diff options
Diffstat (limited to 'src/fftw3/rdft/codelets/r2hc/hf2_64.c')
-rw-r--r-- | src/fftw3/rdft/codelets/r2hc/hf2_64.c | 1906 |
1 files changed, 0 insertions, 1906 deletions
diff --git a/src/fftw3/rdft/codelets/r2hc/hf2_64.c b/src/fftw3/rdft/codelets/r2hc/hf2_64.c deleted file mode 100644 index fc2ec21..0000000 --- a/src/fftw3/rdft/codelets/r2hc/hf2_64.c +++ /dev/null @@ -1,1906 +0,0 @@ -/* - * Copyright (c) 2003 Matteo Frigo - * Copyright (c) 2003 Massachusetts Institute of Technology - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License as published by - * the Free Software Foundation; either version 2 of the License, or - * (at your option) any later version. - * - * This program is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - * GNU General Public License for more details. - * - * You should have received a copy of the GNU General Public License - * along with this program; if not, write to the Free Software - * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA - * - */ - -/* This file was automatically generated --- DO NOT EDIT */ -/* Generated on Sat Jul 5 21:57:57 EDT 2003 */ - -#include "codelet-rdft.h" - -/* Generated by: /homee/stevenj/cvs/fftw3.0.1/genfft/gen_hc2hc -compact -variables 4 -twiddle-log3 -n 64 -dit -name hf2_64 -include hf.h */ - -/* - * This function contains 1154 FP additions, 660 FP multiplications, - * (or, 880 additions, 386 multiplications, 274 fused multiply/add), - * 382 stack variables, and 256 memory accesses - */ -/* - * Generator Id's : - * $Id: hf2_64.c,v 1.1 2008/10/17 06:12:34 scuri Exp $ - * $Id: hf2_64.c,v 1.1 2008/10/17 06:12:34 scuri Exp $ - * $Id: hf2_64.c,v 1.1 2008/10/17 06:12:34 scuri Exp $ - */ - -#include "hf.h" - -static const R *hf2_64(R *rio, R *iio, const R *W, stride ios, int m, int dist) -{ - DK(KP290284677, +0.290284677254462367636192375817395274691476278); - DK(KP956940335, +0.956940335732208864935797886980269969482849206); - DK(KP881921264, +0.881921264348355029712756863660388349508442621); - DK(KP471396736, +0.471396736825997648556387625905254377657460319); - DK(KP098017140, +0.098017140329560601994195563888641845861136673); - DK(KP995184726, +0.995184726672196886244836953109479921575474869); - DK(KP773010453, +0.773010453362736960810906609758469800971041293); - DK(KP634393284, +0.634393284163645498215171613225493370675687095); - DK(KP555570233, +0.555570233019602224742830813948532874374937191); - DK(KP831469612, +0.831469612302545237078788377617905756738560812); - DK(KP980785280, +0.980785280403230449126182236134239036973933731); - DK(KP195090322, +0.195090322016128267848284868477022240927691618); - DK(KP707106781, +0.707106781186547524400844362104849039284835938); - DK(KP923879532, +0.923879532511286756128183189396788286822416626); - DK(KP382683432, +0.382683432365089771728459984030398866761344562); - int i; - for (i = m - 2; i > 0; i = i - 2, rio = rio + dist, iio = iio - dist, W = W + 10) { - E T1, T1g, T91, T7W, T7m, T2O, T4j, T7P, T4P, T8y, T2w, T8t, T2Z, T8e, T48; - E T1z, T7s, T1I, T7t, T8p, Ten, T1Y, T7D, T2t, T7O, T7L, Te6, T3N, T8E, T7A; - E Te0, T4C, TeA, T8S, T9v, T65, Tfi, T9J, Taq, T6K, Tf6, Ta2, Ta5, T73, Tfc; - E Tad, Tag, T3z, T83, T3u, T82, T81, T84, T15, T9K, T68, T7j, T43, T9w, T4F; - E T8G, T5l, TeL, T9k, T9n, T6o, Tf2, T9Q, T9R, T6z, Tf3, T9T, T9W, To, Ts; - E T4o, T8u, T4U, T92, T5a, TeT, T8V, T8Y, T5G, TeG, T97, T9e, T27, T7X, T2T; - E T7E, T7b, Tai, T6T, Ta3, Tf7, Ta8, T7Q, T2H, T2c, T76, Tah, T7F, T4d, T8z; - E TG, TK, T69, T6b, T3b, T87, T5u, T9l, TeM, T9q, T88, T89, T3o, T86, T5P; - E T9f, TeH, T9a, T34, T8f, T1r, T7n, T3S, T8F, T4G, T4I, Tp, T6c, TH, T6a; - E TL, Ti1, T4H, T4J, Tt; - T1 = rio[0]; - { - E T12, T67, T14, T66, T6s, T1b, T1f, T6q, T1m, T6x, T1w, T1q, T6v, T6h, T31; - E T1D, T5I, T1y, T6g, T1S, T6m, T1N, T6W, T6Y, T1M, T6k, T1H, T2Y, T5L, T2W; - E T5N, T2b, T74, T2g, T29, T75, T26, T78, T1W, T22, T7a, T6R, T2u, T6P, T2v; - E T6L, T6M, T2E, T2G, T6I, T5Z, T2n, T63, T6G, T2r, T5H, T33, T5E, T2Q, T5z; - E T5C, T2S, T2M, T5q, T3a, T38, T5s, T2N, T5x, T5n, T3l, T5m, T3n, T5h, T5j; - E T3w, T3y, T58, T4a, T3t, T5d, T3r, T5e, T54, T4c, T4Z, T46, T4T, T4X, T47; - E T4l, T4N, T4i, T4g, T4O, T4n, T4R, T4E, T40, T4D, T42, T4y, T4A, T3J, T3L; - E T3R, T3G, T3E, T3P, T2i, Ta, Ty, Tf, Tw, T2, Tj, T3, Tc, T1E, T1B; - E T1F, T1A, T1R, T3x, T2m, T3K, T61, T1V, T60, T3I, T51, T52, T2V, T56, T5X; - E T3v, T55, T2X, T2q, T5W, T4w, T6E, Ta0, T8Q, Tac, T72, Tb, Tg, Th, T3e; - E T3f, T3h, T1a, T2x, T2B, TU, TV, TY, T1e, T2y, T2A, TC, TD, T1u, Tk; - E Tl, Tm, T39, T3U, T3W, T37, T3T, T3X, TQ, TR, TZ, T3c, T3d, T3i, Tx; - E Tz, T1t, TN, TX, T2f, T5V, Tao, T2h, T3D, T4f, T4h, T3F, T3q, T3s; - T12 = rio[WS(ios, 48)]; - T67 = iio[-WS(ios, 48)]; - T14 = iio[-WS(ios, 15)]; - T66 = rio[WS(ios, 15)]; - T6s = iio[-WS(ios, 8)]; - T1b = rio[WS(ios, 8)]; - T1f = iio[-WS(ios, 55)]; - T6q = rio[WS(ios, 55)]; - T1m = rio[WS(ios, 40)]; - T6x = iio[-WS(ios, 40)]; - T1w = rio[WS(ios, 56)]; - T1q = iio[-WS(ios, 23)]; - T6v = rio[WS(ios, 23)]; - T6h = iio[-WS(ios, 56)]; - T31 = rio[WS(ios, 50)]; - T1D = rio[WS(ios, 24)]; - T5I = iio[-WS(ios, 50)]; - T1y = iio[-WS(ios, 7)]; - T6g = rio[WS(ios, 7)]; - T1S = rio[WS(ios, 36)]; - T6m = iio[-WS(ios, 24)]; - T1N = iio[-WS(ios, 59)]; - T6W = rio[WS(ios, 59)]; - T6Y = iio[-WS(ios, 4)]; - T1M = rio[WS(ios, 4)]; - T6k = rio[WS(ios, 39)]; - T1H = iio[-WS(ios, 39)]; - T2Y = iio[-WS(ios, 45)]; - T5L = rio[WS(ios, 45)]; - T2W = rio[WS(ios, 18)]; - T5N = iio[-WS(ios, 18)]; - T2b = iio[-WS(ios, 11)]; - T74 = rio[WS(ios, 11)]; - T2g = rio[WS(ios, 60)]; - T29 = rio[WS(ios, 52)]; - T75 = iio[-WS(ios, 52)]; - T26 = iio[-WS(ios, 43)]; - T78 = rio[WS(ios, 43)]; - T1W = iio[-WS(ios, 27)]; - T22 = rio[WS(ios, 20)]; - T7a = iio[-WS(ios, 20)]; - T6R = iio[-WS(ios, 12)]; - T2u = rio[WS(ios, 12)]; - T6P = rio[WS(ios, 51)]; - T2v = iio[-WS(ios, 51)]; - T6L = rio[WS(ios, 19)]; - T6M = iio[-WS(ios, 44)]; - T2E = rio[WS(ios, 44)]; - T2G = iio[-WS(ios, 19)]; - T6I = iio[-WS(ios, 28)]; - T5Z = rio[WS(ios, 31)]; - T2n = rio[WS(ios, 28)]; - T63 = iio[-WS(ios, 32)]; - T6G = rio[WS(ios, 35)]; - T2r = iio[-WS(ios, 35)]; - T5H = rio[WS(ios, 13)]; - T33 = iio[-WS(ios, 13)]; - T5E = iio[-WS(ios, 34)]; - T2Q = rio[WS(ios, 34)]; - T5z = iio[-WS(ios, 2)]; - T5C = rio[WS(ios, 29)]; - T2S = iio[-WS(ios, 29)]; - T2M = rio[WS(ios, 2)]; - T5q = rio[WS(ios, 53)]; - T3a = iio[-WS(ios, 53)]; - T38 = rio[WS(ios, 10)]; - T5s = iio[-WS(ios, 10)]; - T2N = iio[-WS(ios, 61)]; - T5x = rio[WS(ios, 61)]; - T5n = iio[-WS(ios, 42)]; - T3l = rio[WS(ios, 42)]; - T5m = rio[WS(ios, 21)]; - T3n = iio[-WS(ios, 21)]; - T5h = rio[WS(ios, 37)]; - T5j = iio[-WS(ios, 26)]; - T3w = rio[WS(ios, 26)]; - T3y = iio[-WS(ios, 37)]; - T58 = iio[-WS(ios, 38)]; - T4a = rio[WS(ios, 38)]; - T3t = iio[-WS(ios, 5)]; - T5d = rio[WS(ios, 5)]; - T3r = rio[WS(ios, 58)]; - T5e = iio[-WS(ios, 58)]; - T54 = rio[WS(ios, 25)]; - T4c = iio[-WS(ios, 25)]; - T4Z = iio[-WS(ios, 6)]; - T46 = rio[WS(ios, 6)]; - T4T = iio[-WS(ios, 22)]; - T4X = rio[WS(ios, 57)]; - T47 = iio[-WS(ios, 57)]; - T4l = rio[WS(ios, 22)]; - T4N = rio[WS(ios, 9)]; - T4i = iio[-WS(ios, 9)]; - T4g = rio[WS(ios, 54)]; - T4O = iio[-WS(ios, 54)]; - T4n = iio[-WS(ios, 41)]; - T4R = rio[WS(ios, 41)]; - T4E = iio[-WS(ios, 46)]; - T40 = rio[WS(ios, 46)]; - T4D = rio[WS(ios, 17)]; - T42 = iio[-WS(ios, 17)]; - T4y = rio[WS(ios, 33)]; - T4A = iio[-WS(ios, 30)]; - T3J = rio[WS(ios, 30)]; - T3L = iio[-WS(ios, 33)]; - T3R = iio[-WS(ios, 49)]; - T3G = iio[-WS(ios, 1)]; - T3E = rio[WS(ios, 62)]; - T3P = rio[WS(ios, 14)]; - T2i = iio[-WS(ios, 3)]; - { - E T4u, T70, T71, T4v, T5T, T6C, T6D, T5U, T4, T7, T5, T8, TO, TP, T1U; - E T2p, T18, T2k, T2l, T2o, TT, TS, T19, T1c, T1T, T1P, T1Q, T1d; - T4u = rio[WS(ios, 1)]; - T70 = rio[WS(ios, 27)]; - T71 = iio[-WS(ios, 36)]; - T4v = iio[-WS(ios, 62)]; - T5T = rio[WS(ios, 63)]; - T6C = rio[WS(ios, 3)]; - T6D = iio[-WS(ios, 60)]; - T5U = iio[0]; - { - E T6, Te, T9, Td; - T4 = W[2]; - T7 = W[3]; - T5 = W[0]; - T8 = W[1]; - T6 = T4 * T5; - Te = T7 * T5; - T9 = T7 * T8; - Td = T4 * T8; - Ta = T6 - T9; - Ty = Td - Te; - Tf = Td + Te; - Tw = T6 + T9; - T2 = W[6]; - Tj = W[7]; - T3 = W[4]; - Tc = W[5]; - TO = T3 * T4; - TP = Tc * T7; - T1U = Tj * T3; - T2p = Tj * T5; - T18 = T3 * T5; - T2k = T2 * T5; - T2l = Tj * T8; - T2o = T2 * T8; - TT = Tc * T4; - TS = T3 * T7; - T19 = Tc * T8; - T1c = T3 * T8; - T1E = T2 * T7; - T1T = T2 * Tc; - T1B = Tj * T7; - T1F = Tj * T4; - T1P = T2 * T3; - T1Q = Tj * Tc; - T1A = T2 * T4; - T1d = Tc * T5; - } - T1R = T1P - T1Q; - T3x = T2o - T2p; - T2m = T2k - T2l; - T3K = T1E + T1F; - T61 = Tj * Ta; - T1V = T1T + T1U; - T60 = T2 * Tf; - T3I = T1A - T1B; - T51 = T2 * Tw; - T52 = Tj * Ty; - T2V = T1P + T1Q; - T56 = Tj * Tw; - T5X = Tj * Tf; - T3v = T2k + T2l; - T55 = T2 * Ty; - T2X = T1T - T1U; - T2q = T2o + T2p; - T5W = T2 * Ta; - T4w = FMA(T5, T4u, T8 * T4v); - T6E = FMA(T4, T6C, T7 * T6D); - Ta0 = FNMS(T7, T6C, T4 * T6D); - T8Q = FNMS(T8, T4u, T5 * T4v); - Tac = FNMS(Tj, T70, T2 * T71); - T72 = FMA(T2, T70, Tj * T71); - Tb = T3 * Ta; - Tg = Tc * Tf; - Th = Tb + Tg; - T3e = TS - TT; - T3f = Tj * T3e; - T3h = T2 * T3e; - T1a = T18 + T19; - T2x = T2 * T1a; - T2B = Tj * T1a; - TU = TS + TT; - TV = Tj * TU; - TY = T2 * TU; - T1e = T1c - T1d; - T2y = Tj * T1e; - T2A = T2 * T1e; - TC = T3 * Ty; - TD = Tc * Tw; - T1u = TC + TD; - Tk = T3 * Tf; - Tl = Tc * Ta; - Tm = Tk - Tl; - T39 = T1c + T1d; - T3U = Tj * T39; - T3W = T2 * T39; - T37 = T18 - T19; - T3T = T2 * T37; - T3X = Tj * T37; - TQ = TO - TP; - TR = T2 * TQ; - TZ = Tj * TQ; - T3c = TO + TP; - T3d = T2 * T3c; - T3i = Tj * T3c; - Tx = T3 * Tw; - Tz = Tc * Ty; - T1t = Tx - Tz; - TN = W[8]; - TX = W[9]; - T2f = FMA(TN, T4, TX * T7); - T5V = FMA(TN, T5T, TX * T5U); - Tao = FNMS(TX, T5T, TN * T5U); - T2h = FNMS(TX, T4, TN * T7); - T3D = FMA(TN, T5, TX * T8); - T4f = FMA(TN, T3, TX * Tc); - T4h = FNMS(TX, T3, TN * Tc); - T3F = FNMS(TX, T5, TN * T8); - } - T1g = FNMS(T1e, T1f, T1a * T1b); - T91 = FNMS(Tc, T4N, T3 * T4O); - T7W = FMA(Ty, T2M, Tw * T2N); - T7m = FMA(T1e, T1b, T1a * T1f); - T2O = FNMS(Ty, T2N, Tw * T2M); - T4j = FNMS(T4h, T4i, T4f * T4g); - T7P = FNMS(TU, T2u, TQ * T2v); - T4P = FMA(T3, T4N, Tc * T4O); - T8y = FMA(T3e, T46, T3c * T47); - T2w = FMA(TQ, T2u, TU * T2v); - { - E T1v, T1x, T1O, T1X; - T8t = FMA(T4h, T4g, T4f * T4i); - T2Z = FNMS(T2X, T2Y, T2V * T2W); - T8e = FMA(T2X, T2W, T2V * T2Y); - T48 = FNMS(T3e, T47, T3c * T46); - T1v = FMA(TN, T1t, TX * T1u); - T1x = FNMS(TX, T1t, TN * T1u); - T1z = FNMS(T1x, T1y, T1v * T1w); - T7s = FMA(T1x, T1w, T1v * T1y); - { - E T1C, T1G, T8n, T8o; - T1C = T1A + T1B; - T1G = T1E - T1F; - T1I = FNMS(T1G, T1H, T1C * T1D); - T7t = FMA(T1G, T1D, T1C * T1H); - T8n = FMA(T3F, T3E, T3D * T3G); - T8o = FNMS(T3K, T3J, T3I * T3L); - T8p = T8n - T8o; - Ten = T8n + T8o; - } - T1O = FMA(Ta, T1M, Tf * T1N); - T1X = FMA(T1R, T1S, T1V * T1W); - T1Y = T1O + T1X; - T7D = T1O - T1X; - { - E T2j, T2s, T7J, T7K; - T2j = FNMS(T2h, T2i, T2f * T2g); - T2s = FMA(T2m, T2n, T2q * T2r); - T2t = T2j + T2s; - T7O = T2j - T2s; - T7J = FMA(T2h, T2g, T2f * T2i); - T7K = FNMS(T2q, T2n, T2m * T2r); - T7L = T7J - T7K; - Te6 = T7J + T7K; - } - } - { - E T3H, T3M, T7y, T7z; - T3H = FNMS(T3F, T3G, T3D * T3E); - T3M = FMA(T3I, T3J, T3K * T3L); - T3N = T3H + T3M; - T8E = T3H - T3M; - T7y = FNMS(Tf, T1M, Ta * T1N); - T7z = FNMS(T1V, T1S, T1R * T1W); - T7A = T7y - T7z; - Te0 = T7y + T7z; - } - { - E T4B, T8R, T4x, T4z; - T4x = T3d + T3f; - T4z = T3h - T3i; - T4B = FNMS(T4z, T4A, T4x * T4y); - T8R = FMA(T4z, T4y, T4x * T4A); - T4C = T4w + T4B; - TeA = T8Q + T8R; - T8S = T8Q - T8R; - T9v = T4w - T4B; - } - { - E T64, Tap, T5Y, T62; - T5Y = T5W - T5X; - T62 = T60 + T61; - T64 = FMA(T5Y, T5Z, T62 * T63); - Tap = FNMS(T62, T5Z, T5Y * T63); - T65 = T5V + T64; - Tfi = Tao + Tap; - T9J = T5V - T64; - Taq = Tao - Tap; - } - { - E T6J, Ta1, T6F, T6H; - T6F = T2x + T2y; - T6H = T2A - T2B; - T6J = FNMS(T6H, T6I, T6F * T6G); - Ta1 = FMA(T6H, T6G, T6F * T6I); - T6K = T6E + T6J; - Tf6 = Ta0 + Ta1; - Ta2 = Ta0 - Ta1; - Ta5 = T6E - T6J; - } - { - E T6Z, Tab, T6V, T6X; - T6V = FMA(TN, Ta, TX * Tf); - T6X = FNMS(TX, Ta, TN * Tf); - T6Z = FNMS(T6X, T6Y, T6V * T6W); - Tab = FMA(T6X, T6W, T6V * T6Y); - T73 = T6Z + T72; - Tfc = Tab + Tac; - Tad = Tab - Tac; - Tag = T6Z - T72; - } - T3z = FNMS(T3x, T3y, T3v * T3w); - T83 = FMA(T3x, T3w, T3v * T3y); - T3q = FNMS(TX, Tm, TN * Th); - T3s = FMA(TN, Tm, TX * Th); - T3u = FMA(T3q, T3r, T3s * T3t); - T82 = FNMS(T3s, T3r, T3q * T3t); - T81 = T3u - T3z; - T84 = T82 - T83; - { - E TW, T10, T11, T13; - TW = TR + TV; - T10 = TY - TZ; - T11 = FNMS(TX, T10, TN * TW); - T13 = FMA(TN, T10, TX * TW); - T15 = FMA(T11, T12, T13 * T14); - T9K = FMA(T10, T66, TW * T67); - T68 = FNMS(T10, T67, TW * T66); - T7j = FNMS(T13, T12, T11 * T14); - } - { - E T3V, T3Y, T3Z, T41; - T3V = T3T + T3U; - T3Y = T3W - T3X; - T3Z = FNMS(TX, T3Y, TN * T3V); - T41 = FMA(TN, T3Y, TX * T3V); - T43 = FMA(T3Z, T40, T41 * T42); - T9w = FMA(T3Y, T4D, T3V * T4E); - T4F = FNMS(T3Y, T4E, T3V * T4D); - T8G = FNMS(T41, T40, T3Z * T42); - } - { - E T5f, T9i, T5k, T9j, T5g, T5i; - T5f = FNMS(Tm, T5e, Th * T5d); - T9i = FMA(Tm, T5d, Th * T5e); - T5g = T3T - T3U; - T5i = T3W + T3X; - T5k = FMA(T5g, T5h, T5i * T5j); - T9j = FNMS(T5i, T5h, T5g * T5j); - T5l = T5f + T5k; - TeL = T9i + T9j; - T9k = T9i - T9j; - T9n = T5f - T5k; - } - { - E T6i, T9O, T6n, T9P, T6j, T6l; - T6i = FMA(T1t, T6g, T1u * T6h); - T9O = FNMS(T1u, T6g, T1t * T6h); - T6j = TR - TV; - T6l = TY + TZ; - T6n = FMA(T6j, T6k, T6l * T6m); - T9P = FNMS(T6l, T6k, T6j * T6m); - T6o = T6i + T6n; - Tf2 = T9O + T9P; - T9Q = T9O - T9P; - T9R = T6i - T6n; - } - { - E T6t, T9U, T6y, T9V; - { - E T6p, T6r, T6u, T6w; - T6p = FNMS(TX, T1e, TN * T1a); - T6r = FMA(TN, T1e, TX * T1a); - T6t = FMA(T6p, T6q, T6r * T6s); - T9U = FNMS(T6r, T6q, T6p * T6s); - T6u = T5W + T5X; - T6w = T60 - T61; - T6y = FNMS(T6w, T6x, T6u * T6v); - T9V = FMA(T6w, T6v, T6u * T6x); - } - T6z = T6t + T6y; - Tf3 = T9U + T9V; - T9T = T6t - T6y; - T9W = T9U - T9V; - } - { - E Ti, Tn, T4k, Tq, Tr, T4m, T4Q, T4S; - Ti = T2 * Th; - Tn = Tj * Tm; - T4k = Ti - Tn; - Tq = T2 * Tm; - Tr = Tj * Th; - T4m = Tq + Tr; - To = Ti + Tn; - Ts = Tq - Tr; - T4o = FMA(T4k, T4l, T4m * T4n); - T8u = FNMS(T4m, T4l, T4k * T4n); - T4Q = FMA(TN, T4k, TX * T4m); - T4S = FNMS(TX, T4k, TN * T4m); - T4U = FNMS(T4S, T4T, T4Q * T4R); - T92 = FMA(T4S, T4R, T4Q * T4T); - } - { - E T50, T8W, T59, T8X; - { - E T4W, T4Y, T53, T57; - T4W = FNMS(TX, T3e, TN * T3c); - T4Y = FMA(TN, T3e, TX * T3c); - T50 = FMA(T4W, T4X, T4Y * T4Z); - T8W = FNMS(T4Y, T4X, T4W * T4Z); - T53 = T51 - T52; - T57 = T55 + T56; - T59 = FMA(T53, T54, T57 * T58); - T8X = FNMS(T57, T54, T53 * T58); - } - T5a = T50 + T59; - TeT = T8W + T8X; - T8V = T50 - T59; - T8Y = T8W - T8X; - } - { - E T5A, T9c, T5F, T9d; - { - E T5w, T5y, T5B, T5D; - T5w = FNMS(TX, Ty, TN * Tw); - T5y = FMA(TN, Ty, TX * Tw); - T5A = FMA(T5w, T5x, T5y * T5z); - T9c = FNMS(T5y, T5x, T5w * T5z); - T5B = T51 + T52; - T5D = T55 - T56; - T5F = FNMS(T5D, T5E, T5B * T5C); - T9d = FMA(T5D, T5C, T5B * T5E); - } - T5G = T5A + T5F; - TeG = T9c + T9d; - T97 = T5A - T5F; - T9e = T9c - T9d; - } - { - E T21, T2P, T25, T2R, T77, T79; - { - E T1Z, T20, T23, T24; - T1Z = T2 * T1t; - T20 = Tj * T1u; - T21 = T1Z + T20; - T2P = T1Z - T20; - T23 = T2 * T1u; - T24 = Tj * T1t; - T25 = T23 - T24; - T2R = T23 + T24; - } - T27 = FNMS(T25, T26, T21 * T22); - T7X = FNMS(T2R, T2Q, T2P * T2S); - T2T = FMA(T2P, T2Q, T2R * T2S); - T7E = FMA(T25, T22, T21 * T26); - T77 = FNMS(TX, T25, TN * T21); - T79 = FMA(TN, T25, TX * T21); - T7b = FMA(T77, T78, T79 * T7a); - Tai = FNMS(T79, T78, T77 * T7a); - } - { - E T6S, Ta7, T2D, Ta6, T2F, T6N; - { - E T6O, T6Q, T2z, T2C; - T6O = FMA(TN, TQ, TX * TU); - T6Q = FNMS(TX, TQ, TN * TU); - T6S = FNMS(T6Q, T6R, T6O * T6P); - Ta7 = FMA(T6Q, T6P, T6O * T6R); - T2z = T2x - T2y; - T2C = T2A + T2B; - T2D = FMA(TN, T2z, TX * T2C); - Ta6 = FNMS(T2C, T6L, T2z * T6M); - T2F = FNMS(TX, T2z, TN * T2C); - T6N = FMA(T2z, T6L, T2C * T6M); - } - T6T = T6N + T6S; - Ta3 = T6N - T6S; - Tf7 = Ta6 + Ta7; - Ta8 = Ta6 - Ta7; - T7Q = FMA(T2F, T2E, T2D * T2G); - T2H = FNMS(T2F, T2G, T2D * T2E); - } - { - E TA, TE, TB, TF, TJ, TI, T2a, T28, T49, T4b; - TA = Tx + Tz; - TE = TC - TD; - TB = T2 * TA; - TF = Tj * TE; - TJ = Tj * TA; - TI = T2 * TE; - T2a = FMA(TN, TE, TX * TA); - T28 = FNMS(TX, TE, TN * TA); - T2c = FMA(T28, T29, T2a * T2b); - T76 = FNMS(TE, T75, TA * T74); - Tah = FMA(TE, T74, TA * T75); - T7F = FNMS(T2a, T29, T28 * T2b); - T49 = TB + TF; - T4b = TI - TJ; - T4d = FNMS(T4b, T4c, T49 * T4a); - T8z = FMA(T4b, T4a, T49 * T4c); - TG = TB - TF; - TK = TI + TJ; - T69 = FMA(TN, TG, TX * TK); - T6b = FNMS(TX, TG, TN * TK); - } - { - E T5t, T9p, T3k, T9o, T3m, T5o; - T3b = FMA(T37, T38, T39 * T3a); - T87 = FNMS(T39, T38, T37 * T3a); - { - E T5p, T5r, T3g, T3j; - T5p = FMA(TN, T37, TX * T39); - T5r = FNMS(TX, T37, TN * T39); - T5t = FNMS(T5r, T5s, T5p * T5q); - T9p = FMA(T5r, T5q, T5p * T5s); - T3g = T3d - T3f; - T3j = T3h + T3i; - T3k = FMA(TN, T3g, TX * T3j); - T9o = FNMS(T3j, T5m, T3g * T5n); - T3m = FNMS(TX, T3g, TN * T3j); - T5o = FMA(T3g, T5m, T3j * T5n); - } - T5u = T5o + T5t; - T9l = T5o - T5t; - TeM = T9o + T9p; - T9q = T9o - T9p; - T88 = FMA(T3m, T3l, T3k * T3n); - T89 = T87 - T88; - T3o = FNMS(T3m, T3n, T3k * T3l); - T86 = T3b - T3o; - } - { - E T5O, T99, T1i, T1n, T1o, T1k, T30, T5J, T98, T32; - { - E T5K, T5M, T1h, T1j; - T5K = FNMS(TX, T2X, TN * T2V); - T5M = FMA(TN, T2X, TX * T2V); - T5O = FMA(T5K, T5L, T5M * T5N); - T99 = FNMS(T5M, T5L, T5K * T5N); - T1h = Tb - Tg; - T1j = Tk + Tl; - T1i = T2 * T1h; - T1n = T2 * T1j; - T1o = Tj * T1h; - T1k = Tj * T1j; - T30 = FMA(TN, T1h, TX * T1j); - T5J = FMA(T1h, T5H, T1j * T5I); - T98 = FNMS(T1j, T5H, T1h * T5I); - T32 = FNMS(TX, T1h, TN * T1j); - } - T5P = T5J + T5O; - T9f = T5J - T5O; - TeH = T98 + T99; - T9a = T98 - T99; - T34 = FNMS(T32, T33, T30 * T31); - T8f = FMA(T32, T31, T30 * T33); - { - E T1l, T1p, T3O, T3Q; - T1l = T1i - T1k; - T1p = T1n + T1o; - T1r = FMA(T1l, T1m, T1p * T1q); - T7n = FNMS(T1p, T1m, T1l * T1q); - T3O = T1i + T1k; - T3Q = T1n - T1o; - T3S = FNMS(T3Q, T3R, T3O * T3P); - T8F = FMA(T3Q, T3P, T3O * T3R); - T4G = FNMS(TX, T3Q, TN * T3O); - T4I = FMA(TN, T3Q, TX * T3O); - } - } - } - Tp = rio[WS(ios, 32)]; - T6c = iio[-WS(ios, 16)]; - TH = rio[WS(ios, 16)]; - T6a = rio[WS(ios, 47)]; - TL = iio[-WS(ios, 47)]; - Ti1 = iio[-WS(ios, 63)]; - T4H = rio[WS(ios, 49)]; - T4J = iio[-WS(ios, 14)]; - Tt = iio[-WS(ios, 31)]; - { - E T5R, TgT, TgY, ThE, T9t, Tbe, T9G, Tbb, Tcl, Tdq, Tcs, Tdn, TeP, Tg4, TeY; - E Tg1, T7e, Th4, ThJ, Th9, Tfp, Tg8, Tfg, Tgb, T2K, TgC, Tih, ThX, TfQ, TiL; - E Tea, Tiv, Tam, Tbl, TcL, Tdu, Taz, Tbi, TcE, Tdx, T7U, Tjv, Tdc, Tjh, Tb0; - E TjL, TbU, TiZ, T8D, Tb5, Tc8, Tdi, T8M, Tb6, Tc5, Tdh, T4r, Thz, Tex, Tfz; - E TfX, Tgl, TgN, Thj, T8m, TaI, Tdg, TdG, Tb4, Tbu, Tc2, TcU, T3C, Thy, Tem; - E Tfy, TfU, Tgk, TgI, Thi, T6B, Th1, Tfm, Tga, Th8, ThI, T9Z, Tbh, Taw, Tbk; - E TcI, Tdw, Tf5, Tg7, Tcx, Tdt, T5c, TgV, TeV, Tg0, TgS, ThD, TeE, Tg3, T96; - E Tbd, Tce, Tdp, Tcp, Tdm, T9D, Tba, T1L, Tgz, Ti4, Tii, Tiy, TiM, TdZ, TfN; - E T7x, TaX, Tj4, Tji, Tjy, TjM, TbN, Td9; - { - E T5v, T5Q, TgW, TgX; - T5v = T5l + T5u; - T5Q = T5G + T5P; - T5R = T5v + T5Q; - TgT = T5Q - T5v; - TgW = TeL + TeM; - TgX = TeG + TeH; - TgY = TgW - TgX; - ThE = TgW + TgX; - } - { - E T9h, T9F, T9s, T9E; - { - E T9b, T9g, T9m, T9r; - T9b = T97 - T9a; - T9g = T9e + T9f; - T9h = FNMS(KP923879532, T9g, KP382683432 * T9b); - T9F = FMA(KP382683432, T9g, KP923879532 * T9b); - T9m = T9k + T9l; - T9r = T9n - T9q; - T9s = FMA(KP923879532, T9m, KP382683432 * T9r); - T9E = FNMS(KP923879532, T9r, KP382683432 * T9m); - } - T9t = T9h - T9s; - Tbe = T9E + T9F; - T9G = T9E - T9F; - Tbb = T9s + T9h; - } - { - E Tch, Tcr, Tck, Tcq; - { - E Tcf, Tcg, Tci, Tcj; - Tcf = T97 + T9a; - Tcg = T9e - T9f; - Tch = FNMS(KP382683432, Tcg, KP923879532 * Tcf); - Tcr = FMA(KP923879532, Tcg, KP382683432 * Tcf); - Tci = T9k - T9l; - Tcj = T9n + T9q; - Tck = FMA(KP382683432, Tci, KP923879532 * Tcj); - Tcq = FNMS(KP382683432, Tcj, KP923879532 * Tci); - } - Tcl = Tch - Tck; - Tdq = Tcq + Tcr; - Tcs = Tcq - Tcr; - Tdn = Tck + Tch; - } - { - E TeJ, TeX, TeO, TeW; - { - E TeF, TeI, TeK, TeN; - TeF = T5G - T5P; - TeI = TeG - TeH; - TeJ = TeF - TeI; - TeX = TeF + TeI; - TeK = T5l - T5u; - TeN = TeL - TeM; - TeO = TeK + TeN; - TeW = TeN - TeK; - } - TeP = KP707106781 * (TeJ - TeO); - Tg4 = KP707106781 * (TeW + TeX); - TeY = KP707106781 * (TeW - TeX); - Tg1 = KP707106781 * (TeO + TeJ); - } - { - E T6U, Th2, T7d, Tfb, Tfe, Th3, Tfa, Tfo, Tfn, Tff; - T6U = T6K + T6T; - Th2 = Tf6 + Tf7; - { - E T7c, Tfd, Tf8, Tf9; - T7c = T76 + T7b; - T7d = T73 + T7c; - Tfb = T73 - T7c; - Tfd = Tah + Tai; - Tfe = Tfc - Tfd; - Th3 = Tfc + Tfd; - Tf8 = Tf6 - Tf7; - Tf9 = T6K - T6T; - Tfa = Tf8 - Tf9; - Tfo = Tf9 + Tf8; - } - T7e = T6U + T7d; - Th4 = Th2 - Th3; - ThJ = Th2 + Th3; - Th9 = T7d - T6U; - Tfn = Tfb - Tfe; - Tfp = KP707106781 * (Tfn - Tfo); - Tg8 = KP707106781 * (Tfo + Tfn); - Tff = Tfb + Tfe; - Tfg = KP707106781 * (Tfa - Tff); - Tgb = KP707106781 * (Tfa + Tff); - } - { - E T2e, Te3, Te8, TgB, T2J, Te5, Te2, TgA; - { - E T2d, Te7, T2I, Te1; - T2d = T27 + T2c; - T2e = T1Y + T2d; - Te3 = T1Y - T2d; - Te7 = T7P + T7Q; - Te8 = Te6 - Te7; - TgB = Te6 + Te7; - T2I = T2w + T2H; - T2J = T2t + T2I; - Te5 = T2t - T2I; - Te1 = T7E + T7F; - Te2 = Te0 - Te1; - TgA = Te0 + Te1; - } - T2K = T2e + T2J; - TgC = TgA - TgB; - Tih = T2J - T2e; - ThX = TgA + TgB; - { - E TfO, TfP, Te4, Te9; - TfO = Te3 + Te2; - TfP = Te5 - Te8; - TfQ = KP707106781 * (TfO + TfP); - TiL = KP707106781 * (TfP - TfO); - Te4 = Te2 - Te3; - Te9 = Te5 + Te8; - Tea = KP707106781 * (Te4 - Te9); - Tiv = KP707106781 * (Te4 + Te9); - } - } - { - E Taf, TcB, Tak, TcC, Taa, Tay, TcA, TcK, Tae, Taj; - Tae = T76 - T7b; - Taf = Tad + Tae; - TcB = Tad - Tae; - Taj = Tah - Tai; - Tak = Tag - Taj; - TcC = Tag + Taj; - { - E Ta4, Ta9, Tcy, Tcz; - Ta4 = Ta2 + Ta3; - Ta9 = Ta5 - Ta8; - Taa = FNMS(KP923879532, Ta9, KP382683432 * Ta4); - Tay = FMA(KP923879532, Ta4, KP382683432 * Ta9); - Tcy = Ta2 - Ta3; - Tcz = Ta5 + Ta8; - TcA = FNMS(KP382683432, Tcz, KP923879532 * Tcy); - TcK = FMA(KP382683432, Tcy, KP923879532 * Tcz); - } - { - E Tal, TcJ, Tax, TcD; - Tal = FMA(KP382683432, Taf, KP923879532 * Tak); - Tam = Taa - Tal; - Tbl = Taa + Tal; - TcJ = FNMS(KP382683432, TcB, KP923879532 * TcC); - TcL = TcJ - TcK; - Tdu = TcK + TcJ; - Tax = FNMS(KP923879532, Taf, KP382683432 * Tak); - Taz = Tax - Tay; - Tbi = Tay + Tax; - TcD = FMA(KP923879532, TcB, KP382683432 * TcC); - TcE = TcA - TcD; - Tdx = TcA + TcD; - } - } - { - E T7C, TbO, T7S, TbS, T7H, TbP, T7N, TbR; - { - E T7B, T7R, T7G, T7M; - T7B = T27 - T2c; - T7C = T7A + T7B; - TbO = T7A - T7B; - T7R = T7P - T7Q; - T7S = T7O - T7R; - TbS = T7O + T7R; - T7G = T7E - T7F; - T7H = T7D - T7G; - TbP = T7D + T7G; - T7M = T2w - T2H; - T7N = T7L + T7M; - TbR = T7L - T7M; - } - { - E T7I, T7T, Tda, Tdb; - T7I = FNMS(KP923879532, T7H, KP382683432 * T7C); - T7T = FMA(KP382683432, T7N, KP923879532 * T7S); - T7U = T7I - T7T; - Tjv = T7I + T7T; - Tda = FMA(KP382683432, TbO, KP923879532 * TbP); - Tdb = FNMS(KP382683432, TbR, KP923879532 * TbS); - Tdc = Tda + Tdb; - Tjh = Tdb - Tda; - } - { - E TaY, TaZ, TbQ, TbT; - TaY = FMA(KP923879532, T7C, KP382683432 * T7H); - TaZ = FNMS(KP923879532, T7N, KP382683432 * T7S); - Tb0 = TaY + TaZ; - TjL = TaZ - TaY; - TbQ = FNMS(KP382683432, TbP, KP923879532 * TbO); - TbT = FMA(KP923879532, TbR, KP382683432 * TbS); - TbU = TbQ - TbT; - TiZ = TbQ + TbT; - } - } - { - E T8r, Tc6, T8I, Tc3, T8w, T8K, T8B, T8J, T8q, T8H; - T8q = T3S - T43; - T8r = T8p + T8q; - Tc6 = T8p - T8q; - T8H = T8F - T8G; - T8I = T8E - T8H; - Tc3 = T8E + T8H; - { - E T8s, T8v, T8x, T8A; - T8s = T4j - T4o; - T8v = T8t - T8u; - T8w = T8s - T8v; - T8K = T8s + T8v; - T8x = T48 - T4d; - T8A = T8y - T8z; - T8B = T8x + T8A; - T8J = T8A - T8x; - } - { - E T8C, Tc7, T8L, Tc4; - T8C = KP707106781 * (T8w - T8B); - T8D = T8r - T8C; - Tb5 = T8r + T8C; - Tc7 = KP707106781 * (T8J + T8K); - Tc8 = Tc6 - Tc7; - Tdi = Tc6 + Tc7; - T8L = KP707106781 * (T8J - T8K); - T8M = T8I - T8L; - Tb6 = T8I + T8L; - Tc4 = KP707106781 * (T8B + T8w); - Tc5 = Tc3 - Tc4; - Tdh = Tc3 + Tc4; - } - } - { - E T45, Tes, Tep, TgK, T4q, Teq, Tev, TgL, T44, Teo, Ter, Tew; - T44 = T3S + T43; - T45 = T3N + T44; - Tes = T3N - T44; - Teo = T8F + T8G; - Tep = Ten - Teo; - TgK = Ten + Teo; - { - E T4e, T4p, Tet, Teu; - T4e = T48 + T4d; - T4p = T4j + T4o; - T4q = T4e + T4p; - Teq = T4p - T4e; - Tet = T8y + T8z; - Teu = T8t + T8u; - Tev = Tet - Teu; - TgL = Tet + Teu; - } - T4r = T45 + T4q; - Thz = TgK + TgL; - Ter = Tep - Teq; - Tew = Tes - Tev; - Tex = FMA(KP382683432, Ter, KP923879532 * Tew); - Tfz = FNMS(KP923879532, Ter, KP382683432 * Tew); - { - E TfV, TfW, TgJ, TgM; - TfV = Tep + Teq; - TfW = Tes + Tev; - TfX = FMA(KP923879532, TfV, KP382683432 * TfW); - Tgl = FNMS(KP382683432, TfV, KP923879532 * TfW); - TgJ = T45 - T4q; - TgM = TgK - TgL; - TgN = TgJ + TgM; - Thj = TgJ - TgM; - } - } - { - E T80, TbW, T8k, TbX, T8b, Tc0, T8h, TbZ; - { - E T7Y, T7Z, T8i, T8j; - T7Y = T7W - T7X; - T7Z = T2Z - T34; - T80 = T7Y + T7Z; - TbW = T7Y - T7Z; - T8i = T89 - T86; - T8j = T81 + T84; - T8k = KP707106781 * (T8i - T8j); - TbX = KP707106781 * (T8i + T8j); - } - { - E T85, T8a, T8d, T8g; - T85 = T81 - T84; - T8a = T86 + T89; - T8b = KP707106781 * (T85 - T8a); - Tc0 = KP707106781 * (T8a + T85); - T8d = T2O - T2T; - T8g = T8e - T8f; - T8h = T8d - T8g; - TbZ = T8d + T8g; - } - { - E T8c, T8l, Tde, Tdf; - T8c = T80 - T8b; - T8l = T8h - T8k; - T8m = FNMS(KP980785280, T8l, KP195090322 * T8c); - TaI = FMA(KP980785280, T8c, KP195090322 * T8l); - Tde = TbW + TbX; - Tdf = TbZ + Tc0; - Tdg = FNMS(KP195090322, Tdf, KP980785280 * Tde); - TdG = FMA(KP980785280, Tdf, KP195090322 * Tde); - } - { - E Tb2, Tb3, TbY, Tc1; - Tb2 = T80 + T8b; - Tb3 = T8h + T8k; - Tb4 = FNMS(KP555570233, Tb3, KP831469612 * Tb2); - Tbu = FMA(KP555570233, Tb2, KP831469612 * Tb3); - TbY = TbW - TbX; - Tc1 = TbZ - Tc0; - Tc2 = FNMS(KP831469612, Tc1, KP555570233 * TbY); - TcU = FMA(KP555570233, Tc1, KP831469612 * TbY); - } - } - { - E T36, Teh, Tek, TgF, T3B, Tef, Tee, TgE, Teg, Tel; - { - E T2U, T35, Tei, Tej; - T2U = T2O + T2T; - T35 = T2Z + T34; - T36 = T2U + T35; - Teh = T2U - T35; - Tei = T87 + T88; - Tej = T82 + T83; - Tek = Tei - Tej; - TgF = Tei + Tej; - } - { - E T3p, T3A, Tec, Ted; - T3p = T3b + T3o; - T3A = T3u + T3z; - T3B = T3p + T3A; - Tef = T3A - T3p; - Tec = T7W + T7X; - Ted = T8e + T8f; - Tee = Tec - Ted; - TgE = Tec + Ted; - } - T3C = T36 + T3B; - Thy = TgE + TgF; - Teg = Tee - Tef; - Tel = Teh - Tek; - Tem = FNMS(KP923879532, Tel, KP382683432 * Teg); - Tfy = FMA(KP923879532, Teg, KP382683432 * Tel); - { - E TfS, TfT, TgG, TgH; - TfS = Tee + Tef; - TfT = Teh + Tek; - TfU = FNMS(KP382683432, TfT, KP923879532 * TfS); - Tgk = FMA(KP382683432, TfS, KP923879532 * TfT); - TgG = TgE - TgF; - TgH = T36 - T3B; - TgI = TgG - TgH; - Thi = TgH + TgG; - } - } - { - E T6A, Tfl, Th7, Tf4, T6e, Tar, T9Y, TcH, Tav, Tcw, T9M, Tfj; - T6A = T6o + T6z; - Tfl = T6z - T6o; - Th7 = Tf2 + Tf3; - Tf4 = Tf2 - Tf3; - { - E T6d, T9S, T9X, Tat, Tau, T9L; - T6d = FNMS(T6b, T6c, T69 * T6a); - T6e = T68 + T6d; - Tar = T68 - T6d; - T9S = T9Q - T9R; - T9X = T9T + T9W; - T9Y = KP707106781 * (T9S - T9X); - TcH = KP707106781 * (T9S + T9X); - Tat = T9T - T9W; - Tau = T9R + T9Q; - Tav = KP707106781 * (Tat - Tau); - Tcw = KP707106781 * (Tau + Tat); - T9L = FMA(T6b, T6a, T69 * T6c); - T9M = T9K - T9L; - Tfj = T9K + T9L; - } - { - E T6f, Tfk, Th6, T9N; - T6f = T65 + T6e; - T6B = T6f + T6A; - Th1 = T6f - T6A; - Tfk = Tfi - Tfj; - Tfm = Tfk - Tfl; - Tga = Tfk + Tfl; - Th6 = Tfi + Tfj; - Th8 = Th6 - Th7; - ThI = Th6 + Th7; - T9N = T9J - T9M; - T9Z = T9N - T9Y; - Tbh = T9N + T9Y; - } - { - E Tas, TcG, Tf1, Tcv; - Tas = Taq + Tar; - Taw = Tas - Tav; - Tbk = Tas + Tav; - TcG = Taq - Tar; - TcI = TcG - TcH; - Tdw = TcG + TcH; - Tf1 = T65 - T6e; - Tf5 = Tf1 - Tf4; - Tg7 = Tf1 + Tf4; - Tcv = T9J + T9M; - Tcx = Tcv - Tcw; - Tdt = Tcv + Tcw; - } - } - { - E T8Z, T9B, T5b, TeD, TeU, TgR, T94, T9A, T4L, T8T, T9y, TeB, T4V; - T8Z = T8V - T8Y; - T9B = T8V + T8Y; - T4V = T4P + T4U; - T5b = T4V + T5a; - TeD = T5a - T4V; - { - E TeS, T90, T93, T4K, T9x; - TeS = T91 + T92; - TeU = TeS - TeT; - TgR = TeS + TeT; - T90 = T4P - T4U; - T93 = T91 - T92; - T94 = T90 + T93; - T9A = T93 - T90; - T4K = FMA(T4G, T4H, T4I * T4J); - T4L = T4F + T4K; - T8T = T4F - T4K; - T9x = FNMS(T4I, T4H, T4G * T4J); - T9y = T9w - T9x; - TeB = T9w + T9x; - } - { - E T4M, TeR, TgQ, TeC; - T4M = T4C + T4L; - T5c = T4M + T5b; - TgV = T4M - T5b; - TeR = T4C - T4L; - TeV = TeR - TeU; - Tg0 = TeR + TeU; - TgQ = TeA + TeB; - TgS = TgQ - TgR; - ThD = TgQ + TgR; - TeC = TeA - TeB; - TeE = TeC - TeD; - Tg3 = TeC + TeD; - } - { - E T8U, T95, Tcc, Tcd; - T8U = T8S + T8T; - T95 = KP707106781 * (T8Z - T94); - T96 = T8U - T95; - Tbd = T8U + T95; - Tcc = T8S - T8T; - Tcd = KP707106781 * (T9A + T9B); - Tce = Tcc - Tcd; - Tdp = Tcc + Tcd; - } - { - E Tcn, Tco, T9z, T9C; - Tcn = T9v + T9y; - Tco = KP707106781 * (T94 + T8Z); - Tcp = Tcn - Tco; - Tdm = Tcn + Tco; - T9z = T9v - T9y; - T9C = KP707106781 * (T9A - T9B); - T9D = T9z - T9C; - Tba = T9z + T9C; - } - } - { - E Tv, T7h, TdY, ThY, Ti2, Tj1, T16, Tj2, T1K, Tiw, T7q, TbK, T7v, TbL, T7k; - E ThZ, T7r, T7u, T7i; - { - E Tu, TdW, TdX, Ti0, TM; - Tu = FNMS(Ts, Tt, To * Tp); - Tv = T1 + Tu; - T7h = T1 - Tu; - TdW = T7m + T7n; - TdX = T7s + T7t; - TdY = TdW - TdX; - ThY = TdW + TdX; - Ti0 = FMA(Ts, Tp, To * Tt); - Ti2 = Ti0 + Ti1; - Tj1 = Ti1 - Ti0; - TM = FMA(TG, TH, TK * TL); - T16 = TM + T15; - Tj2 = TM - T15; - } - { - E T1s, T1J, T7o, T7p; - T1s = T1g + T1r; - T1J = T1z + T1I; - T1K = T1s + T1J; - Tiw = T1J - T1s; - T7o = T7m - T7n; - T7p = T1g - T1r; - T7q = T7o - T7p; - TbK = T7p + T7o; - } - T7r = T1z - T1I; - T7u = T7s - T7t; - T7v = T7r + T7u; - TbL = T7r - T7u; - T7i = FNMS(TK, TH, TG * TL); - T7k = T7i - T7j; - ThZ = T7i + T7j; - { - E T17, Ti3, Tix, TdV; - T17 = Tv + T16; - T1L = T17 + T1K; - Tgz = T17 - T1K; - Ti3 = ThZ + Ti2; - Ti4 = ThY + Ti3; - Tii = Ti3 - ThY; - Tix = Ti2 - ThZ; - Tiy = Tiw + Tix; - TiM = Tix - Tiw; - TdV = Tv - T16; - TdZ = TdV - TdY; - TfN = TdV + TdY; - } - { - E T7l, T7w, Tj0, Tj3; - T7l = T7h - T7k; - T7w = KP707106781 * (T7q - T7v); - T7x = T7l - T7w; - TaX = T7l + T7w; - Tj0 = KP707106781 * (T7q + T7v); - Tj3 = Tj1 - Tj2; - Tj4 = Tj0 + Tj3; - Tji = Tj3 - Tj0; - } - { - E Tjw, Tjx, TbJ, TbM; - Tjw = KP707106781 * (TbL - TbK); - Tjx = Tj2 + Tj1; - Tjy = Tjw + Tjx; - TjM = Tjx - Tjw; - TbJ = T7h + T7k; - TbM = KP707106781 * (TbK + TbL); - TbN = TbJ - TbM; - Td9 = TbJ + TbM; - } - } - { - E T4t, ThR, Ti6, Ti8, T7g, Ti7, ThU, ThV; - { - E T2L, T4s, ThW, Ti5; - T2L = T1L + T2K; - T4s = T3C + T4r; - T4t = T2L + T4s; - ThR = T2L - T4s; - ThW = Thy + Thz; - Ti5 = ThX + Ti4; - Ti6 = ThW + Ti5; - Ti8 = Ti5 - ThW; - } - { - E T5S, T7f, ThS, ThT; - T5S = T5c + T5R; - T7f = T6B + T7e; - T7g = T5S + T7f; - Ti7 = T7f - T5S; - ThS = ThD + ThE; - ThT = ThI + ThJ; - ThU = ThS - ThT; - ThV = ThS + ThT; - } - iio[-WS(ios, 32)] = T4t - T7g; - rio[WS(ios, 32)] = ThV - Ti6; - rio[0] = T4t + T7g; - iio[0] = ThV + Ti6; - iio[-WS(ios, 48)] = ThR - ThU; - rio[WS(ios, 48)] = Ti7 - Ti8; - rio[WS(ios, 16)] = ThR + ThU; - iio[-WS(ios, 16)] = Ti7 + Ti8; - } - { - E ThB, ThN, Tic, Tie, ThG, ThO, ThL, ThP; - { - E Thx, ThA, Tia, Tib; - Thx = T1L - T2K; - ThA = Thy - Thz; - ThB = Thx + ThA; - ThN = Thx - ThA; - Tia = T4r - T3C; - Tib = Ti4 - ThX; - Tic = Tia + Tib; - Tie = Tib - Tia; - } - { - E ThC, ThF, ThH, ThK; - ThC = T5c - T5R; - ThF = ThD - ThE; - ThG = ThC + ThF; - ThO = ThF - ThC; - ThH = T6B - T7e; - ThK = ThI - ThJ; - ThL = ThH - ThK; - ThP = ThH + ThK; - } - { - E ThM, Ti9, ThQ, Tid; - ThM = KP707106781 * (ThG + ThL); - iio[-WS(ios, 40)] = ThB - ThM; - rio[WS(ios, 8)] = ThB + ThM; - Ti9 = KP707106781 * (ThO + ThP); - rio[WS(ios, 40)] = Ti9 - Tic; - iio[-WS(ios, 8)] = Ti9 + Tic; - ThQ = KP707106781 * (ThO - ThP); - iio[-WS(ios, 56)] = ThN - ThQ; - rio[WS(ios, 24)] = ThN + ThQ; - Tid = KP707106781 * (ThL - ThG); - rio[WS(ios, 56)] = Tid - Tie; - iio[-WS(ios, 24)] = Tid + Tie; - } - } - { - E TgP, Thd, Tiq, Tis, Th0, The, Thb, Thf; - { - E TgD, TgO, Tio, Tip; - TgD = Tgz - TgC; - TgO = KP707106781 * (TgI - TgN); - TgP = TgD + TgO; - Thd = TgD - TgO; - Tio = KP707106781 * (Thj - Thi); - Tip = Tii - Tih; - Tiq = Tio + Tip; - Tis = Tip - Tio; - } - { - E TgU, TgZ, Th5, Tha; - TgU = TgS - TgT; - TgZ = TgV - TgY; - Th0 = FMA(KP923879532, TgU, KP382683432 * TgZ); - The = FNMS(KP923879532, TgZ, KP382683432 * TgU); - Th5 = Th1 - Th4; - Tha = Th8 - Th9; - Thb = FNMS(KP923879532, Tha, KP382683432 * Th5); - Thf = FMA(KP382683432, Tha, KP923879532 * Th5); - } - { - E Thc, Tin, Thg, Tir; - Thc = Th0 + Thb; - iio[-WS(ios, 44)] = TgP - Thc; - rio[WS(ios, 12)] = TgP + Thc; - Tin = The + Thf; - rio[WS(ios, 44)] = Tin - Tiq; - iio[-WS(ios, 12)] = Tin + Tiq; - Thg = The - Thf; - iio[-WS(ios, 60)] = Thd - Thg; - rio[WS(ios, 28)] = Thd + Thg; - Tir = Thb - Th0; - rio[WS(ios, 60)] = Tir - Tis; - iio[-WS(ios, 28)] = Tir + Tis; - } - } - { - E TfB, TfJ, TiO, TiQ, TfE, TfK, TfH, TfL; - { - E Tfx, TfA, TiK, TiN; - Tfx = TdZ + Tea; - TfA = Tfy + Tfz; - TfB = Tfx + TfA; - TfJ = Tfx - TfA; - TiK = Tem + Tex; - TiN = TiL + TiM; - TiO = TiK + TiN; - TiQ = TiN - TiK; - } - { - E TfC, TfD, TfF, TfG; - TfC = TeE + TeP; - TfD = TeV + TeY; - TfE = FMA(KP555570233, TfC, KP831469612 * TfD); - TfK = FNMS(KP555570233, TfD, KP831469612 * TfC); - TfF = Tf5 + Tfg; - TfG = Tfm + Tfp; - TfH = FNMS(KP555570233, TfG, KP831469612 * TfF); - TfL = FMA(KP831469612, TfG, KP555570233 * TfF); - } - { - E TfI, TiJ, TfM, TiP; - TfI = TfE + TfH; - iio[-WS(ios, 38)] = TfB - TfI; - rio[WS(ios, 6)] = TfB + TfI; - TiJ = TfK + TfL; - rio[WS(ios, 38)] = TiJ - TiO; - iio[-WS(ios, 6)] = TiJ + TiO; - TfM = TfK - TfL; - iio[-WS(ios, 54)] = TfJ - TfM; - rio[WS(ios, 22)] = TfJ + TfM; - TiP = TfH - TfE; - rio[WS(ios, 54)] = TiP - TiQ; - iio[-WS(ios, 22)] = TiP + TiQ; - } - } - { - E Thl, Tht, Tik, Tim, Tho, Thu, Thr, Thv; - { - E Thh, Thk, Tig, Tij; - Thh = Tgz + TgC; - Thk = KP707106781 * (Thi + Thj); - Thl = Thh + Thk; - Tht = Thh - Thk; - Tig = KP707106781 * (TgI + TgN); - Tij = Tih + Tii; - Tik = Tig + Tij; - Tim = Tij - Tig; - } - { - E Thm, Thn, Thp, Thq; - Thm = TgS + TgT; - Thn = TgV + TgY; - Tho = FMA(KP382683432, Thm, KP923879532 * Thn); - Thu = FNMS(KP382683432, Thn, KP923879532 * Thm); - Thp = Th1 + Th4; - Thq = Th8 + Th9; - Thr = FNMS(KP382683432, Thq, KP923879532 * Thp); - Thv = FMA(KP923879532, Thq, KP382683432 * Thp); - } - { - E Ths, Tif, Thw, Til; - Ths = Tho + Thr; - iio[-WS(ios, 36)] = Thl - Ths; - rio[WS(ios, 4)] = Thl + Ths; - Tif = Thu + Thv; - rio[WS(ios, 36)] = Tif - Tik; - iio[-WS(ios, 4)] = Tif + Tik; - Thw = Thu - Thv; - iio[-WS(ios, 52)] = Tht - Thw; - rio[WS(ios, 20)] = Tht + Thw; - Til = Thr - Tho; - rio[WS(ios, 52)] = Til - Tim; - iio[-WS(ios, 20)] = Til + Tim; - } - } - { - E Tez, Tft, TiU, TiW, Tf0, Tfu, Tfr, Tfv; - { - E Teb, Tey, TiS, TiT; - Teb = TdZ - Tea; - Tey = Tem - Tex; - Tez = Teb + Tey; - Tft = Teb - Tey; - TiS = Tfz - Tfy; - TiT = TiM - TiL; - TiU = TiS + TiT; - TiW = TiT - TiS; - } - { - E TeQ, TeZ, Tfh, Tfq; - TeQ = TeE - TeP; - TeZ = TeV - TeY; - Tf0 = FMA(KP980785280, TeQ, KP195090322 * TeZ); - Tfu = FNMS(KP980785280, TeZ, KP195090322 * TeQ); - Tfh = Tf5 - Tfg; - Tfq = Tfm - Tfp; - Tfr = FNMS(KP980785280, Tfq, KP195090322 * Tfh); - Tfv = FMA(KP195090322, Tfq, KP980785280 * Tfh); - } - { - E Tfs, TiR, Tfw, TiV; - Tfs = Tf0 + Tfr; - iio[-WS(ios, 46)] = Tez - Tfs; - rio[WS(ios, 14)] = Tez + Tfs; - TiR = Tfu + Tfv; - rio[WS(ios, 46)] = TiR - TiU; - iio[-WS(ios, 14)] = TiR + TiU; - Tfw = Tfu - Tfv; - iio[-WS(ios, 62)] = Tft - Tfw; - rio[WS(ios, 30)] = Tft + Tfw; - TiV = Tfr - Tf0; - rio[WS(ios, 62)] = TiV - TiW; - iio[-WS(ios, 30)] = TiV + TiW; - } - } - { - E TfZ, Tgf, TiG, TiI, Tg6, Tgg, Tgd, Tgh; - { - E TfR, TfY, TiE, TiF; - TfR = TfN - TfQ; - TfY = TfU - TfX; - TfZ = TfR + TfY; - Tgf = TfR - TfY; - TiE = Tgl - Tgk; - TiF = Tiy - Tiv; - TiG = TiE + TiF; - TiI = TiF - TiE; - } - { - E Tg2, Tg5, Tg9, Tgc; - Tg2 = Tg0 - Tg1; - Tg5 = Tg3 - Tg4; - Tg6 = FMA(KP555570233, Tg2, KP831469612 * Tg5); - Tgg = FNMS(KP831469612, Tg2, KP555570233 * Tg5); - Tg9 = Tg7 - Tg8; - Tgc = Tga - Tgb; - Tgd = FNMS(KP831469612, Tgc, KP555570233 * Tg9); - Tgh = FMA(KP831469612, Tg9, KP555570233 * Tgc); - } - { - E Tge, TiD, Tgi, TiH; - Tge = Tg6 + Tgd; - iio[-WS(ios, 42)] = TfZ - Tge; - rio[WS(ios, 10)] = TfZ + Tge; - TiD = Tgg + Tgh; - rio[WS(ios, 42)] = TiD - TiG; - iio[-WS(ios, 10)] = TiD + TiG; - Tgi = Tgg - Tgh; - iio[-WS(ios, 58)] = Tgf - Tgi; - rio[WS(ios, 26)] = Tgf + Tgi; - TiH = Tgd - Tg6; - rio[WS(ios, 58)] = TiH - TiI; - iio[-WS(ios, 26)] = TiH + TiI; - } - } - { - E Tgn, Tgv, TiA, TiC, Tgq, Tgw, Tgt, Tgx; - { - E Tgj, Tgm, Tiu, Tiz; - Tgj = TfN + TfQ; - Tgm = Tgk + Tgl; - Tgn = Tgj + Tgm; - Tgv = Tgj - Tgm; - Tiu = TfU + TfX; - Tiz = Tiv + Tiy; - TiA = Tiu + Tiz; - TiC = Tiz - Tiu; - } - { - E Tgo, Tgp, Tgr, Tgs; - Tgo = Tg0 + Tg1; - Tgp = Tg3 + Tg4; - Tgq = FMA(KP980785280, Tgo, KP195090322 * Tgp); - Tgw = FNMS(KP195090322, Tgo, KP980785280 * Tgp); - Tgr = Tg7 + Tg8; - Tgs = Tga + Tgb; - Tgt = FNMS(KP195090322, Tgs, KP980785280 * Tgr); - Tgx = FMA(KP195090322, Tgr, KP980785280 * Tgs); - } - { - E Tgu, Tit, Tgy, TiB; - Tgu = Tgq + Tgt; - iio[-WS(ios, 34)] = Tgn - Tgu; - rio[WS(ios, 2)] = Tgn + Tgu; - Tit = Tgw + Tgx; - rio[WS(ios, 34)] = Tit - TiA; - iio[-WS(ios, 2)] = Tit + TiA; - Tgy = Tgw - Tgx; - iio[-WS(ios, 50)] = Tgv - Tgy; - rio[WS(ios, 18)] = Tgv + Tgy; - TiB = Tgt - Tgq; - rio[WS(ios, 50)] = TiB - TiC; - iio[-WS(ios, 18)] = TiB + TiC; - } - } - { - E T7V, TjN, TjT, TaH, T8O, TjK, TaK, TjS, TaO, TaU, T9I, TaE, TaR, TaV, TaB; - E TaF, T8N; - T7V = T7x - T7U; - TjN = TjL + TjM; - TjT = TjM - TjL; - TaH = T7x + T7U; - T8N = FMA(KP195090322, T8D, KP980785280 * T8M); - T8O = T8m - T8N; - TjK = T8m + T8N; - { - E TaJ, TaM, TaN, T9u, T9H; - TaJ = FNMS(KP980785280, T8D, KP195090322 * T8M); - TaK = TaI + TaJ; - TjS = TaJ - TaI; - TaM = T96 + T9t; - TaN = T9D + T9G; - TaO = FMA(KP634393284, TaM, KP773010453 * TaN); - TaU = FNMS(KP634393284, TaN, KP773010453 * TaM); - T9u = T96 - T9t; - T9H = T9D - T9G; - T9I = FMA(KP995184726, T9u, KP098017140 * T9H); - TaE = FNMS(KP995184726, T9H, KP098017140 * T9u); - { - E TaP, TaQ, Tan, TaA; - TaP = T9Z + Tam; - TaQ = Taw + Taz; - TaR = FNMS(KP634393284, TaQ, KP773010453 * TaP); - TaV = FMA(KP773010453, TaQ, KP634393284 * TaP); - Tan = T9Z - Tam; - TaA = Taw - Taz; - TaB = FNMS(KP995184726, TaA, KP098017140 * Tan); - TaF = FMA(KP098017140, TaA, KP995184726 * Tan); - } - } - { - E T8P, TaC, TjR, TjU; - T8P = T7V + T8O; - TaC = T9I + TaB; - iio[-WS(ios, 47)] = T8P - TaC; - rio[WS(ios, 15)] = T8P + TaC; - TjR = TaE + TaF; - TjU = TjS + TjT; - rio[WS(ios, 47)] = TjR - TjU; - iio[-WS(ios, 15)] = TjR + TjU; - } - { - E TaD, TaG, TjV, TjW; - TaD = T7V - T8O; - TaG = TaE - TaF; - iio[-WS(ios, 63)] = TaD - TaG; - rio[WS(ios, 31)] = TaD + TaG; - TjV = TaB - T9I; - TjW = TjT - TjS; - rio[WS(ios, 63)] = TjV - TjW; - iio[-WS(ios, 31)] = TjV + TjW; - } - { - E TaL, TaS, TjJ, TjO; - TaL = TaH + TaK; - TaS = TaO + TaR; - iio[-WS(ios, 39)] = TaL - TaS; - rio[WS(ios, 7)] = TaL + TaS; - TjJ = TaU + TaV; - TjO = TjK + TjN; - rio[WS(ios, 39)] = TjJ - TjO; - iio[-WS(ios, 7)] = TjJ + TjO; - } - { - E TaT, TaW, TjP, TjQ; - TaT = TaH - TaK; - TaW = TaU - TaV; - iio[-WS(ios, 55)] = TaT - TaW; - rio[WS(ios, 23)] = TaT + TaW; - TjP = TaR - TaO; - TjQ = TjN - TjK; - rio[WS(ios, 55)] = TjP - TjQ; - iio[-WS(ios, 23)] = TjP + TjQ; - } - } - { - E TbV, Tjj, Tjp, TcT, Tca, Tjg, TcW, Tjo, Td0, Td6, Tcu, TcQ, Td3, Td7, TcN; - E TcR, Tc9; - TbV = TbN - TbU; - Tjj = Tjh + Tji; - Tjp = Tji - Tjh; - TcT = TbN + TbU; - Tc9 = FMA(KP831469612, Tc5, KP555570233 * Tc8); - Tca = Tc2 - Tc9; - Tjg = Tc2 + Tc9; - { - E TcV, TcY, TcZ, Tcm, Tct; - TcV = FNMS(KP831469612, Tc8, KP555570233 * Tc5); - TcW = TcU + TcV; - Tjo = TcV - TcU; - TcY = Tce + Tcl; - TcZ = Tcp + Tcs; - Td0 = FMA(KP471396736, TcY, KP881921264 * TcZ); - Td6 = FNMS(KP471396736, TcZ, KP881921264 * TcY); - Tcm = Tce - Tcl; - Tct = Tcp - Tcs; - Tcu = FMA(KP956940335, Tcm, KP290284677 * Tct); - TcQ = FNMS(KP956940335, Tct, KP290284677 * Tcm); - { - E Td1, Td2, TcF, TcM; - Td1 = Tcx + TcE; - Td2 = TcI + TcL; - Td3 = FNMS(KP471396736, Td2, KP881921264 * Td1); - Td7 = FMA(KP881921264, Td2, KP471396736 * Td1); - TcF = Tcx - TcE; - TcM = TcI - TcL; - TcN = FNMS(KP956940335, TcM, KP290284677 * TcF); - TcR = FMA(KP290284677, TcM, KP956940335 * TcF); - } - } - { - E Tcb, TcO, Tjn, Tjq; - Tcb = TbV + Tca; - TcO = Tcu + TcN; - iio[-WS(ios, 45)] = Tcb - TcO; - rio[WS(ios, 13)] = Tcb + TcO; - Tjn = TcQ + TcR; - Tjq = Tjo + Tjp; - rio[WS(ios, 45)] = Tjn - Tjq; - iio[-WS(ios, 13)] = Tjn + Tjq; - } - { - E TcP, TcS, Tjr, Tjs; - TcP = TbV - Tca; - TcS = TcQ - TcR; - iio[-WS(ios, 61)] = TcP - TcS; - rio[WS(ios, 29)] = TcP + TcS; - Tjr = TcN - Tcu; - Tjs = Tjp - Tjo; - rio[WS(ios, 61)] = Tjr - Tjs; - iio[-WS(ios, 29)] = Tjr + Tjs; - } - { - E TcX, Td4, Tjf, Tjk; - TcX = TcT + TcW; - Td4 = Td0 + Td3; - iio[-WS(ios, 37)] = TcX - Td4; - rio[WS(ios, 5)] = TcX + Td4; - Tjf = Td6 + Td7; - Tjk = Tjg + Tjj; - rio[WS(ios, 37)] = Tjf - Tjk; - iio[-WS(ios, 5)] = Tjf + Tjk; - } - { - E Td5, Td8, Tjl, Tjm; - Td5 = TcT - TcW; - Td8 = Td6 - Td7; - iio[-WS(ios, 53)] = Td5 - Td8; - rio[WS(ios, 21)] = Td5 + Td8; - Tjl = Td3 - Td0; - Tjm = Tjj - Tjg; - rio[WS(ios, 53)] = Tjl - Tjm; - iio[-WS(ios, 21)] = Tjl + Tjm; - } - } - { - E Tb1, Tjz, TjF, Tbt, Tb8, Tju, Tbw, TjE, TbA, TbG, Tbg, Tbq, TbD, TbH, Tbn; - E Tbr, Tb7; - Tb1 = TaX - Tb0; - Tjz = Tjv + Tjy; - TjF = Tjy - Tjv; - Tbt = TaX + Tb0; - Tb7 = FMA(KP831469612, Tb5, KP555570233 * Tb6); - Tb8 = Tb4 - Tb7; - Tju = Tb4 + Tb7; - { - E Tbv, Tby, Tbz, Tbc, Tbf; - Tbv = FNMS(KP555570233, Tb5, KP831469612 * Tb6); - Tbw = Tbu + Tbv; - TjE = Tbv - Tbu; - Tby = Tba + Tbb; - Tbz = Tbd + Tbe; - TbA = FMA(KP956940335, Tby, KP290284677 * Tbz); - TbG = FNMS(KP290284677, Tby, KP956940335 * Tbz); - Tbc = Tba - Tbb; - Tbf = Tbd - Tbe; - Tbg = FMA(KP471396736, Tbc, KP881921264 * Tbf); - Tbq = FNMS(KP881921264, Tbc, KP471396736 * Tbf); - { - E TbB, TbC, Tbj, Tbm; - TbB = Tbh + Tbi; - TbC = Tbk + Tbl; - TbD = FNMS(KP290284677, TbC, KP956940335 * TbB); - TbH = FMA(KP290284677, TbB, KP956940335 * TbC); - Tbj = Tbh - Tbi; - Tbm = Tbk - Tbl; - Tbn = FNMS(KP881921264, Tbm, KP471396736 * Tbj); - Tbr = FMA(KP881921264, Tbj, KP471396736 * Tbm); - } - } - { - E Tb9, Tbo, TjD, TjG; - Tb9 = Tb1 + Tb8; - Tbo = Tbg + Tbn; - iio[-WS(ios, 43)] = Tb9 - Tbo; - rio[WS(ios, 11)] = Tb9 + Tbo; - TjD = Tbq + Tbr; - TjG = TjE + TjF; - rio[WS(ios, 43)] = TjD - TjG; - iio[-WS(ios, 11)] = TjD + TjG; - } - { - E Tbp, Tbs, TjH, TjI; - Tbp = Tb1 - Tb8; - Tbs = Tbq - Tbr; - iio[-WS(ios, 59)] = Tbp - Tbs; - rio[WS(ios, 27)] = Tbp + Tbs; - TjH = Tbn - Tbg; - TjI = TjF - TjE; - rio[WS(ios, 59)] = TjH - TjI; - iio[-WS(ios, 27)] = TjH + TjI; - } - { - E Tbx, TbE, Tjt, TjA; - Tbx = Tbt + Tbw; - TbE = TbA + TbD; - iio[-WS(ios, 35)] = Tbx - TbE; - rio[WS(ios, 3)] = Tbx + TbE; - Tjt = TbG + TbH; - TjA = Tju + Tjz; - rio[WS(ios, 35)] = Tjt - TjA; - iio[-WS(ios, 3)] = Tjt + TjA; - } - { - E TbF, TbI, TjB, TjC; - TbF = Tbt - Tbw; - TbI = TbG - TbH; - iio[-WS(ios, 51)] = TbF - TbI; - rio[WS(ios, 19)] = TbF + TbI; - TjB = TbD - TbA; - TjC = Tjz - Tju; - rio[WS(ios, 51)] = TjB - TjC; - iio[-WS(ios, 19)] = TjB + TjC; - } - } - { - E Tdd, Tj5, Tjb, TdF, Tdk, TiY, TdI, Tja, TdM, TdS, Tds, TdC, TdP, TdT, Tdz; - E TdD, Tdj; - Tdd = Td9 - Tdc; - Tj5 = TiZ + Tj4; - Tjb = Tj4 - TiZ; - TdF = Td9 + Tdc; - Tdj = FMA(KP195090322, Tdh, KP980785280 * Tdi); - Tdk = Tdg - Tdj; - TiY = Tdg + Tdj; - { - E TdH, TdK, TdL, Tdo, Tdr; - TdH = FNMS(KP195090322, Tdi, KP980785280 * Tdh); - TdI = TdG + TdH; - Tja = TdH - TdG; - TdK = Tdm + Tdn; - TdL = Tdp + Tdq; - TdM = FMA(KP995184726, TdK, KP098017140 * TdL); - TdS = FNMS(KP098017140, TdK, KP995184726 * TdL); - Tdo = Tdm - Tdn; - Tdr = Tdp - Tdq; - Tds = FMA(KP634393284, Tdo, KP773010453 * Tdr); - TdC = FNMS(KP773010453, Tdo, KP634393284 * Tdr); - { - E TdN, TdO, Tdv, Tdy; - TdN = Tdt + Tdu; - TdO = Tdw + Tdx; - TdP = FNMS(KP098017140, TdO, KP995184726 * TdN); - TdT = FMA(KP098017140, TdN, KP995184726 * TdO); - Tdv = Tdt - Tdu; - Tdy = Tdw - Tdx; - Tdz = FNMS(KP773010453, Tdy, KP634393284 * Tdv); - TdD = FMA(KP773010453, Tdv, KP634393284 * Tdy); - } - } - { - E Tdl, TdA, Tj9, Tjc; - Tdl = Tdd + Tdk; - TdA = Tds + Tdz; - iio[-WS(ios, 41)] = Tdl - TdA; - rio[WS(ios, 9)] = Tdl + TdA; - Tj9 = TdC + TdD; - Tjc = Tja + Tjb; - rio[WS(ios, 41)] = Tj9 - Tjc; - iio[-WS(ios, 9)] = Tj9 + Tjc; - } - { - E TdB, TdE, Tjd, Tje; - TdB = Tdd - Tdk; - TdE = TdC - TdD; - iio[-WS(ios, 57)] = TdB - TdE; - rio[WS(ios, 25)] = TdB + TdE; - Tjd = Tdz - Tds; - Tje = Tjb - Tja; - rio[WS(ios, 57)] = Tjd - Tje; - iio[-WS(ios, 25)] = Tjd + Tje; - } - { - E TdJ, TdQ, TiX, Tj6; - TdJ = TdF + TdI; - TdQ = TdM + TdP; - iio[-WS(ios, 33)] = TdJ - TdQ; - rio[WS(ios, 1)] = TdJ + TdQ; - TiX = TdS + TdT; - Tj6 = TiY + Tj5; - rio[WS(ios, 33)] = TiX - Tj6; - iio[-WS(ios, 1)] = TiX + Tj6; - } - { - E TdR, TdU, Tj7, Tj8; - TdR = TdF - TdI; - TdU = TdS - TdT; - iio[-WS(ios, 49)] = TdR - TdU; - rio[WS(ios, 17)] = TdR + TdU; - Tj7 = TdP - TdM; - Tj8 = Tj5 - TiY; - rio[WS(ios, 49)] = Tj7 - Tj8; - iio[-WS(ios, 17)] = Tj7 + Tj8; - } - } - } - } - return W; -} - -static const tw_instr twinstr[] = { - {TW_COS, 0, 1}, - {TW_SIN, 0, 1}, - {TW_COS, 0, 3}, - {TW_SIN, 0, 3}, - {TW_COS, 0, 9}, - {TW_SIN, 0, 9}, - {TW_COS, 0, 27}, - {TW_SIN, 0, 27}, - {TW_COS, 0, 63}, - {TW_SIN, 0, 63}, - {TW_NEXT, 1, 0} -}; - -static const hc2hc_desc desc = { 64, "hf2_64", twinstr, {880, 386, 274, 0}, &GENUS, 0, 0, 0 }; - -void X(codelet_hf2_64) (planner *p) { - X(khc2hc_dit_register) (p, hf2_64, &desc); -} |