summaryrefslogtreecommitdiff
path: root/src/fftw3/rdft/rdft-dht.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/fftw3/rdft/rdft-dht.c')
-rw-r--r--src/fftw3/rdft/rdft-dht.c223
1 files changed, 0 insertions, 223 deletions
diff --git a/src/fftw3/rdft/rdft-dht.c b/src/fftw3/rdft/rdft-dht.c
deleted file mode 100644
index f384fef..0000000
--- a/src/fftw3/rdft/rdft-dht.c
+++ /dev/null
@@ -1,223 +0,0 @@
-/*
- * Copyright (c) 2003 Matteo Frigo
- * Copyright (c) 2003 Massachusetts Institute of Technology
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation; either version 2 of the License, or
- * (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program; if not, write to the Free Software
- * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
- *
- */
-
-/* $Id: rdft-dht.c,v 1.1 2008/10/17 06:11:29 scuri Exp $ */
-
-/* Solve an R2HC/HC2R problem via post/pre processing of a DHT. This
- is mainly useful because we can use Rader to compute DHTs of prime
- sizes. It also allows us to express hc2r problems in terms of r2hc
- (via dht-r2hc), and to do hc2r problems without destroying the input. */
-
-#include "rdft.h"
-
-typedef struct {
- solver super;
-} S;
-
-typedef struct {
- plan_rdft super;
- plan *cld;
- int is, os;
- int n;
-} P;
-
-static void apply_r2hc(const plan *ego_, R *I, R *O)
-{
- const P *ego = (const P *) ego_;
- int os;
- int i, n;
-
- {
- plan_rdft *cld = (plan_rdft *) ego->cld;
- cld->apply((plan *) cld, I, O);
- }
-
- n = ego->n;
- os = ego->os;
- for (i = 1; i < n - i; ++i) {
- E a, b;
- a = K(0.5) * O[os * i];
- b = K(0.5) * O[os * (n - i)];
- O[os * i] = a + b;
-#if FFT_SIGN == -1
- O[os * (n - i)] = b - a;
-#else
- O[os * (n - i)] = a - b;
-#endif
- }
-}
-
-/* hc2r, destroying input as usual */
-static void apply_hc2r(const plan *ego_, R *I, R *O)
-{
- const P *ego = (const P *) ego_;
- int is = ego->is;
- int i, n = ego->n;
-
- for (i = 1; i < n - i; ++i) {
- E a, b;
- a = I[is * i];
- b = I[is * (n - i)];
-#if FFT_SIGN == -1
- I[is * i] = a - b;
- I[is * (n - i)] = a + b;
-#else
- I[is * i] = a + b;
- I[is * (n - i)] = a - b;
-#endif
- }
-
- {
- plan_rdft *cld = (plan_rdft *) ego->cld;
- cld->apply((plan *) cld, I, O);
- }
-}
-
-/* hc2r, without destroying input */
-static void apply_hc2r_save(const plan *ego_, R *I, R *O)
-{
- const P *ego = (const P *) ego_;
- int is = ego->is, os = ego->os;
- int i, n = ego->n;
-
- O[0] = I[0];
- for (i = 1; i < n - i; ++i) {
- E a, b;
- a = I[is * i];
- b = I[is * (n - i)];
-#if FFT_SIGN == -1
- O[os * i] = a - b;
- O[os * (n - i)] = a + b;
-#else
- O[os * i] = a + b;
- O[os * (n - i)] = a - b;
-#endif
- }
- if (i == n - i)
- O[os * i] = I[is * i];
-
- {
- plan_rdft *cld = (plan_rdft *) ego->cld;
- cld->apply((plan *) cld, O, O);
- }
-}
-
-static void awake(plan *ego_, int flg)
-{
- P *ego = (P *) ego_;
- AWAKE(ego->cld, flg);
-}
-
-static void destroy(plan *ego_)
-{
- P *ego = (P *) ego_;
- X(plan_destroy_internal)(ego->cld);
-}
-
-static void print(const plan *ego_, printer *p)
-{
- const P *ego = (const P *) ego_;
- p->print(p, "(%s-dht-%d%(%p%))",
- ego->super.apply == apply_r2hc ? "r2hc" : "hc2r",
- ego->n, ego->cld);
-}
-
-static int applicable0(const solver *ego_, const problem *p_)
-{
- UNUSED(ego_);
- if (RDFTP(p_)) {
- const problem_rdft *p = (const problem_rdft *) p_;
- return (1
- && p->sz->rnk == 1
- && p->vecsz->rnk == 0
- && (p->kind[0] == R2HC || p->kind[0] == HC2R)
-
- /* hack: size-2 DHT etc. are defined as being equivalent
- to size-2 R2HC in problem.c, so we need this to prevent
- infinite loops for size 2 in EXHAUSTIVE mode: */
- && p->sz->dims[0].n > 2
- );
- }
- return 0;
-}
-
-static int applicable(const solver *ego, const problem *p_,
- const planner *plnr)
-{
- return (!NO_UGLYP(plnr) && applicable0(ego, p_));
-}
-
-static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
-{
- P *pln;
- const problem_rdft *p;
- problem *cldp;
- plan *cld;
-
- static const plan_adt padt = {
- X(rdft_solve), awake, print, destroy
- };
-
- if (!applicable(ego_, p_, plnr))
- return (plan *)0;
-
- p = (const problem_rdft *) p_;
-
- if (p->kind[0] == R2HC || DESTROY_INPUTP(plnr))
- cldp = X(mkproblem_rdft_1)(p->sz, p->vecsz, p->I, p->O, DHT);
- else {
- tensor *sz = X(tensor_copy_inplace)(p->sz, INPLACE_OS);
- cldp = X(mkproblem_rdft_1)(sz, p->vecsz, p->O, p->O, DHT);
- X(tensor_destroy)(sz);
- }
- cld = X(mkplan_d)(plnr, cldp);
- if (!cld) return (plan *)0;
-
- pln = MKPLAN_RDFT(P, &padt, p->kind[0] == R2HC ?
- apply_r2hc : (DESTROY_INPUTP(plnr) ?
- apply_hc2r : apply_hc2r_save));
- pln->n = p->sz->dims[0].n;
- pln->is = p->sz->dims[0].is;
- pln->os = p->sz->dims[0].os;
- pln->cld = cld;
-
- pln->super.super.ops = cld->ops;
- pln->super.super.ops.other += 4 * ((pln->n - 1)/2);
- pln->super.super.ops.add += 2 * ((pln->n - 1)/2);
- if (p->kind[0] == R2HC)
- pln->super.super.ops.mul += 2 * ((pln->n - 1)/2);
- if (pln->super.apply == apply_hc2r_save)
- pln->super.super.ops.other += 2 + (pln->n % 2 ? 0 : 2);
-
- return &(pln->super.super);
-}
-
-/* constructor */
-static solver *mksolver(void)
-{
- static const solver_adt sadt = { mkplan };
- S *slv = MKSOLVER(S, &sadt);
- return &(slv->super);
-}
-
-void X(rdft_dht_register)(planner *p)
-{
- REGISTER_SOLVER(p, mksolver());
-}