diff options
Diffstat (limited to 'src/fftw3/rdft/codelets/hc2r/hb_32.c')
-rw-r--r-- | src/fftw3/rdft/codelets/hc2r/hb_32.c | 890 |
1 files changed, 890 insertions, 0 deletions
diff --git a/src/fftw3/rdft/codelets/hc2r/hb_32.c b/src/fftw3/rdft/codelets/hc2r/hb_32.c new file mode 100644 index 0000000..f3358ab --- /dev/null +++ b/src/fftw3/rdft/codelets/hc2r/hb_32.c @@ -0,0 +1,890 @@ +/* + * Copyright (c) 2003 Matteo Frigo + * Copyright (c) 2003 Massachusetts Institute of Technology + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA + * + */ + +/* This file was automatically generated --- DO NOT EDIT */ +/* Generated on Sat Jul 5 22:11:39 EDT 2003 */ + +#include "codelet-rdft.h" + +/* Generated by: /homee/stevenj/cvs/fftw3.0.1/genfft/gen_hc2hc -compact -variables 4 -sign 1 -n 32 -dif -name hb_32 -include hb.h */ + +/* + * This function contains 434 FP additions, 208 FP multiplications, + * (or, 340 additions, 114 multiplications, 94 fused multiply/add), + * 98 stack variables, and 128 memory accesses + */ +/* + * Generator Id's : + * $Id: hb_32.c,v 1.1 2008/10/17 06:12:08 scuri Exp $ + * $Id: hb_32.c,v 1.1 2008/10/17 06:12:08 scuri Exp $ + * $Id: hb_32.c,v 1.1 2008/10/17 06:12:08 scuri Exp $ + */ + +#include "hb.h" + +static const R *hb_32(R *rio, R *iio, const R *W, stride ios, int m, int dist) +{ + DK(KP555570233, +0.555570233019602224742830813948532874374937191); + DK(KP831469612, +0.831469612302545237078788377617905756738560812); + DK(KP195090322, +0.195090322016128267848284868477022240927691618); + DK(KP980785280, +0.980785280403230449126182236134239036973933731); + DK(KP382683432, +0.382683432365089771728459984030398866761344562); + DK(KP923879532, +0.923879532511286756128183189396788286822416626); + DK(KP707106781, +0.707106781186547524400844362104849039284835938); + int i; + for (i = m - 2; i > 0; i = i - 2, rio = rio + dist, iio = iio - dist, W = W + 62) { + E T5n, T6y, T77, T5u, Tf, T3i, T5x, T76, T3G, T47, T1a, T2I, T5k, T6z, T2o; + E T2Y, Tu, T3D, T6D, T73, T6G, T74, T1j, T2d, T1s, T2e, T55, T5z, T5c, T5A; + E T3l, T48, TK, T3n, T6L, T7t, T6O, T7s, T1D, T2L, T1M, T2M, T4w, T62, T4D; + E T61, T3q, T41, TZ, T3s, T6S, T7w, T6V, T7v, T1W, T2O, T25, T2P, T4P, T64; + E T4W, T65, T3v, T42; + { + E T3, T5l, T2j, T5t, T6, T5s, T2m, T5m, Ta, T5i, T15, T5h, Td, T5e, T18; + E T5f; + { + E T1, T2, T2h, T2i; + T1 = rio[0]; + T2 = iio[-WS(ios, 16)]; + T3 = T1 + T2; + T5l = T1 - T2; + T2h = iio[0]; + T2i = rio[WS(ios, 16)]; + T2j = T2h - T2i; + T5t = T2h + T2i; + } + { + E T4, T5, T2k, T2l; + T4 = rio[WS(ios, 8)]; + T5 = iio[-WS(ios, 24)]; + T6 = T4 + T5; + T5s = T4 - T5; + T2k = iio[-WS(ios, 8)]; + T2l = rio[WS(ios, 24)]; + T2m = T2k - T2l; + T5m = T2k + T2l; + } + { + E T8, T9, T13, T14; + T8 = rio[WS(ios, 4)]; + T9 = iio[-WS(ios, 20)]; + Ta = T8 + T9; + T5i = T8 - T9; + T13 = iio[-WS(ios, 4)]; + T14 = rio[WS(ios, 20)]; + T15 = T13 - T14; + T5h = T13 + T14; + } + { + E Tb, Tc, T16, T17; + Tb = iio[-WS(ios, 28)]; + Tc = rio[WS(ios, 12)]; + Td = Tb + Tc; + T5e = Tb - Tc; + T16 = iio[-WS(ios, 12)]; + T17 = rio[WS(ios, 28)]; + T18 = T16 - T17; + T5f = T17 + T16; + } + { + E T7, Te, T12, T19; + T5n = T5l - T5m; + T6y = T5t - T5s; + T77 = T5l + T5m; + T5u = T5s + T5t; + T7 = T3 + T6; + Te = Ta + Td; + Tf = T7 + Te; + T3i = T7 - Te; + { + E T5v, T5w, T3E, T3F; + T5v = T5i + T5h; + T5w = T5e + T5f; + T5x = KP707106781 * (T5v - T5w); + T76 = KP707106781 * (T5v + T5w); + T3E = T2j + T2m; + T3F = T15 + T18; + T3G = T3E - T3F; + T47 = T3F + T3E; + } + T12 = T3 - T6; + T19 = T15 - T18; + T1a = T12 + T19; + T2I = T12 - T19; + { + E T5g, T5j, T2g, T2n; + T5g = T5e - T5f; + T5j = T5h - T5i; + T5k = KP707106781 * (T5g - T5j); + T6z = KP707106781 * (T5j + T5g); + T2g = Td - Ta; + T2n = T2j - T2m; + T2o = T2g + T2n; + T2Y = T2n - T2g; + } + } + } + { + E Ti, T4Z, T1e, T53, Tl, T52, T1h, T50, Tp, T56, T1n, T5a, Ts, T59, T1q; + E T57; + { + E Tg, Th, T1c, T1d; + Tg = rio[WS(ios, 2)]; + Th = iio[-WS(ios, 18)]; + Ti = Tg + Th; + T4Z = Tg - Th; + T1c = iio[-WS(ios, 2)]; + T1d = rio[WS(ios, 18)]; + T1e = T1c - T1d; + T53 = T1c + T1d; + } + { + E Tj, Tk, T1f, T1g; + Tj = rio[WS(ios, 10)]; + Tk = iio[-WS(ios, 26)]; + Tl = Tj + Tk; + T52 = Tj - Tk; + T1f = iio[-WS(ios, 10)]; + T1g = rio[WS(ios, 26)]; + T1h = T1f - T1g; + T50 = T1f + T1g; + } + { + E Tn, To, T1l, T1m; + Tn = iio[-WS(ios, 30)]; + To = rio[WS(ios, 14)]; + Tp = Tn + To; + T56 = Tn - To; + T1l = iio[-WS(ios, 14)]; + T1m = rio[WS(ios, 30)]; + T1n = T1l - T1m; + T5a = T1m + T1l; + } + { + E Tq, Tr, T1o, T1p; + Tq = rio[WS(ios, 6)]; + Tr = iio[-WS(ios, 22)]; + Ts = Tq + Tr; + T59 = Tq - Tr; + T1o = iio[-WS(ios, 6)]; + T1p = rio[WS(ios, 22)]; + T1q = T1o - T1p; + T57 = T1o + T1p; + } + { + E Tm, Tt, T6B, T6C; + Tm = Ti + Tl; + Tt = Tp + Ts; + Tu = Tm + Tt; + T3D = Tt - Tm; + T6B = T53 - T52; + T6C = T4Z + T50; + T6D = FNMS(KP382683432, T6C, KP923879532 * T6B); + T73 = FMA(KP382683432, T6B, KP923879532 * T6C); + } + { + E T6E, T6F, T1b, T1i; + T6E = T56 + T57; + T6F = T59 + T5a; + T6G = FNMS(KP923879532, T6F, KP382683432 * T6E); + T74 = FMA(KP923879532, T6E, KP382683432 * T6F); + T1b = Ti - Tl; + T1i = T1e - T1h; + T1j = T1b + T1i; + T2d = T1i - T1b; + } + { + E T1k, T1r, T51, T54; + T1k = Tp - Ts; + T1r = T1n - T1q; + T1s = T1k - T1r; + T2e = T1k + T1r; + T51 = T4Z - T50; + T54 = T52 + T53; + T55 = FNMS(KP382683432, T54, KP923879532 * T51); + T5z = FMA(KP923879532, T54, KP382683432 * T51); + } + { + E T58, T5b, T3j, T3k; + T58 = T56 - T57; + T5b = T59 - T5a; + T5c = FMA(KP923879532, T58, KP382683432 * T5b); + T5A = FNMS(KP382683432, T58, KP923879532 * T5b); + T3j = T1e + T1h; + T3k = T1q + T1n; + T3l = T3j - T3k; + T48 = T3j + T3k; + } + } + { + E Ty, T4t, T1H, T4y, TB, T4x, T1K, T4u, TI, T4B, T1B, T4o, TF, T4A, T1y; + E T4r; + { + E Tw, Tx, T1I, T1J; + Tw = rio[WS(ios, 1)]; + Tx = iio[-WS(ios, 17)]; + Ty = Tw + Tx; + T4t = Tw - Tx; + { + E T1F, T1G, Tz, TA; + T1F = iio[-WS(ios, 1)]; + T1G = rio[WS(ios, 17)]; + T1H = T1F - T1G; + T4y = T1F + T1G; + Tz = rio[WS(ios, 9)]; + TA = iio[-WS(ios, 25)]; + TB = Tz + TA; + T4x = Tz - TA; + } + T1I = iio[-WS(ios, 9)]; + T1J = rio[WS(ios, 25)]; + T1K = T1I - T1J; + T4u = T1I + T1J; + { + E TG, TH, T4m, T1z, T1A, T4n; + TG = iio[-WS(ios, 29)]; + TH = rio[WS(ios, 13)]; + T4m = TG - TH; + T1z = iio[-WS(ios, 13)]; + T1A = rio[WS(ios, 29)]; + T4n = T1A + T1z; + TI = TG + TH; + T4B = T4m + T4n; + T1B = T1z - T1A; + T4o = T4m - T4n; + } + { + E TD, TE, T4q, T1w, T1x, T4p; + TD = rio[WS(ios, 5)]; + TE = iio[-WS(ios, 21)]; + T4q = TD - TE; + T1w = iio[-WS(ios, 5)]; + T1x = rio[WS(ios, 21)]; + T4p = T1w + T1x; + TF = TD + TE; + T4A = T4q + T4p; + T1y = T1w - T1x; + T4r = T4p - T4q; + } + } + { + E TC, TJ, T6J, T6K; + TC = Ty + TB; + TJ = TF + TI; + TK = TC + TJ; + T3n = TC - TJ; + T6J = T4y - T4x; + T6K = KP707106781 * (T4r + T4o); + T6L = T6J + T6K; + T7t = T6J - T6K; + } + { + E T6M, T6N, T1v, T1C; + T6M = KP707106781 * (T4A + T4B); + T6N = T4t + T4u; + T6O = T6M + T6N; + T7s = T6N - T6M; + T1v = Ty - TB; + T1C = T1y - T1B; + T1D = T1v + T1C; + T2L = T1v - T1C; + } + { + E T1E, T1L, T4s, T4v; + T1E = TI - TF; + T1L = T1H - T1K; + T1M = T1E + T1L; + T2M = T1L - T1E; + T4s = KP707106781 * (T4o - T4r); + T4v = T4t - T4u; + T4w = T4s + T4v; + T62 = T4v - T4s; + } + { + E T4z, T4C, T3o, T3p; + T4z = T4x + T4y; + T4C = KP707106781 * (T4A - T4B); + T4D = T4z + T4C; + T61 = T4z - T4C; + T3o = T1H + T1K; + T3p = T1y + T1B; + T3q = T3o - T3p; + T41 = T3p + T3o; + } + } + { + E TN, T4T, T20, T4N, TQ, T4M, T23, T4U, TX, T4Q, T1U, T4K, TU, T4R, T1R; + E T4H; + { + E TL, TM, T21, T22; + TL = iio[-WS(ios, 31)]; + TM = rio[WS(ios, 15)]; + TN = TL + TM; + T4T = TL - TM; + { + E T1Y, T1Z, TO, TP; + T1Y = iio[-WS(ios, 15)]; + T1Z = rio[WS(ios, 31)]; + T20 = T1Y - T1Z; + T4N = T1Z + T1Y; + TO = rio[WS(ios, 7)]; + TP = iio[-WS(ios, 23)]; + TQ = TO + TP; + T4M = TO - TP; + } + T21 = iio[-WS(ios, 7)]; + T22 = rio[WS(ios, 23)]; + T23 = T21 - T22; + T4U = T21 + T22; + { + E TV, TW, T4I, T1S, T1T, T4J; + TV = iio[-WS(ios, 27)]; + TW = rio[WS(ios, 11)]; + T4I = TV - TW; + T1S = iio[-WS(ios, 11)]; + T1T = rio[WS(ios, 27)]; + T4J = T1T + T1S; + TX = TV + TW; + T4Q = T4I - T4J; + T1U = T1S - T1T; + T4K = T4I + T4J; + } + { + E TS, TT, T4F, T1P, T1Q, T4G; + TS = rio[WS(ios, 3)]; + TT = iio[-WS(ios, 19)]; + T4F = TS - TT; + T1P = iio[-WS(ios, 3)]; + T1Q = rio[WS(ios, 19)]; + T4G = T1P + T1Q; + TU = TS + TT; + T4R = T4G - T4F; + T1R = T1P - T1Q; + T4H = T4F + T4G; + } + } + { + E TR, TY, T6Q, T6R; + TR = TN + TQ; + TY = TU + TX; + TZ = TR + TY; + T3s = TR - TY; + T6Q = KP707106781 * (T4R + T4Q); + T6R = T4M + T4N; + T6S = T6Q - T6R; + T7w = T6Q + T6R; + } + { + E T6T, T6U, T1O, T1V; + T6T = KP707106781 * (T4H + T4K); + T6U = T4T + T4U; + T6V = T6T + T6U; + T7v = T6U - T6T; + T1O = TN - TQ; + T1V = T1R - T1U; + T1W = T1O + T1V; + T2O = T1O - T1V; + } + { + E T1X, T24, T4L, T4O; + T1X = TX - TU; + T24 = T20 - T23; + T25 = T1X + T24; + T2P = T24 - T1X; + T4L = KP707106781 * (T4H - T4K); + T4O = T4M - T4N; + T4P = T4L + T4O; + T64 = T4O - T4L; + } + { + E T4S, T4V, T3t, T3u; + T4S = KP707106781 * (T4Q - T4R); + T4V = T4T - T4U; + T4W = T4S + T4V; + T65 = T4V - T4S; + T3t = T20 + T23; + T3u = T1R + T1U; + T3v = T3t - T3u; + T42 = T3u + T3t; + } + } + { + E Tv, T10, T4g, T4i, T4j, T4k, T4f, T4h; + Tv = Tf + Tu; + T10 = TK + TZ; + T4g = Tv - T10; + T4i = T48 + T47; + T4j = T41 + T42; + T4k = T4i - T4j; + rio[0] = Tv + T10; + iio[-WS(ios, 31)] = T4j + T4i; + T4f = W[30]; + T4h = W[31]; + rio[WS(ios, 16)] = FNMS(T4h, T4k, T4f * T4g); + iio[-WS(ios, 15)] = FMA(T4h, T4g, T4f * T4k); + } + { + E T44, T4c, T4a, T4e; + { + E T40, T43, T46, T49; + T40 = Tf - Tu; + T43 = T41 - T42; + T44 = T40 + T43; + T4c = T40 - T43; + T46 = TZ - TK; + T49 = T47 - T48; + T4a = T46 + T49; + T4e = T49 - T46; + } + { + E T3Z, T45, T4b, T4d; + T3Z = W[46]; + T45 = W[47]; + rio[WS(ios, 24)] = FNMS(T45, T4a, T3Z * T44); + iio[-WS(ios, 7)] = FMA(T45, T44, T3Z * T4a); + T4b = W[14]; + T4d = W[15]; + rio[WS(ios, 8)] = FNMS(T4d, T4e, T4b * T4c); + iio[-WS(ios, 23)] = FMA(T4d, T4c, T4b * T4e); + } + } + { + E T3m, T3H, T3T, T3O, T3C, T3P, T3x, T3S; + T3m = T3i + T3l; + T3H = T3D + T3G; + T3T = T3G - T3D; + T3O = T3i - T3l; + { + E T3A, T3B, T3r, T3w; + T3A = T3q - T3n; + T3B = T3s + T3v; + T3C = KP707106781 * (T3A + T3B); + T3P = KP707106781 * (T3B - T3A); + T3r = T3n + T3q; + T3w = T3s - T3v; + T3x = KP707106781 * (T3r + T3w); + T3S = KP707106781 * (T3r - T3w); + } + { + E T3y, T3I, T3h, T3z; + T3y = T3m + T3x; + T3I = T3C + T3H; + T3h = W[54]; + T3z = W[55]; + rio[WS(ios, 28)] = FNMS(T3z, T3I, T3h * T3y); + iio[-WS(ios, 3)] = FMA(T3z, T3y, T3h * T3I); + } + { + E T3W, T3Y, T3V, T3X; + T3W = T3O - T3P; + T3Y = T3T - T3S; + T3V = W[38]; + T3X = W[39]; + rio[WS(ios, 20)] = FNMS(T3X, T3Y, T3V * T3W); + iio[-WS(ios, 11)] = FMA(T3X, T3W, T3V * T3Y); + } + { + E T3K, T3M, T3J, T3L; + T3K = T3m - T3x; + T3M = T3H - T3C; + T3J = W[22]; + T3L = W[23]; + rio[WS(ios, 12)] = FNMS(T3L, T3M, T3J * T3K); + iio[-WS(ios, 19)] = FMA(T3L, T3K, T3J * T3M); + } + { + E T3Q, T3U, T3N, T3R; + T3Q = T3O + T3P; + T3U = T3S + T3T; + T3N = W[6]; + T3R = W[7]; + rio[WS(ios, 4)] = FNMS(T3R, T3U, T3N * T3Q); + iio[-WS(ios, 27)] = FMA(T3R, T3Q, T3N * T3U); + } + } + { + E T2K, T36, T2Z, T3b, T2R, T3a, T2W, T37, T2J, T2X; + T2J = KP707106781 * (T2e - T2d); + T2K = T2I + T2J; + T36 = T2I - T2J; + T2X = KP707106781 * (T1j - T1s); + T2Z = T2X + T2Y; + T3b = T2Y - T2X; + { + E T2N, T2Q, T2U, T2V; + T2N = FNMS(KP382683432, T2M, KP923879532 * T2L); + T2Q = FMA(KP923879532, T2O, KP382683432 * T2P); + T2R = T2N + T2Q; + T3a = T2Q - T2N; + T2U = FMA(KP382683432, T2L, KP923879532 * T2M); + T2V = FNMS(KP382683432, T2O, KP923879532 * T2P); + T2W = T2U + T2V; + T37 = T2U - T2V; + } + { + E T2S, T30, T2H, T2T; + T2S = T2K + T2R; + T30 = T2W + T2Z; + T2H = W[2]; + T2T = W[3]; + rio[WS(ios, 2)] = FNMS(T2T, T30, T2H * T2S); + iio[-WS(ios, 29)] = FMA(T2T, T2S, T2H * T30); + } + { + E T3e, T3g, T3d, T3f; + T3e = T36 - T37; + T3g = T3b - T3a; + T3d = W[18]; + T3f = W[19]; + rio[WS(ios, 10)] = FNMS(T3f, T3g, T3d * T3e); + iio[-WS(ios, 21)] = FMA(T3f, T3e, T3d * T3g); + } + { + E T32, T34, T31, T33; + T32 = T2K - T2R; + T34 = T2Z - T2W; + T31 = W[34]; + T33 = W[35]; + rio[WS(ios, 18)] = FNMS(T33, T34, T31 * T32); + iio[-WS(ios, 13)] = FMA(T33, T32, T31 * T34); + } + { + E T38, T3c, T35, T39; + T38 = T36 + T37; + T3c = T3a + T3b; + T35 = W[50]; + T39 = W[51]; + rio[WS(ios, 26)] = FNMS(T39, T3c, T35 * T38); + iio[-WS(ios, 5)] = FMA(T39, T38, T35 * T3c); + } + } + { + E T1u, T2w, T2p, T2B, T27, T2A, T2c, T2x, T1t, T2f; + T1t = KP707106781 * (T1j + T1s); + T1u = T1a + T1t; + T2w = T1a - T1t; + T2f = KP707106781 * (T2d + T2e); + T2p = T2f + T2o; + T2B = T2o - T2f; + { + E T1N, T26, T2a, T2b; + T1N = FMA(KP923879532, T1D, KP382683432 * T1M); + T26 = FNMS(KP382683432, T25, KP923879532 * T1W); + T27 = T1N + T26; + T2A = T1N - T26; + T2a = FNMS(KP382683432, T1D, KP923879532 * T1M); + T2b = FMA(KP382683432, T1W, KP923879532 * T25); + T2c = T2a + T2b; + T2x = T2b - T2a; + } + { + E T28, T2q, T11, T29; + T28 = T1u + T27; + T2q = T2c + T2p; + T11 = W[58]; + T29 = W[59]; + rio[WS(ios, 30)] = FNMS(T29, T2q, T11 * T28); + iio[-WS(ios, 1)] = FMA(T29, T28, T11 * T2q); + } + { + E T2E, T2G, T2D, T2F; + T2E = T2w - T2x; + T2G = T2B - T2A; + T2D = W[42]; + T2F = W[43]; + rio[WS(ios, 22)] = FNMS(T2F, T2G, T2D * T2E); + iio[-WS(ios, 9)] = FMA(T2F, T2E, T2D * T2G); + } + { + E T2s, T2u, T2r, T2t; + T2s = T1u - T27; + T2u = T2p - T2c; + T2r = W[26]; + T2t = W[27]; + rio[WS(ios, 14)] = FNMS(T2t, T2u, T2r * T2s); + iio[-WS(ios, 17)] = FMA(T2t, T2s, T2r * T2u); + } + { + E T2y, T2C, T2v, T2z; + T2y = T2w + T2x; + T2C = T2A + T2B; + T2v = W[10]; + T2z = W[11]; + rio[WS(ios, 6)] = FNMS(T2z, T2C, T2v * T2y); + iio[-WS(ios, 25)] = FMA(T2z, T2y, T2v * T2C); + } + } + { + E T4Y, T5N, T5F, T5Q, T5p, T5R, T5C, T5M; + { + E T4E, T4X, T5D, T5E; + T4E = FNMS(KP195090322, T4D, KP980785280 * T4w); + T4X = FMA(KP195090322, T4P, KP980785280 * T4W); + T4Y = T4E + T4X; + T5N = T4X - T4E; + T5D = FMA(KP980785280, T4D, KP195090322 * T4w); + T5E = FNMS(KP195090322, T4W, KP980785280 * T4P); + T5F = T5D + T5E; + T5Q = T5D - T5E; + } + { + E T5d, T5o, T5y, T5B; + T5d = T55 + T5c; + T5o = T5k + T5n; + T5p = T5d + T5o; + T5R = T5o - T5d; + T5y = T5u + T5x; + T5B = T5z + T5A; + T5C = T5y + T5B; + T5M = T5y - T5B; + } + { + E T5q, T5G, T4l, T5r; + T5q = T4Y + T5p; + T5G = T5C + T5F; + T4l = W[0]; + T5r = W[1]; + rio[WS(ios, 1)] = FNMS(T5r, T5G, T4l * T5q); + iio[-WS(ios, 30)] = FMA(T4l, T5G, T5r * T5q); + } + { + E T5U, T5W, T5T, T5V; + T5U = T5R - T5Q; + T5W = T5M - T5N; + T5T = W[16]; + T5V = W[17]; + rio[WS(ios, 9)] = FNMS(T5V, T5W, T5T * T5U); + iio[-WS(ios, 22)] = FMA(T5T, T5W, T5V * T5U); + } + { + E T5I, T5K, T5H, T5J; + T5I = T5C - T5F; + T5K = T5p - T4Y; + T5H = W[32]; + T5J = W[33]; + iio[-WS(ios, 14)] = FMA(T5H, T5I, T5J * T5K); + rio[WS(ios, 17)] = FNMS(T5J, T5I, T5H * T5K); + } + { + E T5O, T5S, T5L, T5P; + T5O = T5M + T5N; + T5S = T5Q + T5R; + T5L = W[48]; + T5P = W[49]; + iio[-WS(ios, 6)] = FMA(T5L, T5O, T5P * T5S); + rio[WS(ios, 25)] = FNMS(T5P, T5O, T5L * T5S); + } + } + { + E T60, T6q, T6f, T6n, T67, T6m, T6c, T6r; + { + E T5Y, T5Z, T6d, T6e; + T5Y = T5u - T5x; + T5Z = T5c - T55; + T60 = T5Y + T5Z; + T6q = T5Y - T5Z; + T6d = T5z - T5A; + T6e = T5n - T5k; + T6f = T6d + T6e; + T6n = T6e - T6d; + } + { + E T63, T66, T6a, T6b; + T63 = FNMS(KP555570233, T62, KP831469612 * T61); + T66 = FMA(KP831469612, T64, KP555570233 * T65); + T67 = T63 + T66; + T6m = T66 - T63; + T6a = FMA(KP555570233, T61, KP831469612 * T62); + T6b = FNMS(KP555570233, T64, KP831469612 * T65); + T6c = T6a + T6b; + T6r = T6a - T6b; + } + { + E T68, T6g, T5X, T69; + T68 = T60 + T67; + T6g = T6c + T6f; + T5X = W[56]; + T69 = W[57]; + iio[-WS(ios, 2)] = FMA(T5X, T68, T69 * T6g); + rio[WS(ios, 29)] = FNMS(T69, T68, T5X * T6g); + } + { + E T6u, T6w, T6t, T6v; + T6u = T6q - T6r; + T6w = T6n - T6m; + T6t = W[40]; + T6v = W[41]; + iio[-WS(ios, 10)] = FMA(T6t, T6u, T6v * T6w); + rio[WS(ios, 21)] = FNMS(T6v, T6u, T6t * T6w); + } + { + E T6i, T6k, T6h, T6j; + T6i = T6f - T6c; + T6k = T60 - T67; + T6h = W[24]; + T6j = W[25]; + rio[WS(ios, 13)] = FNMS(T6j, T6k, T6h * T6i); + iio[-WS(ios, 18)] = FMA(T6h, T6k, T6j * T6i); + } + { + E T6o, T6s, T6l, T6p; + T6o = T6m + T6n; + T6s = T6q + T6r; + T6l = W[8]; + T6p = W[9]; + rio[WS(ios, 5)] = FNMS(T6p, T6s, T6l * T6o); + iio[-WS(ios, 26)] = FMA(T6l, T6s, T6p * T6o); + } + } + { + E T7y, T7R, T7J, T7U, T7B, T7V, T7G, T7Q; + { + E T7u, T7x, T7H, T7I; + T7u = FNMS(KP555570233, T7t, KP831469612 * T7s); + T7x = FNMS(KP555570233, T7w, KP831469612 * T7v); + T7y = T7u + T7x; + T7R = T7x - T7u; + T7H = FMA(KP831469612, T7t, KP555570233 * T7s); + T7I = FMA(KP831469612, T7w, KP555570233 * T7v); + T7J = T7H - T7I; + T7U = T7H + T7I; + } + { + E T7z, T7A, T7E, T7F; + T7z = T6G - T6D; + T7A = T77 - T76; + T7B = T7z + T7A; + T7V = T7A - T7z; + T7E = T6y - T6z; + T7F = T73 - T74; + T7G = T7E + T7F; + T7Q = T7E - T7F; + } + { + E T7C, T7K, T7r, T7D; + T7C = T7y + T7B; + T7K = T7G + T7J; + T7r = W[4]; + T7D = W[5]; + rio[WS(ios, 3)] = FNMS(T7D, T7K, T7r * T7C); + iio[-WS(ios, 28)] = FMA(T7r, T7K, T7D * T7C); + } + { + E T7Y, T80, T7X, T7Z; + T7Y = T7V - T7U; + T80 = T7Q - T7R; + T7X = W[20]; + T7Z = W[21]; + rio[WS(ios, 11)] = FNMS(T7Z, T80, T7X * T7Y); + iio[-WS(ios, 20)] = FMA(T7X, T80, T7Z * T7Y); + } + { + E T7M, T7O, T7L, T7N; + T7M = T7G - T7J; + T7O = T7B - T7y; + T7L = W[36]; + T7N = W[37]; + iio[-WS(ios, 12)] = FMA(T7L, T7M, T7N * T7O); + rio[WS(ios, 19)] = FNMS(T7N, T7M, T7L * T7O); + } + { + E T7S, T7W, T7P, T7T; + T7S = T7Q + T7R; + T7W = T7U + T7V; + T7P = W[52]; + T7T = W[53]; + iio[-WS(ios, 4)] = FMA(T7P, T7S, T7T * T7W); + rio[WS(ios, 27)] = FNMS(T7T, T7S, T7P * T7W); + } + } + { + E T6I, T7k, T79, T7h, T6X, T7g, T72, T7l; + { + E T6A, T6H, T75, T78; + T6A = T6y + T6z; + T6H = T6D + T6G; + T6I = T6A + T6H; + T7k = T6A - T6H; + T75 = T73 + T74; + T78 = T76 + T77; + T79 = T75 + T78; + T7h = T78 - T75; + } + { + E T6P, T6W, T70, T71; + T6P = FNMS(KP195090322, T6O, KP980785280 * T6L); + T6W = FMA(KP980785280, T6S, KP195090322 * T6V); + T6X = T6P + T6W; + T7g = T6W - T6P; + T70 = FMA(KP195090322, T6L, KP980785280 * T6O); + T71 = FNMS(KP195090322, T6S, KP980785280 * T6V); + T72 = T70 + T71; + T7l = T70 - T71; + } + { + E T6Y, T7a, T6x, T6Z; + T6Y = T6I + T6X; + T7a = T72 + T79; + T6x = W[60]; + T6Z = W[61]; + iio[0] = FMA(T6x, T6Y, T6Z * T7a); + rio[WS(ios, 31)] = FNMS(T6Z, T6Y, T6x * T7a); + } + { + E T7o, T7q, T7n, T7p; + T7o = T7k - T7l; + T7q = T7h - T7g; + T7n = W[44]; + T7p = W[45]; + iio[-WS(ios, 8)] = FMA(T7n, T7o, T7p * T7q); + rio[WS(ios, 23)] = FNMS(T7p, T7o, T7n * T7q); + } + { + E T7c, T7e, T7b, T7d; + T7c = T79 - T72; + T7e = T6I - T6X; + T7b = W[28]; + T7d = W[29]; + rio[WS(ios, 15)] = FNMS(T7d, T7e, T7b * T7c); + iio[-WS(ios, 16)] = FMA(T7b, T7e, T7d * T7c); + } + { + E T7i, T7m, T7f, T7j; + T7i = T7g + T7h; + T7m = T7k + T7l; + T7f = W[12]; + T7j = W[13]; + rio[WS(ios, 7)] = FNMS(T7j, T7m, T7f * T7i); + iio[-WS(ios, 24)] = FMA(T7f, T7m, T7j * T7i); + } + } + } + return W; +} + +static const tw_instr twinstr[] = { + {TW_FULL, 0, 32}, + {TW_NEXT, 1, 0} +}; + +static const hc2hc_desc desc = { 32, "hb_32", twinstr, {340, 114, 94, 0}, &GENUS, 0, 0, 0 }; + +void X(codelet_hb_32) (planner *p) { + X(khc2hc_dif_register) (p, hb_32, &desc); +} |