TeM = T9o + T9p;
+ T9q = T9o - T9p;
+ T88 = FMA(T3m, T3l, T3k * T3n);
+ T89 = T87 - T88;
+ T3o = FNMS(T3m, T3n, T3k * T3l);
+ T86 = T3b - T3o;
+ }
+ {
+ E T5O, T99, T1i, T1n, T1o, T1k, T30, T5J, T98, T32;
+ {
+ E T5K, T5M, T1h, T1j;
+ T5K = FNMS(TX, T2X, TN * T2V);
+ T5M = FMA(TN, T2X, TX * T2V);
+ T5O = FMA(T5K, T5L, T5M * T5N);
+ T99 = FNMS(T5M, T5L, T5K * T5N);
+ T1h = Tb - Tg;
+ T1j = Tk + Tl;
+ T1i = T2 * T1h;
+ T1n = T2 * T1j;
+ T1o = Tj * T1h;
+ T1k = Tj * T1j;
+ T30 = FMA(TN, T1h, TX * T1j);
+ T5J = FMA(T1h, T5H, T1j * T5I);
+ T98 = FNMS(T1j, T5H, T1h * T5I);
+ T32 = FNMS(TX, T1h, TN * T1j);
+ }
+ T5P = T5J + T5O;
+ T9f = T5J - T5O;
+ TeH = T98 + T99;
+ T9a = T98 - T99;
+ T34 = FNMS(T32, T33, T30 * T31);
+ T8f = FMA(T32, T31, T30 * T33);
+ {
+ E T1l, T1p, T3O, T3Q;
+ T1l = T1i - T1k;
+ T1p = T1n + T1o;
+ T1r = FMA(T1l, T1m, T1p * T1q);
+ T7n = FNMS(T1p, T1m, T1l * T1q);
+ T3O = T1i + T1k;
+ T3Q = T1n - T1o;
+ T3S = FNMS(T3Q, T3R, T3O * T3P);
+ T8F = FMA(T3Q, T3P, T3O * T3R);
+ T4G = FNMS(TX, T3Q, TN * T3O);
+ T4I = FMA(TN, T3Q, TX * T3O);
+ }
+ }
+ }
+ {
+ E T5R, TgT, TgY, ThE, T9t, Tbe, T9G, Tbb, Tcl, Tdq, Tcs, Tdn, TeP, Tg4, TeY;
+ E Tg1, T7e, Th4, ThJ, Th9, Tfp, Tg8, Tfg, Tgb, T2K, TgC, Tih, ThX, TfQ, TiL;
+ E Tea, Tiv, Tam, Tbl, TcL, Tdu, Taz, Tbi, TcE, Tdx, T7U, Tjv, Tdc, Tjh, Tb0;
+ E TjL, TbU, TiZ, T8D, Tb5, Tc8, Tdi, T8M, Tb6, Tc5, Tdh, T4r, Thz, Tex, Tfz;
+ E TfX, Tgl, TgN, Thj, T8m, TaI, Tdg, TdG, Tb4, Tbu, Tc2, TcU, T3C, Thy, Tem;
+ E Tfy, TfU, Tgk, TgI, Thi, T6B, Th1, Tfm, Tga, Th8, ThI, T9Z, Tbh, Taw, Tbk;
+ E TcI, Tdw, Tf5, Tg7, Tcx, Tdt, T5c, TgV, TeV, Tg0, TgS, ThD, TeE, Tg3, T96;
+ E Tbd, Tce, Tdp, Tcp, Tdm, T9D, Tba, T1L, Tgz, Ti4, Tii, Tiy, TiM, TdZ, TfN;
+ E T7x, TaX, Tj4, Tji, Tjy, TjM, TbN, Td9;
+ {
+ E T5v, T5Q, TgW, TgX;
+ T5v = T5l + T5u;
+ T5Q = T5G + T5P;
+ T5R = T5v + T5Q;
+ TgT = T5Q - T5v;
+ TgW = TeL + TeM;
+ TgX = TeG + TeH;
+ TgY = TgW - TgX;
+ ThE = TgW + TgX;
+ }
+ {
+ E T9h, T9F, T9s, T9E;
+ {
+ E T9b, T9g, T9m, T9r;
+ T9b = T97 - T9a;
+ T9g = T9e + T9f;
+ T9h = FNMS(KP923879532, T9g, KP382683432 * T9b);
+ T9F = FMA(KP382683432, T9g, KP923879532 * T9b);
+ T9m = T9k + T9l;
+ T9r = T9n - T9q;
+ T9s = FMA(KP923879532, T9m, KP382683432 * T9r);
+ T9E = FNMS(KP923879532, T9r, KP382683432 * T9m);
+ }
+ T9t = T9h - T9s;
+ Tbe = T9E + T9F;
+ T9G = T9E - T9F;
+ Tbb = T9s + T9h;
+ }
+ {
+ E Tch, Tcr, Tck, Tcq;
+ {
+ E Tcf, Tcg, Tci, Tcj;
+ Tcf = T97 + T9a;
+ Tcg = T9e - T9f;
+ Tch = FNMS(KP382683432, Tcg, KP923879532 * Tcf);
+ Tcr = FMA(KP923879532, Tcg, KP382683432 * Tcf);
+ Tci = T9k - T9l;
+ Tcj = T9n + T9q;
+ Tck = FMA(KP382683432, Tci, KP923879532 * Tcj);
+ Tcq = FNMS(KP382683432, Tcj, KP923879532 * Tci);
+ }
+ Tcl = Tch - Tck;
+ Tdq = Tcq + Tcr;
+ Tcs = Tcq - Tcr;
+ Tdn = Tck + Tch;
+ }
+ {
+ E TeJ, TeX, TeO, TeW;
+ {
+ E TeF, TeI, TeK, TeN;
+ TeF = T5G - T5P;
+ TeI = TeG - TeH;
+ TeJ = TeF - TeI;
+ TeX = TeF + TeI;
+ TeK = T5l - T5u;
+ TeN = TeL - TeM;
+ TeO = TeK + TeN;
+ TeW = TeN - TeK;
+ }
+ TeP = KP707106781 * (TeJ - TeO);
+ Tg4 = KP707106781 * (TeW + TeX);
+ TeY = KP707106781 * (TeW - TeX);
+ Tg1 = KP707106781 * (TeO + TeJ);
+ }
+ {
+ E T6U, Th2, T7d, Tfb, Tfe, Th3, Tfa, Tfo, Tfn, Tff;
+ T6U = T6K + T6T;
+ Th2 = Tf6 + Tf7;
+ {
+ E T7c, Tfd, Tf8, Tf9;
+ T7c = T76 + T7b;
+ T7d = T73 + T7c;
+ Tfb = T73 - T7c;
+ Tfd = Tah + Tai;
+ Tfe = Tfc - Tfd;
+ Th3 = Tfc + Tfd;
+ Tf8 = Tf6 - Tf7;
+ Tf9 = T6K - T6T;
+ Tfa = Tf8 - Tf9;
+ Tfo = Tf9 + Tf8;
+ }
+ T7e = T6U + T7d;
+ Th4 = Th2 - Th3;
+ ThJ = Th2 + Th3;
+ Th9 = T7d - T6U;
+ Tfn = Tfb - Tfe;
+ Tfp = KP707106781 * (Tfn - Tfo);
+ Tg8 = KP707106781 * (Tfo + Tfn);
+ Tff = Tfb + Tfe;
+ Tfg = KP707106781 * (Tfa - Tff);
+ Tgb = KP707106781 * (Tfa + Tff);
+ }
+ {
+ E T2e, Te3, Te8, TgB, T2J, Te5, Te2, TgA;
+ {
+ E T2d, Te7, T2I, Te1;
+ T2d = T27 + T2c;
+ T2e = T1Y + T2d;
+ Te3 = T1Y - T2d;
+ Te7 = T7P + T7Q;
+ Te8 = Te6 - Te7;
+ TgB = Te6 + Te7;
+ T2I = T2w + T2H;
+ T2J = T2t + T2I;
+ Te5 = T2t - T2I;
+ Te1 = T7E + T7F;
+ Te2 = Te0 - Te1;
+ TgA = Te0 + Te1;
+ }
+ T2K = T2e + T2J;
+ TgC = TgA - TgB;
+ Tih = T2J - T2e;
+ ThX = TgA + TgB;
+ {
+ E TfO, TfP, Te4, Te9;
+ TfO = Te3 + Te2;
+ TfP = Te5 - Te8;
+ TfQ = KP707106781 * (TfO + TfP);
+ TiL = KP707106781 * (TfP - TfO);
+ Te4 = Te2 - Te3;
+ Te9 = Te5 + Te8;
+ Tea = KP707106781 * (Te4 - Te9);
+ Tiv = KP707106781 * (Te4 + Te9);
+ }
+ }
+ {
+ E Taf, TcB, Tak, TcC, Taa, Tay, TcA, TcK, Tae, Taj;
+ Tae = T76 - T7b;
+ Taf = Tad + Tae;
+ TcB = Tad - Tae;
+ Taj = Tah - Tai;
+ Tak = Tag - Taj;
+ TcC = Tag + Taj;
+ {
+ E Ta4, Ta9, Tcy, Tcz;
+ Ta4 = Ta2 + Ta3;
+ Ta9 = Ta5 - Ta8;
+ Taa = FNMS(KP923879532, Ta9, KP382683432 * Ta4);
+ Tay = FMA(KP923879532, Ta4, KP382683432 * Ta9);
+ Tcy = Ta2 - Ta3;
+ Tcz = Ta5 + Ta8;
+ TcA = FNMS(KP382683432, Tcz, KP923879532 * Tcy);
+ TcK = FMA(KP382683432, Tcy, KP923879532 * Tcz);
+ }
+ {
+ E Tal, TcJ, Tax, TcD;
+ Tal = FMA(KP382683432, Taf, KP923879532 * Tak);
+ Tam = Taa - Tal;
+ Tbl = Taa + Tal;
+ TcJ = FNMS(KP382683432, TcB, KP923879532 * TcC);
+ TcL = TcJ - TcK;
+ Tdu = TcK + TcJ;
+ Tax = FNMS(KP923879532, Taf, KP382683432 * Tak);
+ Taz = Tax - Tay;
+ Tbi = Tay + Tax;
+ TcD = FMA(KP923879532, TcB, KP382683432 * TcC);
+ TcE = TcA - TcD;
+ Tdx = TcA + TcD;
+ }
+ }
+ {
+ E T7C, TbO, T7S, TbS, T7H, TbP, T7N, TbR;
+ {
+ E T7B, T7R, T7G, T7M;
+ T7B = T27 - T2c;
+ T7C = T7A + T7B;
+ TbO = T7A - T7B;
+ T7R = T7P - T7Q;
+ T7S = T7O - T7R;
+ TbS = T7O + T7R;
+ T7G = T7E - T7F;
+ T7H = T7D - T7G;
+ TbP = T7D + T7G;
+ T7M = T2w - T2H;
+ T7N = T7L + T7M;
+ TbR = T7L - T7M;
+ }
+ {
+ E T7I, T7T, Tda, Tdb;
+ T7I = FNMS(KP923879532, T7H, KP382683432 * T7C);
+ T7T = FMA(KP382683432, T7N, KP923879532 * T7S);
+ T7U = T7I - T7T;
+ Tjv = T7I + T7T;
+ Tda = FMA(KP382683432, TbO, KP923879532 * TbP);
+ Tdb = FNMS(KP382683432, TbR, KP923879532 * TbS);
+ Tdc = Tda + Tdb;
+ Tjh = Tdb - Tda;
+ }
+ {
+ E TaY, TaZ, TbQ, TbT;
+ TaY = FMA(KP923879532, T7C, KP382683432 * T7H);
+ TaZ = FNMS(KP923879532, T7N, KP382683432 * T7S);
+ Tb0 = TaY + TaZ;
+ TjL = TaZ - TaY;
+ TbQ = FNMS(KP382683432, TbP, KP923879532 * TbO);
+ TbT = FMA(KP923879532, TbR, KP382683432 * TbS);
+ TbU = TbQ - TbT;
+ TiZ = TbQ + TbT;
+ }
+ }
+ {
+ E T8r, Tc6, T8I, Tc3, T8w, T8K, T8B, T8J, T8q, T8H;
+ T8q = T3S - T43;
+ T8r = T8p + T8q;
+ Tc6 = T8p - T8q;
+ T8H = T8F - T8G;
+ T8I = T8E - T8H;
+ Tc3 = T8E + T8H;
+ {
+ E T8s, T8v, T8x, T8A;
+ T8s = T4j - T4o;
+ T8v = T8t - T8u;
+ T8w = T8s - T8v;
+ T8K = T8s + T8v;
+ T8x = T48 - T4d;
+ T8A = T8y - T8z;
+ T8B = T8x + T8A;
+ T8J = T8A - T8x;
+ }
+ {
+ E T8C, Tc7, T8L, Tc4;
+ T8C = KP707106781 * (T8w - T8B);
+ T8D = T8r - T8C;
+ Tb5 = T8r + T8C;
+ Tc7 = KP707106781 * (T8J + T8K);
+ Tc8 = Tc6 - Tc7;
+ Tdi = Tc6 + Tc7;
+ T8L = KP707106781 * (T8J - T8K);
+ T8M = T8I - T8L;
+ Tb6 = T8I + T8L;
+ Tc4 = KP707106781 * (T8B + T8w);
+ Tc5 = Tc3 - Tc4;
+ Tdh = Tc3 + Tc4;
+ }
+ }
+ {
+ E T45, Tes, Tep, TgK, T4q, Teq, Tev, TgL, T44, Teo, Ter, Tew;
+ T44 = T3S + T43;
+ T45 = T3N + T44;
+ Tes = T3N - T44;
+ Teo = T8F + T8G;
+ Tep = Ten - Teo;
+ TgK = Ten + Teo;
+ {
+ E T4e, T4p, Tet, Teu;
+ T4e = T48 + T4d;
+ T4p = T4j + T4o;
+ T4q = T4e + T4p;
+ Teq = T4p - T4e;
+ Tet = T8y + T8z;
+ Teu = T8t + T8u;
+ Tev = Tet - Teu;
+ TgL = Tet + Teu;
+ }
+ T4r = T45 + T4q;
+ Thz = TgK + TgL;
+ Ter = Tep - Teq;
+ Tew = Tes - Tev;
+ Tex = FMA(KP382683432, Ter, KP923879532 * Tew);
+ Tfz = FNMS(KP923879532, Ter, KP382683432 * Tew);
+ {
+ E TfV, TfW, TgJ, TgM;
+ TfV = Tep + Teq;
+ TfW = Tes + Tev;
+ TfX = FMA(KP923879532, TfV, KP382683432 * TfW);
+ Tgl = FNMS(KP382683432, TfV, KP923879532 * TfW);
+ TgJ = T45 - T4q;
+ TgM = TgK - TgL;
+ TgN = TgJ + TgM;
+ Thj = TgJ - TgM;
+ }
+ }
+ {
+ E T80, TbW, T8k, TbX, T8b, Tc0, T8h, TbZ;
+ {
+ E T7Y, T7Z, T8i, T8j;
+ T7Y = T7W - T7X;
+ T7Z = T2Z - T34;
+ T80 = T7Y + T7Z;
+ TbW = T7Y - T7Z;
+ T8i = T89 - T86;
+ T8j = T81 + T84;
+ T8k = KP707106781 * (T8i - T8j);
+ TbX = KP707106781 * (T8i + T8j);
+ }
+ {
+ E T85, T8a, T8d, T8g;
+ T85 = T81 - T84;
+ T8a = T86 + T89;
+ T8b = KP707106781 * (T85 - T8a);
+ Tc0 = KP707106781 * (T8a + T85);
+ T8d = T2O - T2T;
+ T8g = T8e - T8f;
+ T8h = T8d - T8g;
+ TbZ = T8d + T8g;
+ }
+ {
+ E T8c, T8l, Tde, Tdf;
+ T8c = T80 - T8b;
+ T8l = T8h - T8k;
+ T8m = FNMS(KP980785280, T8l, KP195090322 * T8c);
+ TaI = FMA(KP980785280, T8c, KP195090322 * T8l);
+ Tde = TbW + TbX;
+ Tdf = TbZ + Tc0;
+ Tdg = FNMS(KP195090322, Tdf, KP980785280 * Tde);
+ TdG = FMA(KP980785280, Tdf, KP195090322 * Tde);
+ }
+ {
+ E Tb2, Tb3, TbY, Tc1;
+ Tb2 = T80 + T8b;
+ Tb3 = T8h + T8k;
+ Tb4 = FNMS(KP555570233, Tb3, KP831469612 * Tb2);
+ Tbu = FMA(KP555570233, Tb2, KP831469612 * Tb3);
+ TbY = TbW - TbX;
+ Tc1 = TbZ - Tc0;
+ Tc2 = FNMS(KP831469612, Tc1, KP555570233 * TbY);
+ TcU = FMA(KP555570233, Tc1, KP831469612 * TbY);
+ }
+ }
+ {
+ E T36, Teh, Tek, TgF, T3B, Tef, Tee, TgE, Teg, Tel;
+ {
+ E T2U, T35, Tei, Tej;
+ T2U = T2O + T2T;
+ T35 = T2Z + T34;
+ T36 = T2U + T35;
+ Teh = T2U - T35;
+ Tei = T87 + T88;
+ Tej = T82 + T83;
+ Tek = Tei - Tej;
+ TgF = Tei + Tej;
+ }
+ {
+ E T3p, T3A, Tec, Ted;
+ T3p = T3b + T3o;
+ T3A = T3u + T3z;
+ T3B = T3p + T3A;
+ Tef = T3A - T3p;
+ Tec = T7W + T7X;
+ Ted = T8e + T8f;
+ Tee = Tec - Ted;
+ TgE = Tec + Ted;
+ }
+ T3C = T36 + T3B;
+ Thy = TgE + TgF;
+ Teg = Tee - Tef;
+ Tel = Teh - Tek;
+ Tem = FNMS(KP923879532, Tel, KP382683432 * Teg);
+ Tfy = FMA(KP923879532, Teg, KP382683432 * Tel);
+ {
+ E TfS, TfT, TgG, TgH;
+ TfS = Tee + Tef;
+ TfT = Teh + Tek;
+ TfU = FNMS(KP382683432, TfT, KP923879532 * TfS);
+ Tgk = FMA(KP382683432, TfS, KP923879532 * TfT);
+ TgG = TgE - TgF;
+ TgH = T36 - T3B;
+ TgI = TgG - TgH;
+ Thi = TgH + TgG;
+ }
+ }
+ {
+ E T6A, Tfl, Th7, Tf4, T6e, Tar, T9Y, TcH, Tav, Tcw, T9M, Tfj;
+ T6A = T6o + T6z;
+ Tfl = T6z - T6o;
+ Th7 = Tf2 + Tf3;
+ Tf4 = Tf2 - Tf3;
+ {
+ E T6d, T9S, T9X, Tat, Tau, T9L;
+ T6d = FNMS(T6b, T6c, T69 * T6a);
+ T6e = T68 + T6d;
+ Tar = T68 - T6d;
+ T9S = T9Q - T9R;
+ T9X = T9T + T9W;
+ T9Y = KP707106781 * (T9S - T9X);
+ TcH = KP707106781 * (T9S + T9X);
+ Tat = T9T - T9W;
+ Tau = T9R + T9Q;
+ Tav = KP707106781 * (Tat - Tau);
+ Tcw = KP707106781 * (Tau + Tat);
+ T9L = FMA(T6b, T6a, T69 * T6c);
+ T9M = T9K - T9L;
+ Tfj = T9K + T9L;
+ }
+ {
+ E T6f, Tfk, Th6, T9N;
+ T6f = T65 + T6e;
+ T6B = T6f + T6A;
+ Th1 = T6f - T6A;
+ Tfk = Tfi - Tfj;
+ Tfm = Tfk - Tfl;
+ Tga = Tfk + Tfl;
+ Th6 = Tfi + Tfj;
+ Th8 = Th6 - Th7;
+ ThI = Th6 + Th7;
+ T9N = T9J - T9M;
+ T9Z = T9N - T9Y;
+ Tbh = T9N + T9Y;
+ }
+ {
+ E Tas, TcG, Tf1, Tcv;
+ Tas = Taq + Tar;
+ Taw = Tas - Tav;
+ Tbk = Tas + Tav;
+ TcG = Taq - Tar;
+ TcI = TcG - TcH;
+ Tdw = TcG + TcH;
+ Tf1 = T65 - T6e;
+ Tf5 = Tf1 - Tf4;
+ Tg7 = Tf1 + Tf4;
+ Tcv = T9J + T9M;
+ Tcx = Tcv - Tcw;
+ Tdt = Tcv + Tcw;
+ }
+ }
+ {
+ E T8Z, T9B, T5b, TeD, TeU, TgR, T94, T9A, T4L, T8T, T9y, TeB, T4V;
+ T8Z = T8V - T8Y;
+ T9B = T8V + T8Y;
+ T4V = T4P + T4U;
+ T5b = T4V + T5a;
+ TeD = T5a - T4V;
+ {
+ E TeS, T90, T93, T4K, T9x;
+ TeS = T91 + T92;
+ TeU = TeS - TeT;
+ TgR = TeS + TeT;
+ T90 = T4P - T4U;
+ T93 = T91 - T92;
+ T94 = T90 + T93;
+ T9A = T93 - T90;
+ T4K = FMA(T4G, T4H, T4I * T4J);
+ T4L = T4F + T4K;
+ T8T = T4F - T4K;
+ T9x = FNMS(T4I, T4H, T4G * T4J);
+ T9y = T9w - T9x;
+ TeB = T9w + T9x;
+ }
+ {
+ E T4M, TeR, TgQ, TeC;
+ T4M = T4C + T4L;
+ T5c = T4M + T5b;
+ TgV = T4M - T5b;
+ TeR = T4C - T4L;
+ TeV = TeR - TeU;
+ Tg0 = TeR + TeU;
+ TgQ = TeA + TeB;
+ TgS = TgQ - TgR;
+ ThD = TgQ + TgR;
+ TeC = TeA - TeB;
+ TeE = TeC - TeD;
+ Tg3 = TeC + TeD;
+ }
+ {
+ E T8U, T95, Tcc, Tcd;
+ T8U = T8S + T8T;
+ T95 = KP707106781 * (T8Z - T94);
+ T96 = T8U - T95;
+ Tbd = T8U + T95;
+ Tcc = T8S - T8T;
+ Tcd = KP707106781 * (T9A + T9B);
+ Tce = Tcc - Tcd;
+ Tdp = Tcc + Tcd;
+ }
+ {
+ E Tcn, Tco, T9z, T9C;
+ Tcn = T9v + T9y;
+ Tco = KP707106781 * (T94 + T8Z);
+ Tcp = Tcn - Tco;
+ Tdm = Tcn + Tco;
+ T9z = T9v - T9y;
+ T9C = KP707106781 * (T9A - T9B);
+ T9D = T9z - T9C;
+ Tba = T9z + T9C;
+ }
+ }
+ {
+ E Tv, T7h, TdY, ThY, Ti2, Tj1, T16, Tj2, T1K, Tiw, T7q, TbK, T7v, TbL, T7k;
+ E ThZ, T7r, T7u, T7i;
+ {
+ E Tu, TdW, TdX, Ti0, TM;
+ Tu = FNMS(Ts, Tt, To * Tp);
+ Tv = T1 + Tu;
+ T7h = T1 - Tu;
+ TdW = T7m + T7n;
+ TdX = T7s + T7t;
+ TdY = TdW - TdX;
+ ThY = TdW + TdX;
+ Ti0 = FMA(Ts, Tp, To * Tt);
+ Ti2 = Ti0 + Ti1;
+ Tj1 = Ti1 - Ti0;
+ TM = FMA(TG, TH, TK * TL);
+ T16 = TM + T15;
+ Tj2 = TM - T15;
+ }
+ {
+ E T1s, T1J, T7o, T7p;
+ T1s = T1g + T1r;
+ T1J = T1z + T1I;
+ T1K = T1s + T1J;
+ Tiw = T1J - T1s;
+ T7o = T7m - T7n;
+ T7p = T1g - T1r;
+ T7q = T7o - T7p;
+ TbK = T7p + T7o;
+ }
+ T7r = T1z - T1I;
+ T7u = T7s - T7t;
+ T7v = T7r + T7u;
+ TbL = T7r - T7u;
+ T7i = FNMS(TK, TH, TG * TL);
+ T7k = T7i - T7j;
+ ThZ = T7i + T7j;
+ {
+ E T17, Ti3, Tix, TdV;
+ T17 = Tv + T16;
+ T1L = T17 + T1K;
+ Tgz = T17 - T1K;
+ Ti3 = ThZ + Ti2;
+ Ti4 = ThY + Ti3;
+ Tii = Ti3 - ThY;
+ Tix = Ti2 - ThZ;
+ Tiy = Tiw + Tix;
+ TiM = Tix - Tiw;
+ TdV = Tv - T16;
+ TdZ = TdV - TdY;
+ TfN = TdV + TdY;
+ }
+ {
+ E T7l, T7w, Tj0, Tj3;
+ T7l = T7h - T7k;
+ T7w = KP707106781 * (T7q - T7v);
+ T7x = T7l - T7w;
+ TaX = T7l + T7w;
+ Tj0 = KP707106781 * (T7q + T7v);
+ Tj3 = Tj1 - Tj2;
+ Tj4 = Tj0 + Tj3;
+ Tji = Tj3 - Tj0;
+ }
+ {
+ E Tjw, Tjx, TbJ, TbM;
+ Tjw = KP707106781 * (TbL - TbK);
+ Tjx = Tj2 + Tj1;
+ Tjy = Tjw + Tjx;
+ TjM = Tjx - Tjw;
+ TbJ = T7h + T7k;
+ TbM = KP707106781 * (TbK + TbL);
+ TbN = TbJ - TbM;
+ Td9 = TbJ + TbM;
+ }
+ }
+ {
+ E T4t, ThR, Ti6, Ti8, T7g, Ti7, ThU, ThV;
+ {
+ E T2L, T4s, ThW, Ti5;
+ T2L = T1L + T2K;
+ T4s = T3C + T4r;
+ T4t = T2L + T4s;
+ ThR = T2L - T4s;
+ ThW = Thy + Thz;
+ Ti5 = ThX + Ti4;
+ Ti6 = ThW + Ti5;
+ Ti8 = Ti5 - ThW;
+ }
+ {
+ E T5S, T7f, ThS, ThT;
+ T5S = T5c + T5R;
+ T7f = T6B + T7e;
+ T7g = T5S + T7f;
+ Ti7 = T7f - T5S;
+ ThS = ThD + ThE;
+ ThT = ThI + ThJ;
+ ThU = ThS - ThT;
+ ThV = ThS + ThT;
+ }
+ ri[WS(ios, 32)] = T4t - T7g;
+ ii[WS(ios, 32)] = Ti6 - ThV;
+ ri[0] = T4t + T7g;
+ ii[0] = ThV + Ti6;
+ ri[WS(ios, 48)] = ThR - ThU;
+ ii[WS(ios, 48)] = Ti8 - Ti7;
+ ri[WS(ios, 16)] = ThR + ThU;
+ ii[WS(ios, 16)] = Ti7 + Ti8;
+ }
+ {
+ E ThB, ThN, Tic, Tie, ThG, ThO, ThL, ThP;
+ {
+ E Thx, ThA, Tia, Tib;
+ Thx = T1L - T2K;
+ ThA = Thy - Thz;
+ ThB = Thx + ThA;
+ ThN = Thx - ThA;
+ Tia = T4r - T3C;
+ Tib = Ti4 - ThX;
+ Tic = Tia + Tib;
+ Tie = Tib - Tia;
+ }
+ {
+ E ThC, ThF, ThH, ThK;
+ ThC = T5c - T5R;
+ ThF = ThD - ThE;
+ ThG = ThC + ThF;
+ ThO = ThF - ThC;
+ ThH = T6B - T7e;
+ ThK = ThI - ThJ;
+ ThL = ThH - ThK;
+ ThP = ThH + ThK;
+ }
+ {
+ E ThM, Ti9, ThQ, Tid;
+ ThM = KP707106781 * (ThG + ThL);
+ ri[WS(ios, 40)] = ThB - ThM;
+ ri[WS(ios, 8)] = ThB + ThM;
+ Ti9 = KP707106781 * (ThO + ThP);
+ ii[WS(ios, 8)] = Ti9 + Tic;
+ ii[WS(ios, 40)] = Tic - Ti9;
+ ThQ = KP707106781 * (ThO - ThP);
+ ri[WS(ios, 56)] = ThN - ThQ;
+ ri[WS(ios, 24)] = ThN + ThQ;
+ Tid = KP707106781 * (ThL - ThG);
+ ii[WS(ios, 24)] = Tid + Tie;
+ ii[WS(ios, 56)] = Tie - Tid;
+ }
+ }
+ {
+ E TgP, Thd, Tiq, Tis, Th0, The, Thb, Thf;
+ {
+ E TgD, TgO, Tio, Tip;
+ TgD = Tgz - TgC;
+ TgO = KP707106781 * (TgI - TgN);
+ TgP = TgD + TgO;
+ Thd = TgD - TgO;
+ Tio = KP707106781 * (Thj - Thi);
+ Tip = Tii - Tih;
+ Tiq = Tio + Tip;
+ Tis = Tip - Tio;
+ }
+ {
+ E TgU, TgZ, Th5, Tha;
+ TgU = TgS - TgT;
+ TgZ = TgV - TgY;
+ Th0 = FMA(KP923879532, TgU, KP382683432 * TgZ);
+ The = FNMS(KP923879532, TgZ, KP382683432 * TgU);
+ Th5 = Th1 - Th4;
+ Tha = Th8 - Th9;
+ Thb = FNMS(KP923879532, Tha, KP382683432 * Th5);
+ Thf = FMA(KP382683432, Tha, KP923879532 * Th5);
+ }
+ {
+ E Thc, Tin, Thg, Tir;
+ Thc = Th0 + Thb;
+ ri[WS(ios, 44)] = TgP - Thc;
+ ri[WS(ios, 12)] = TgP + Thc;
+ Tin = The + Thf;
+ ii[WS(ios, 12)] = Tin + Tiq;
+ ii[WS(ios, 44)] = Tiq - Tin;
+ Thg = The - Thf;
+ ri[WS(ios, 60)] = Thd - Thg;
+ ri[WS(ios, 28)] = Thd + Thg;
+ Tir = Thb - Th0;
+ ii[WS(ios, 28)] = Tir + Tis;
+ ii[WS(ios, 60)] = Tis - Tir;
+ }
+ }
+ {
+ E TfB, TfJ, TiO, TiQ, TfE, TfK, TfH, TfL;
+ {
+ E Tfx, TfA, TiK, TiN;
+ Tfx = TdZ + Tea;
+ TfA = Tfy + Tfz;
+ TfB = Tfx + TfA;
+ TfJ = Tfx - TfA;
+ TiK = Tem + Tex;
+ TiN = TiL + TiM;
+ TiO = TiK + TiN;
+ TiQ = TiN - TiK;
+ }
+ {
+ E TfC, TfD, TfF, TfG;
+ TfC = TeE + TeP;
+ TfD = TeV + TeY;
+ TfE = FMA(KP555570233, TfC, KP831469612 * TfD);
+ TfK = FNMS(KP555570233, TfD, KP831469612 * TfC);
+ TfF = Tf5 + Tfg;
+ TfG = Tfm + Tfp;
+ TfH = FNMS(KP555570233, TfG, KP831469612 * TfF);
+ TfL = FMA(KP831469612, TfG, KP555570233 * TfF);
+ }
+ {
+ E TfI, TiJ, TfM, TiP;
+ TfI = TfE + TfH;
+ ri[WS(ios, 38)] = TfB - TfI;
+ ri[WS(ios, 6)] = TfB + TfI;
+ TiJ = TfK + TfL;
+ ii[WS(ios, 6)] = TiJ + TiO;
+ ii[WS(ios, 38)] = TiO - TiJ;
+ TfM = TfK - TfL;
+ ri[WS(ios, 54)] = TfJ - TfM;
+ ri[WS(ios, 22)] = TfJ + TfM;
+ TiP = TfH - TfE;
+ ii[WS(ios, 22)] = TiP + TiQ;
+ ii[WS(ios, 54)] = TiQ - TiP;
+ }
+ }
+ {
+ E Thl, Tht, Tik, Tim, Tho, Thu, Thr, Thv;
+ {
+ E Thh, Thk, Tig, Tij;
+ Thh = Tgz + TgC;
+ Thk = KP707106781 * (Thi + Thj);
+ Thl = Thh + Thk;
+ Tht = Thh - Thk;
+ Tig = KP707106781 * (TgI + TgN);
+ Tij = Tih + Tii;
+ Tik = Tig + Tij;
+ Tim = Tij - Tig;
+ }
+ {
+ E Thm, Thn, Thp, Thq;
+ Thm = TgS + TgT;
+ Thn = TgV + TgY;
+ Tho = FMA(KP382683432, Thm, KP923879532 * Thn);
+ Thu = FNMS(KP382683432, Thn, KP923879532 * Thm);
+ Thp = Th1 + Th4;
+ Thq = Th8 + Th9;
+ Thr = FNMS(KP382683432, Thq, KP923879532 * Thp);
+ Thv = FMA(KP923879532, Thq, KP382683432 * Thp);
+ }
+ {
+ E Ths, Tif, Thw, Til;
+ Ths = Tho + Thr;
+ ri[WS(ios, 36)] = Thl - Ths;
+ ri[WS(ios, 4)] = Thl + Ths;
+ Tif = Thu + Thv;
+ ii[WS(ios, 4)] = Tif + Tik;
+ ii[WS(ios, 36)] = Tik - Tif;
+ Thw = Thu - Thv;
+ ri[WS(ios, 52)] = Tht - Thw;
+ ri[WS(ios, 20)] = Tht + Thw;
+ Til = Thr - Tho;
+ ii[WS(ios, 20)] = Til + Tim;
+ ii[WS(ios, 52)] = Tim - Til;
+ }
+ }
+ {
+ E Tez, Tft, TiU, TiW, Tf0, Tfu, Tfr, Tfv;
+ {
+ E Teb, Tey, TiS, TiT;
+ Teb = TdZ - Tea;
+ Tey = Tem - Tex;
+ Tez = Teb + Tey;
+ Tft = Teb - Tey;
+ TiS = Tfz - Tfy;
+ TiT = TiM - TiL;
+ TiU = TiS + TiT;
+ TiW = TiT - TiS;
+ }
+ {
+ E TeQ, TeZ, Tfh, Tfq;
+ TeQ = TeE - TeP;
+ TeZ = TeV - TeY;
+ Tf0 = FMA(KP980785280, TeQ, KP195090322 * TeZ);
+ Tfu = FNMS(KP980785280, TeZ, KP195090322 * TeQ);
+ Tfh = Tf5 - Tfg;
+ Tfq = Tfm - Tfp;
+ Tfr = FNMS(KP980785280, Tfq, KP195090322 * Tfh);
+ Tfv = FMA(KP195090322, Tfq, KP980785280 * Tfh);
+ }
+ {
+ E Tfs, TiR, Tfw, TiV;
+ Tfs = Tf0 + Tfr;
+ ri[WS(ios, 46)] = Tez - Tfs;
+ ri[WS(ios, 14)] = Tez + Tfs;
+ TiR = Tfu + Tfv;
+ ii[WS(ios, 14)] = TiR + TiU;
+ ii[WS(ios, 46)] = TiU - TiR;
+ Tfw = Tfu - Tfv;
+ ri[WS(ios, 62)] = Tft - Tfw;
+ ri[WS(ios, 30)] = Tft + Tfw;
+ TiV = Tfr - Tf0;
+ ii[WS(ios, 30)] = TiV + TiW;
+ ii[WS(ios, 62)] = TiW - TiV;
+ }
+ }
+ {
+ E TfZ, Tgf, TiG, TiI, Tg6, Tgg, Tgd, Tgh;
+ {
+ E TfR, TfY, TiE, TiF;
+ TfR = TfN - TfQ;
+ TfY = TfU - TfX;
+ TfZ = TfR + TfY;
+ Tgf = TfR - TfY;
+ TiE = Tgl - Tgk;
+ TiF = Tiy - Tiv;
+ TiG = TiE + TiF;
+ TiI = TiF - TiE;
+ }
+ {
+ E Tg2, Tg5, Tg9, Tgc;
+ Tg2 = Tg0 - Tg1;
+ Tg5 = Tg3 - Tg4;
+ Tg6 = FMA(KP555570233, Tg2, KP831469612 * Tg5);
+ Tgg = FNMS(KP831469612, Tg2, KP555570233 * Tg5);
+ Tg9 = Tg7 - Tg8;
+ Tgc = Tga - Tgb;
+ Tgd = FNMS(KP831469612, Tgc, KP555570233 * Tg9);
+ Tgh = FMA(KP831469612, Tg9, KP555570233 * Tgc);
+ }
+ {
+ E Tge, TiD, Tgi, TiH;
+ Tge = Tg6 + Tgd;
+ ri[WS(ios, 42)] = TfZ - Tge;
+ ri[WS(ios, 10)] = TfZ + Tge;
+ TiD = Tgg + Tgh;
+ ii[WS(ios, 10)] = TiD + TiG;
+ ii[WS(ios, 42)] = TiG - TiD;
+ Tgi = Tgg - Tgh;
+ ri[WS(ios, 58)] = Tgf - Tgi;
+ ri[WS(ios, 26)] = Tgf + Tgi;
+ TiH = Tgd - Tg6;
+ ii[WS(ios, 26)] = TiH + TiI;
+ ii[WS(ios, 58)] = TiI - TiH;
+ }
+ }
+ {
+ E Tgn, Tgv, TiA, TiC, Tgq, Tgw, Tgt, Tgx;
+ {
+ E Tgj, Tgm, Tiu, Tiz;
+ Tgj = TfN + TfQ;
+ Tgm = Tgk + Tgl;
+ Tgn = Tgj + Tgm;
+ Tgv = Tgj - Tgm;
+ Tiu = TfU + TfX;
+ Tiz = Tiv + Tiy;
+ TiA = Tiu + Tiz;
+ TiC = Tiz - Tiu;
+ }
+ {
+ E Tgo, Tgp, Tgr, Tgs;
+ Tgo = Tg0 + Tg1;
+ Tgp = Tg3 + Tg4;
+ Tgq = FMA(KP980785280, Tgo, KP195090322 * Tgp);
+ Tgw = FNMS(KP195090322, Tgo, KP980785280 * Tgp);
+ Tgr = Tg7 + Tg8;
+ Tgs = Tga + Tgb;
+ Tgt = FNMS(KP195090322, Tgs, KP980785280 * Tgr);
+ Tgx = FMA(KP195090322, Tgr, KP980785280 * Tgs);
+ }
+ {
+ E Tgu, Tit, Tgy, TiB;
+ Tgu = Tgq + Tgt;
+ ri[WS(ios, 34)] = Tgn - Tgu;
+ ri[WS(ios, 2)] = Tgn + Tgu;
+ Tit = Tgw + Tgx;
+ ii[WS(ios, 2)] = Tit + TiA;
+ ii[WS(ios, 34)] = TiA - Tit;
+ Tgy = Tgw - Tgx;
+ ri[WS(ios, 50)] = Tgv - Tgy;
+ ri[WS(ios, 18)] = Tgv + Tgy;
+ TiB = Tgt - Tgq;
+ ii[WS(ios, 18)] = TiB + TiC;
+ ii[WS(ios, 50)] = TiC - TiB;
+ }
+ }
+ {
+ E T7V, TjN, TjT, TaH, T8O, TjK, TaK, TjS, TaO, TaU, T9I, TaE, TaR, TaV, TaB;
+ E TaF, T8N;
+ T7V = T7x - T7U;
+ TjN = TjL + TjM;
+ TjT = TjM - TjL;
+ TaH = T7x + T7U;
+ T8N = FMA(KP195090322, T8D, KP980785280 * T8M);
+ T8O = T8m - T8N;
+ TjK = T8m + T8N;
+ {
+ E TaJ, TaM, TaN, T9u, T9H;
+ TaJ = FNMS(KP980785280, T8D, KP195090322 * T8M);
+ TaK = TaI + TaJ;
+ TjS = TaJ - TaI;
+ TaM = T96 + T9t;
+ TaN = T9D + T9G;
+ TaO = FMA(KP634393284, TaM, KP773010453 * TaN);
+ TaU = FNMS(KP634393284, TaN, KP773010453 * TaM);
+ T9u = T96 - T9t;
+ T9H = T9D - T9G;
+ T9I = FMA(KP995184726, T9u, KP098017140 * T9H);
+ TaE = FNMS(KP995184726, T9H, KP098017140 * T9u);
+ {
+ E TaP, TaQ, Tan, TaA;
+ TaP = T9Z + Tam;
+ TaQ = Taw + Taz;
+ TaR = FNMS(KP634393284, TaQ, KP773010453 * TaP);
+ TaV = FMA(KP773010453, TaQ, KP634393284 * TaP);
+ Tan = T9Z - Tam;
+ TaA = Taw - Taz;
+ TaB = FNMS(KP995184726, TaA, KP098017140 * Tan);
+ TaF = FMA(KP098017140, TaA, KP995184726 * Tan);
+ }
+ }
+ {
+ E T8P, TaC, TjR, TjU;
+ T8P = T7V + T8O;
+ TaC = T9I + TaB;
+ ri[WS(ios, 47)] = T8P - TaC;
+ ri[WS(ios, 15)] = T8P + TaC;
+ TjR = TaE + TaF;
+ TjU = TjS + TjT;
+ ii[WS(ios, 15)] = TjR + TjU;
+ ii[WS(ios, 47)] = TjU - TjR;
+ }
+ {
+ E TaD, TaG, TjV, TjW;
+ TaD = T7V - T8O;
+ TaG = TaE - TaF;
+ ri[WS(ios, 63)] = TaD - TaG;
+ ri[WS(ios, 31)] = TaD + TaG;
+ TjV = TaB - T9I;
+ TjW = TjT - TjS;
+ ii[WS(ios, 31)] = TjV + TjW;
+ ii[WS(ios, 63)] = TjW - TjV;
+ }
+ {
+ E TaL, TaS, TjJ, TjO;
+ TaL = TaH + TaK;
+ TaS = TaO + TaR;
+ ri[WS(ios, 39)] = TaL - TaS;
+ ri[WS(ios, 7)] = TaL + TaS;
+ TjJ = TaU + TaV;
+ TjO = TjK + TjN;
+ ii[WS(ios, 7)] = TjJ + TjO;
+ ii[WS(ios, 39)] = TjO - TjJ;
+ }
+ {
+ E TaT, TaW, TjP, TjQ;
+ TaT = TaH - TaK;
+ TaW = TaU - TaV;
+ ri[WS(ios, 55)] = TaT - TaW;
+ ri[WS(ios, 23)] = TaT + TaW;
+ TjP = TaR - TaO;
+ TjQ = TjN - TjK;
+ ii[WS(ios, 23)] = TjP + TjQ;
+ ii[WS(ios, 55)] = TjQ - TjP;
+ }
+ }
+ {
+ E TbV, Tjj, Tjp, TcT, Tca, Tjg, TcW, Tjo, Td0, Td6, Tcu, TcQ, Td3, Td7, TcN;
+ E TcR, Tc9;
+ TbV = TbN - TbU;
+ Tjj = Tjh + Tji;
+ Tjp = Tji - Tjh;
+ TcT = TbN + TbU;
+ Tc9 = FMA(KP831469612, Tc5, KP555570233 * Tc8);
+ Tca = Tc2 - Tc9;
+ Tjg = Tc2 + Tc9;
+ {
+ E TcV, TcY, TcZ, Tcm, Tct;
+ TcV = FNMS(KP831469612, Tc8, KP555570233 * Tc5);
+ TcW = TcU + TcV;
+ Tjo = TcV - TcU;
+ TcY = Tce + Tcl;
+ TcZ = Tcp + Tcs;
+ Td0 = FMA(KP471396736, TcY, KP881921264 * TcZ);
+ Td6 = FNMS(KP471396736, TcZ, KP881921264 * TcY);
+ Tcm = Tce - Tcl;
+ Tct = Tcp - Tcs;
+ Tcu = FMA(KP956940335, Tcm, KP290284677 * Tct);
+ TcQ = FNMS(KP956940335, Tct, KP290284677 * Tcm);
+ {
+ E Td1, Td2, TcF, TcM;
+ Td1 = Tcx + TcE;
+ Td2 = TcI + TcL;
+ Td3 = FNMS(KP471396736, Td2, KP881921264 * Td1);
+ Td7 = FMA(KP881921264, Td2, KP471396736 * Td1);
+ TcF = Tcx - TcE;
+ TcM = TcI - TcL;
+ TcN = FNMS(KP956940335, TcM, KP290284677 * TcF);
+ TcR = FMA(KP290284677, TcM, KP956940335 * TcF);
+ }
+ }
+ {
+ E Tcb, TcO, Tjn, Tjq;
+ Tcb = TbV + Tca;
+ TcO = Tcu + TcN;
+ ri[WS(ios, 45)] = Tcb - TcO;
+ ri[WS(ios, 13)] = Tcb + TcO;
+ Tjn = TcQ + TcR;
+ Tjq = Tjo + Tjp;
+ ii[WS(ios, 13)] = Tjn + Tjq;
+ ii[WS(ios, 45)] = Tjq - Tjn;
+ }
+ {
+ E TcP, TcS, Tjr, Tjs;
+ TcP = TbV - Tca;
+ TcS = TcQ - TcR;
+ ri[WS(ios, 61)] = TcP - TcS;
+ ri[WS(ios, 29)] = TcP + TcS;
+ Tjr = TcN - Tcu;
+ Tjs = Tjp - Tjo;
+ ii[WS(ios, 29)] = Tjr + Tjs;
+ ii[WS(ios, 61)] = Tjs - Tjr;
+ }
+ {
+ E TcX, Td4, Tjf, Tjk;
+ TcX = TcT + TcW;
+ Td4 = Td0 + Td3;
+ ri[WS(ios, 37)] = TcX - Td4;
+ ri[WS(ios, 5)] = TcX + Td4;
+ Tjf = Td6 + Td7;
+ Tjk = Tjg + Tjj;
+ ii[WS(ios, 5)] = Tjf + Tjk;
+ ii[WS(ios, 37)] = Tjk - Tjf;
+ }
+ {
+ E Td5, Td8, Tjl, Tjm;
+ Td5 = TcT - TcW;
+ Td8 = Td6 - Td7;
+ ri[WS(ios, 53)] = Td5 - Td8;
+ ri[WS(ios, 21)] = Td5 + Td8;
+ Tjl = Td3 - Td0;
+ Tjm = Tjj - Tjg;
+ ii[WS(ios, 21)] = Tjl + Tjm;
+ ii[WS(ios, 53)] = Tjm - Tjl;
+ }
+ }
+ {
+ E Tb1, Tjz, TjF, Tbt, Tb8, Tju, Tbw, TjE, TbA, TbG, Tbg, Tbq, TbD, TbH, Tbn;
+ E Tbr, Tb7;
+ Tb1 = TaX - Tb0;
+ Tjz = Tjv + Tjy;
+ TjF = Tjy - Tjv;
+ Tbt = TaX + Tb0;
+ Tb7 = FMA(KP831469612, Tb5, KP555570233 * Tb6);
+ Tb8 = Tb4 - Tb7;
+ Tju = Tb4 + Tb7;
+ {
+ E Tbv, Tby, Tbz, Tbc, Tbf;
+ Tbv = FNMS(KP555570233, Tb5, KP831469612 * Tb6);
+ Tbw = Tbu + Tbv;
+ TjE = Tbv - Tbu;
+ Tby = Tba + Tbb;
+ Tbz = Tbd + Tbe;
+ TbA = FMA(KP956940335, Tby, KP290284677 * Tbz);
+ TbG = FNMS(KP290284677, Tby, KP956940335 * Tbz);
+ Tbc = Tba - Tbb;
+ Tbf = Tbd - Tbe;
+ Tbg = FMA(KP471396736, Tbc, KP881921264 * Tbf);
+ Tbq = FNMS(KP881921264, Tbc, KP471396736 * Tbf);
+ {
+ E TbB, TbC, Tbj, Tbm;
+ TbB = Tbh + Tbi;
+ TbC = Tbk + Tbl;
+ TbD = FNMS(KP290284677, TbC, KP956940335 * TbB);
+ TbH = FMA(KP290284677, TbB, KP956940335 * TbC);
+ Tbj = Tbh - Tbi;
+ Tbm = Tbk - Tbl;
+ Tbn = FNMS(KP881921264, Tbm, KP471396736 * Tbj);
+ Tbr = FMA(KP881921264, Tbj, KP471396736 * Tbm);
+ }
+ }
+ {
+ E Tb9, Tbo, TjD, TjG;
+ Tb9 = Tb1 + Tb8;
+ Tbo = Tbg + Tbn;
+ ri[WS(ios, 43)] = Tb9 - Tbo;
+ ri[WS(ios, 11)] = Tb9 + Tbo;
+ TjD = Tbq + Tbr;
+ TjG = TjE + TjF;
+ ii[WS(ios, 11)] = TjD + TjG;
+ ii[WS(ios, 43)] = TjG - TjD;
+ }
+ {
+ E Tbp, Tbs, TjH, TjI;
+ Tbp = Tb1 - Tb8;
+ Tbs = Tbq - Tbr;
+ ri[WS(ios, 59)] = Tbp - Tbs;
+ ri[WS(ios, 27)] = Tbp + Tbs;
+ TjH = Tbn - Tbg;
+ TjI = TjF - TjE;
+ ii[WS(ios, 27)] = TjH + TjI;
+ ii[WS(ios, 59)] = TjI - TjH;
+ }
+ {
+ E Tbx, TbE, Tjt, TjA;
+ Tbx = Tbt + Tbw;
+ TbE = TbA + TbD;
+ ri[WS(ios, 35)] = Tbx - TbE;
+ ri[WS(ios, 3)] = Tbx + TbE;
+ Tjt = TbG + TbH;
+ TjA = Tju + Tjz;
+ ii[WS(ios, 3)] = Tjt + TjA;
+ ii[WS(ios, 35)] = TjA - Tjt;
+ }
+ {
+ E TbF, TbI, TjB, TjC;
+ TbF = Tbt - Tbw;
+ TbI = TbG - TbH;
+ ri[WS(ios, 51)] = TbF - TbI;
+ ri[WS(ios, 19)] = TbF + TbI;
+ TjB = TbD - TbA;
+ TjC = Tjz - Tju;
+ ii[WS(ios, 19)] = TjB + TjC;
+ ii[WS(ios, 51)] = TjC - TjB;
+ }
+ }
+ {
+ E Tdd, Tj5, Tjb, TdF, Tdk, TiY, TdI, Tja, TdM, TdS, Tds, TdC, TdP, TdT, Tdz;
+ E TdD, Tdj;
+ Tdd = Td9 - Tdc;
+ Tj5 = TiZ + Tj4;
+ Tjb = Tj4 - TiZ;
+ TdF = Td9 + Tdc;
+ Tdj = FMA(KP195090322, Tdh, KP980785280 * Tdi);
+ Tdk = Tdg - Tdj;
+ TiY = Tdg + Tdj;
+ {
+ E TdH, TdK, TdL, Tdo, Tdr;
+ TdH = FNMS(KP195090322, Tdi, KP980785280 * Tdh);
+ TdI = TdG + TdH;
+ Tja = TdH - TdG;
+ TdK = Tdm + Tdn;
+ TdL = Tdp + Tdq;
+ TdM = FMA(KP995184726, TdK, KP098017140 * TdL);
+ TdS = FNMS(KP098017140, TdK, KP995184726 * TdL);
+ Tdo = Tdm - Tdn;
+ Tdr = Tdp - Tdq;
+ Tds = FMA(KP634393284, Tdo, KP773010453 * Tdr);
+ TdC = FNMS(KP773010453, Tdo, KP634393284 * Tdr);
+ {
+ E TdN, TdO, Tdv, Tdy;
+ TdN = Tdt + Tdu;
+ TdO = Tdw + Tdx;
+ TdP = FNMS(KP098017140, TdO, KP995184726 * TdN);
+ TdT = FMA(KP098017140, TdN, KP995184726 * TdO);
+ Tdv = Tdt - Tdu;
+ Tdy = Tdw - Tdx;
+ Tdz = FNMS(KP773010453, Tdy, KP634393284 * Tdv);
+ TdD = FMA(KP773010453, Tdv, KP634393284 * Tdy);
+ }
+ }
+ {
+ E Tdl, TdA, Tj9, Tjc;
+ Tdl = Tdd + Tdk;
+ TdA = Tds + Tdz;
+ ri[WS(ios, 41)] = Tdl - TdA;
+ ri[WS(ios, 9)] = Tdl + TdA;
+ Tj9 = TdC + TdD;
+ Tjc = Tja + Tjb;
+ ii[WS(ios, 9)] = Tj9 + Tjc;
+ ii[WS(ios, 41)] = Tjc - Tj9;
+ }
+ {
+ E TdB, TdE, Tjd, Tje;
+ TdB = Tdd - Tdk;
+ TdE = TdC - TdD;
+ ri[WS(ios, 57)] = TdB - TdE;
+ ri[WS(ios, 25)] = TdB + TdE;
+ Tjd = Tdz - Tds;
+ Tje = Tjb - Tja;
+ ii[WS(ios, 25)] = Tjd + Tje;
+ ii[WS(ios, 57)] = Tje - Tjd;
+ }
+ {
+ E TdJ, TdQ, TiX, Tj6;
+ TdJ = TdF + TdI;
+ TdQ = TdM + TdP;
+ ri[WS(ios, 33)] = TdJ - TdQ;
+ ri[WS(ios, 1)] = TdJ + TdQ;
+ TiX = TdS + TdT;
+ Tj6 = TiY + Tj5;
+ ii[WS(ios, 1)] = TiX + Tj6;
+ ii[WS(ios, 33)] = Tj6 - TiX;
+ }
+ {
+ E TdR, TdU, Tj7, Tj8;
+ TdR = TdF - TdI;
+ TdU = TdS - TdT;
+ ri[WS(ios, 49)] = TdR - TdU;
+ ri[WS(ios, 17)] = TdR + TdU;
+ Tj7 = TdP - TdM;
+ Tj8 = Tj5 - TiY;
+ ii[WS(ios, 17)] = Tj7 + Tj8;
+ ii[WS(ios, 49)] = Tj8 - Tj7;
+ }
+ }
+ }
+ }
+ return W;
+}
+
+static const tw_instr twinstr[] = {
+ {TW_COS, 0, 1},
+ {TW_SIN, 0, 1},
+ {TW_COS, 0, 3},
+ {TW_SIN, 0, 3},
+ {TW_COS, 0, 9},
+ {TW_SIN, 0, 9},
+ {TW_COS, 0, 27},
+ {TW_SIN, 0, 27},
+ {TW_COS, 0, 63},
+ {TW_SIN, 0, 63},
+ {TW_NEXT, 1, 0}
+};
+
+static const ct_desc desc = { 64, "t2_64", twinstr, {880, 386, 274, 0}, &GENUS, 0, 0, 0 };
+
+void X(codelet_t2_64) (planner *p) {
+ X(kdft_dit_register) (p, t2_64, &desc);
+}