1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
|
/*
* Copyright (c) 1997-1999, 2003 Massachusetts Institute of Technology
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
/*
* twiddle.c -- compute twiddle factors
* These are the twiddle factors for *direct* fft. Flip sign to get
* the inverse
*/
/* $Id: twiddle.c,v 1.1 2008/10/17 06:13:18 scuri Exp $ */
#include "fftw-int.h"
#include <math.h>
#include <stdlib.h>
#include <limits.h>
#ifndef TRUE
#define TRUE (1 == 1)
#endif
#ifndef FALSE
#define FALSE (1 == 0)
#endif
#ifdef USE_FFTW_SAFE_MULMOD
/* compute (x * y) mod p, but watch out for integer overflows; we must
have x, y >= 0, p > 0. This routine is slow. */
int fftw_safe_mulmod(int x, int y, int p)
{
if (y == 0 || x <= INT_MAX / y)
return((x * y) % p);
else {
int y2 = y/2;
return((fftw_safe_mulmod(x, y2, p) +
fftw_safe_mulmod(x, y - y2, p)) % p);
}
}
#endif /* USE_FFTW_SAFE_MULMOD */
static fftw_complex *fftw_compute_rader_twiddle(int n, int r, int g)
{
FFTW_TRIG_REAL twoPiOverN;
int m = n / r;
int i, j, gpower;
fftw_complex *W;
twoPiOverN = FFTW_K2PI / (FFTW_TRIG_REAL) n;
W = (fftw_complex *) fftw_malloc((r - 1) * m * sizeof(fftw_complex));
for (i = 0; i < m; ++i)
for (gpower = 1, j = 0; j < r - 1; ++j,
gpower = MULMOD(gpower, g, r)) {
int k = i * (r - 1) + j;
FFTW_TRIG_REAL
ij = (FFTW_TRIG_REAL) (i * gpower);
c_re(W[k]) = FFTW_TRIG_COS(twoPiOverN * ij);
c_im(W[k]) = FFTW_FORWARD * FFTW_TRIG_SIN(twoPiOverN * ij);
}
return W;
}
/*
* compute the W coefficients (that is, powers of the root of 1)
* and store them into an array.
*/
static fftw_complex *fftw_compute_twiddle(int n, const fftw_codelet_desc *d)
{
FFTW_TRIG_REAL twoPiOverN;
int i, j;
fftw_complex *W;
twoPiOverN = FFTW_K2PI / (FFTW_TRIG_REAL) n;
if (!d) {
/* generic codelet, needs all twiddles in order */
W = (fftw_complex *) fftw_malloc(n * sizeof(fftw_complex));
for (i = 0; i < n; ++i) {
c_re(W[i]) = FFTW_TRIG_COS(twoPiOverN * (FFTW_TRIG_REAL) i);
c_im(W[i]) = FFTW_FORWARD * FFTW_TRIG_SIN(twoPiOverN * (FFTW_TRIG_REAL) i);
}
} else if (d->type == FFTW_RADER)
W = fftw_compute_rader_twiddle(n, d->size, d->signature);
else {
int r = d->size;
int m = n / r, m_alloc;
int r1 = d->ntwiddle;
int istart;
if (d->type == FFTW_TWIDDLE) {
istart = 0;
m_alloc = m;
} else if (d->type == FFTW_HC2HC) {
/*
* This is tricky, do not change lightly.
*/
m = (m + 1) / 2;
m_alloc = m - 1;
istart = 1;
} else {
fftw_die("compute_twiddle: invalid argument\n");
/* paranoia for gcc */
m_alloc = 0;
istart = 0;
}
W = (fftw_complex *) fftw_malloc(r1 * m_alloc * sizeof(fftw_complex));
for (i = istart; i < m; ++i)
for (j = 0; j < r1; ++j) {
int k = (i - istart) * r1 + j;
FFTW_TRIG_REAL
ij = (FFTW_TRIG_REAL) (i * d->twiddle_order[j]);
c_re(W[k]) = FFTW_TRIG_COS(twoPiOverN * ij);
c_im(W[k]) = FFTW_FORWARD * FFTW_TRIG_SIN(twoPiOverN * ij);
}
}
return W;
}
/*
* these routines implement a simple reference-count-based
* management of twiddle structures
*/
static fftw_twiddle *twlist = (fftw_twiddle *) 0;
int fftw_twiddle_size = 0; /* total allocated size, for debugging */
/* true if the two codelets can share the same twiddle factors */
static int compatible(const fftw_codelet_desc *d1, const fftw_codelet_desc *d2)
{
int i;
/* true if they are the same codelet */
if (d1 == d2)
return TRUE;
/* false if one is null and the other is not */
if (!d1 || !d2)
return FALSE;
/* false if size is different */
if (d1->size != d2->size)
return FALSE;
/* false if different types (FFTW_TWIDDLE/FFTW_HC2HC/FFTW_RADER) */
if (d1->type != d2->type)
return FALSE;
/* false if they need different # of twiddles */
if (d1->ntwiddle != d2->ntwiddle)
return FALSE;
/* false if the twiddle orders are different */
for (i = 0; i < d1->ntwiddle; ++i)
if (d1->twiddle_order[i] != d2->twiddle_order[i])
return FALSE;
return TRUE;
}
fftw_twiddle *fftw_create_twiddle(int n, const fftw_codelet_desc *d)
{
fftw_twiddle *tw;
/* lookup this n in the twiddle list */
for (tw = twlist; tw; tw = tw->next)
if (n == tw->n && compatible(d, tw->cdesc)) {
++tw->refcnt;
return tw;
}
/* not found --- allocate a new struct twiddle */
tw = (fftw_twiddle *) fftw_malloc(sizeof(fftw_twiddle));
fftw_twiddle_size += n;
tw->n = n;
tw->cdesc = d;
tw->twarray = fftw_compute_twiddle(n, d);
tw->refcnt = 1;
/* enqueue the new struct */
tw->next = twlist;
twlist = tw;
return tw;
}
void fftw_destroy_twiddle(fftw_twiddle * tw)
{
fftw_twiddle **p;
--tw->refcnt;
if (tw->refcnt == 0) {
/* remove from the list of known twiddle factors */
for (p = &twlist; p; p = &((*p)->next))
if (*p == tw) {
*p = tw->next;
fftw_twiddle_size -= tw->n;
fftw_free(tw->twarray);
fftw_free(tw);
return;
}
fftw_die("BUG in fftw_destroy_twiddle\n");
}
}
|