summaryrefslogtreecommitdiff
path: root/src/im_rgb2map.cpp
blob: 465743a5ea0a2d992872de376d88dfa3c78e5b41 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
/** \file
 * \brief RGB to Map Conversion
 *
 * Most part of this code is based on jquant2.c from version 5         
 * of the IJG JPEG software,                          
 * copyright (C) 1991-1994, Thomas G. Lane.                   
 * Some other parts are from XV software 
 * copyright John Bradley.
 * This file doen not follows the IM library nomenclature convention.
 *
 * See Copyright Notice in im_lib.h
 * $Id: im_rgb2map.cpp,v 1.1 2008/10/17 06:10:16 scuri Exp $
 */


#include <stdlib.h>
#include <stdio.h>
#include <memory.h>

#include "im.h"
#include "im_util.h"
#include "im_convert.h"
#include "im_counter.h"


/* RANGE forces a to be in the range b..c (inclusive) */
#define RANGE(a,b,c) { if (a < b) a = b;  if (a > c) a = c; }

static void xvbcopy(const imbyte* src, imbyte* dst, int len)
{
  /* determine if the regions overlap
   *
   * 3 cases:  src=dst, src<dst, src>dst
   *
   * if src=dst, they overlap completely, but nothing needs to be moved
   * if src<dst and src+len>dst then they overlap
   * if src>dst and src<dst+len then they overlap
   */

  if (src==dst || len<=0) return;    /* nothin' to do */
  
  if (src<dst && src+len>dst) {  /* do a backward copy */
    src = src + len - 1;
    dst = dst + len - 1;
    for ( ; len>0; len--, src--, dst--) *dst = *src;
  }

  else {  /* they either overlap (src>dst) or they don't overlap */
    /* do a forward copy */
    for ( ; len>0; len--, src++, dst++) *dst = *src;
  }
}

/****************************/
static int quick_map(imbyte *red, imbyte *green, imbyte *blue, int w, int h, imbyte *map, 
                     imbyte *rmap, imbyte *gmap, imbyte *bmap, int maxcol)
{
/* scans picture until it finds more than 'maxcol' different colors.  If it
finds more than 'maxcol' colors, it returns '0'.  If it DOESN'T, it does
the 24-to-8 conversion by simply sticking the colors it found into
a colormap, and changing instances of a color in pic24 into colormap
  indicies (in pic8) */
  
  unsigned long colors[256],col;
  int           i, nc, low, high, mid, count;
  imbyte         *pred, *pgreen, *pblue, *pix;
  
  if (maxcol>256) maxcol = 256;
  
  /* put the first color in the table by hand */
  nc = 0;  mid = 0;  
 
  count = w*h;
  for (i=count,pred=red,pgreen=green,pblue=blue; i; i--) 
  {
    col  = (((unsigned long) *pred++) << 16);  
    col += (((unsigned long) *pgreen++) << 8);
    col +=  *pblue++;
    
    /* binary search the 'colors' array to see if it's in there */
    low = 0;  high = nc-1;
    while (low <= high) 
    {
      mid = (low+high)/2;
      if      (col < colors[mid]) high = mid - 1;
      else if (col > colors[mid]) low  = mid + 1;
      else break;
    }
    
    if (high < low) 
    { /* didn't find color in list, add it. */
      if (nc>=maxcol) 
        return 0;

      xvbcopy((const imbyte*)&colors[low], (imbyte*)&colors[low+1], (nc - low) * sizeof(unsigned long));
      colors[low] = col;
      nc++;
    }
  }
  
  /* run through the data a second time, this time mapping pixel values in
  pic24 into colormap offsets into 'colors' */
  
  for (i=count,pred=red,pgreen=green,pblue=blue, pix=map; i; i--,pix++) 
  {
    col  = (((unsigned long) *pred++) << 16);  
    col += (((unsigned long) *pgreen++) << 8);
    col +=  *pblue++;
    
    /* binary search the 'colors' array.  It *IS* in there */
    low = 0;  high = nc-1;
    while (low <= high) 
    {
      mid = (low+high)/2;
      if      (col < colors[mid]) high = mid - 1;
      else if (col > colors[mid]) low  = mid + 1;
      else break;
    }
    
    if (high < low) 
      return 0;
    
    *pix = (imbyte)mid;
  }
  
  /* and load up the 'desired colormap' */
  for (i=0; i<nc; i++) 
  {
    rmap[i] = (unsigned char)( colors[i]>>16);  
    gmap[i] = (unsigned char)((colors[i]>>8) & 0xff);
    bmap[i] = (unsigned char)( colors[i]     & 0xff);
  }
  
  return nc;
}

#define MAXNUMCOLORS  256	/* maximum size of colormap */

#define C0_SCALE 2		/* scale R distances by this much */
#define C1_SCALE 3		/* scale G distances by this much */
#define C2_SCALE 1		/* and B by this much */

#define HIST_C0_BITS  5		/* bits of precision in R histogram */
#define HIST_C1_BITS  6		/* bits of precision in G histogram */
#define HIST_C2_BITS  5		/* bits of precision in B histogram */

/* Number of elements along histogram axes. */
#define HIST_C0_ELEMS  (1<<HIST_C0_BITS)
#define HIST_C1_ELEMS  (1<<HIST_C1_BITS)
#define HIST_C2_ELEMS  (1<<HIST_C2_BITS)

/* These are the amounts to shift an input value to get a histogram index. */
#define C0_SHIFT  (8-HIST_C0_BITS)
#define C1_SHIFT  (8-HIST_C1_BITS)
#define C2_SHIFT  (8-HIST_C2_BITS)


typedef imushort histcell;	/* histogram cell; prefer an unsigned type */

typedef histcell * histptr;	/* for pointers to histogram cells */

typedef histcell hist1d[HIST_C2_ELEMS]; /* typedefs for the histogram array */
typedef hist1d hist2d[HIST_C1_ELEMS];
typedef hist2d hist3d[HIST_C0_ELEMS];

typedef short FSERROR;		/* 16 bits should be enough */
typedef int LOCFSERROR;		/* use 'int' for calculation temps */

typedef FSERROR *FSERRPTR;	/* pointer to error array */

typedef struct {
  /* The bounds of the box (inclusive); expressed as histogram indexes */
  int c0min, c0max;
  int c1min, c1max;
  int c2min, c2max;
  /* The volume (actually 2-norm) of the box */
  int volume;
  /* The number of nonzero histogram cells within this box */
  long colorcount;
} box;
typedef box * boxptr;

/* Local state for the IJG quantizer */

static hist2d * sl_histogram;	/* pointer to the 3D histogram array */
static FSERRPTR sl_fserrors;	/* accumulated-errors array */
static int * sl_error_limiter;	/* table for clamping the applied error */
static int sl_on_odd_row;	/* flag to remember which row we are on */
static imbyte* sl_colormap[3];	/* selected colormap */
static int sl_num_colors;	/* number of selected colors */


static void   slow_fill_histogram (imbyte*, imbyte*, imbyte*, int);
static boxptr find_biggest_color_pop (boxptr, int);
static boxptr find_biggest_volume (boxptr, int);
static void   update_box (boxptr);
static int    median_cut (boxptr, int, int);
static void   compute_color (boxptr, int);
static void   slow_select_colors (int);
static int    find_nearby_colors (int, int, int, imbyte []);
static void   find_best_colors (int,int,int,int, imbyte [], imbyte []);
static void   fill_inverse_cmap (int, int, int);
static void   slow_map_pixels (imbyte*, imbyte*, imbyte*, int, int, imbyte*);
static void   init_error_limit (void);


/* Master control for slow quantizer. */
static int slow_quant(imbyte *red, imbyte *green, imbyte *blue, int w, int h, imbyte *map, 
                      imbyte *rm, imbyte *gm, imbyte *bm, int descols)
{
  size_t fs_arraysize = (w + 2) * (3 * sizeof(FSERROR));
  
  /* Allocate all the temporary storage needed */
  init_error_limit();

  sl_histogram = (hist2d *) malloc(sizeof(hist3d));
  sl_fserrors = (FSERRPTR) malloc(fs_arraysize);
  
  if (! sl_error_limiter || ! sl_histogram || ! sl_fserrors) 
  {
    if (sl_error_limiter) free(sl_error_limiter-255);
    if (sl_fserrors) free(sl_fserrors);
    if (sl_histogram) free(sl_histogram);
    return 1;
  }
  
  sl_colormap[0] = (imbyte*) rm;
  sl_colormap[1] = (imbyte*) gm;
  sl_colormap[2] = (imbyte*) bm;
  
  /* Compute the color histogram */
  slow_fill_histogram(red, green, blue, w*h);
  
  /* Select the colormap */
  slow_select_colors(descols);
  
  /* Zero the histogram: now to be used as inverse color map */
  memset(sl_histogram, 0, sizeof(hist3d));
  
  /* Initialize the propagated errors to zero. */
  memset(sl_fserrors, 0, fs_arraysize);
  sl_on_odd_row = 0;
  
  /* Map the image. */
  slow_map_pixels(red, green, blue, w, h, map);
  
  /* Release working memory. */
  free(sl_histogram);
  free(sl_error_limiter-255);
  free(sl_fserrors);

  return 0;
}


static void slow_fill_histogram (register imbyte *red, register imbyte *green, register imbyte *blue, int numpixels)
{
  register histptr histp;
  register hist2d * histogram = sl_histogram;
  
  memset(histogram, 0, sizeof(hist3d));
  
  while (numpixels-- > 0) 
  {
    /* get pixel value and index into the histogram */
    histp = & histogram[*red >> C0_SHIFT] [*green >> C1_SHIFT] [*blue >> C2_SHIFT];

    /* increment, check for overflow and undo increment if so. */
    if (++(*histp) <= 0)
      (*histp)--;

    red++;
    green++;
    blue++;
  }
}


static boxptr find_biggest_color_pop (boxptr boxlist, int numboxes)
{
  register boxptr boxp;
  register int i;
  register long maxc = 0;
  boxptr which = NULL;
  
  for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++) {
    if (boxp->colorcount > maxc && boxp->volume > 0) {
      which = boxp;
      maxc = boxp->colorcount;
    }
  }
  return which;
}

static boxptr find_biggest_volume (boxptr boxlist, int numboxes)
{
  register boxptr boxp;
  register int i;
  register int maxv = 0;
  boxptr which = NULL;
  
  for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++) {
    if (boxp->volume > maxv) {
      which = boxp;
      maxv = boxp->volume;
    }
  }
  return which;
}


static void update_box (boxptr boxp)
{
  hist2d * histogram = sl_histogram;
  histptr histp;
  int c0,c1,c2;
  int c0min,c0max,c1min,c1max,c2min,c2max;
  int dist0,dist1,dist2;
  long ccount;
  
  c0min = boxp->c0min;  c0max = boxp->c0max;
  c1min = boxp->c1min;  c1max = boxp->c1max;
  c2min = boxp->c2min;  c2max = boxp->c2max;
  
  if (c0max > c0min)
    for (c0 = c0min; c0 <= c0max; c0++)
      for (c1 = c1min; c1 <= c1max; c1++) {
        histp = & histogram[c0][c1][c2min];
        for (c2 = c2min; c2 <= c2max; c2++)
          if (*histp++ != 0) {
            boxp->c0min = c0min = c0;
            goto have_c0min;
          }
      }
have_c0min:
      if (c0max > c0min)
        for (c0 = c0max; c0 >= c0min; c0--)
          for (c1 = c1min; c1 <= c1max; c1++) {
            histp = & histogram[c0][c1][c2min];
            for (c2 = c2min; c2 <= c2max; c2++)
              if (*histp++ != 0) {
                boxp->c0max = c0max = c0;
                goto have_c0max;
              }
          }
have_c0max:
          if (c1max > c1min)
            for (c1 = c1min; c1 <= c1max; c1++)
              for (c0 = c0min; c0 <= c0max; c0++) {
                histp = & histogram[c0][c1][c2min];
                for (c2 = c2min; c2 <= c2max; c2++)
                  if (*histp++ != 0) {
                    boxp->c1min = c1min = c1;
                    goto have_c1min;
                  }
              }
have_c1min:
              if (c1max > c1min)
                for (c1 = c1max; c1 >= c1min; c1--)
                  for (c0 = c0min; c0 <= c0max; c0++) {
                    histp = & histogram[c0][c1][c2min];
                    for (c2 = c2min; c2 <= c2max; c2++)
                      if (*histp++ != 0) {
                        boxp->c1max = c1max = c1;
                        goto have_c1max;
                      }
                  }
have_c1max:
                  if (c2max > c2min)
                    for (c2 = c2min; c2 <= c2max; c2++)
                      for (c0 = c0min; c0 <= c0max; c0++) {
                        histp = & histogram[c0][c1min][c2];
                        for (c1 = c1min; c1 <= c1max; c1++, histp += HIST_C2_ELEMS)
                          if (*histp != 0) {
                            boxp->c2min = c2min = c2;
                            goto have_c2min;
                          }
                      }
have_c2min:
                      if (c2max > c2min)
                        for (c2 = c2max; c2 >= c2min; c2--)
                          for (c0 = c0min; c0 <= c0max; c0++) {
                            histp = & histogram[c0][c1min][c2];
                            for (c1 = c1min; c1 <= c1max; c1++, histp += HIST_C2_ELEMS)
                              if (*histp != 0) {
                                boxp->c2max = c2max = c2;
                                goto have_c2max;
                              }
                          }
have_c2max:
                          
                          dist0 = ((c0max - c0min) << C0_SHIFT) * C0_SCALE;
                          dist1 = ((c1max - c1min) << C1_SHIFT) * C1_SCALE;
                          dist2 = ((c2max - c2min) << C2_SHIFT) * C2_SCALE;
                          boxp->volume = dist0*dist0 + dist1*dist1 + dist2*dist2;
                          
                          ccount = 0;
                          for (c0 = c0min; c0 <= c0max; c0++)
                            for (c1 = c1min; c1 <= c1max; c1++) {
                              histp = & histogram[c0][c1][c2min];
                              for (c2 = c2min; c2 <= c2max; c2++, histp++)
                                if (*histp != 0) {
                                  ccount++;
                                }
                            }
                            boxp->colorcount = ccount;
}


static int median_cut (boxptr boxlist, int numboxes, int desired_colors)
{
  int n,lb;
  int c0,c1,c2,cmax;
  register boxptr b1,b2;
  
  while (numboxes < desired_colors) {
  /* Select box to split.
  * Current algorithm: by population for first half, then by volume.
    */
    if (numboxes*2 <= desired_colors) {
      b1 = find_biggest_color_pop(boxlist, numboxes);
    } else {
      b1 = find_biggest_volume(boxlist, numboxes);
    }
    if (b1 == NULL)		/* no splittable boxes left! */
      break;
    b2 = &boxlist[numboxes];	/* where new box will go */
    /* Copy the color bounds to the new box. */
    b2->c0max = b1->c0max; b2->c1max = b1->c1max; b2->c2max = b1->c2max;
    b2->c0min = b1->c0min; b2->c1min = b1->c1min; b2->c2min = b1->c2min;
    /* Choose which axis to split the box on.
    */
    c0 = ((b1->c0max - b1->c0min) << C0_SHIFT) * C0_SCALE;
    c1 = ((b1->c1max - b1->c1min) << C1_SHIFT) * C1_SCALE;
    c2 = ((b1->c2max - b1->c2min) << C2_SHIFT) * C2_SCALE;
    cmax = c1; n = 1;
    if (c0 > cmax) { cmax = c0; n = 0; }
    if (c2 > cmax) { n = 2; }
    switch (n) {
    case 0:
      lb = (b1->c0max + b1->c0min) / 2;
      b1->c0max = lb;
      b2->c0min = lb+1;
      break;
    case 1:
      lb = (b1->c1max + b1->c1min) / 2;
      b1->c1max = lb;
      b2->c1min = lb+1;
      break;
    case 2:
      lb = (b1->c2max + b1->c2min) / 2;
      b1->c2max = lb;
      b2->c2min = lb+1;
      break;
    }
    /* Update stats for boxes */
    update_box(b1);
    update_box(b2);
    numboxes++;
  }
  return numboxes;
}

static void compute_color (boxptr boxp, int icolor)
{
  /* Current algorithm: mean weighted by pixels (not colors) */
  /* Note it is important to get the rounding correct! */
  hist2d * histogram = sl_histogram;
  histptr histp;
  int c0,c1,c2;
  int c0min,c0max,c1min,c1max,c2min,c2max;
  long count;
  long total = 0;
  long c0total = 0;
  long c1total = 0;
  long c2total = 0;
  
  c0min = boxp->c0min;  c0max = boxp->c0max;
  c1min = boxp->c1min;  c1max = boxp->c1max;
  c2min = boxp->c2min;  c2max = boxp->c2max;
  
  for (c0 = c0min; c0 <= c0max; c0++)
    for (c1 = c1min; c1 <= c1max; c1++) {
      histp = & histogram[c0][c1][c2min];
      for (c2 = c2min; c2 <= c2max; c2++) {
        if ((count = *histp++) != 0) {
          total += count;
          c0total += ((c0 << C0_SHIFT) + ((1<<C0_SHIFT)>>1)) * count;
          c1total += ((c1 << C1_SHIFT) + ((1<<C1_SHIFT)>>1)) * count;
          c2total += ((c2 << C2_SHIFT) + ((1<<C2_SHIFT)>>1)) * count;
        }
      }
    }
    
    sl_colormap[0][icolor] = (imbyte) ((c0total + (total>>1)) / total);
    sl_colormap[1][icolor] = (imbyte) ((c1total + (total>>1)) / total);
    sl_colormap[2][icolor] = (imbyte) ((c2total + (total>>1)) / total);
}


static void slow_select_colors (int descolors)
/* Master routine for color selection */
{
  box boxlist[MAXNUMCOLORS];
  int numboxes;
  int i;
  
  /* Initialize one box containing whole space */
  numboxes = 1;
  boxlist[0].c0min = 0;
  boxlist[0].c0max = 255 >> C0_SHIFT;
  boxlist[0].c1min = 0;
  boxlist[0].c1max = 255 >> C1_SHIFT;
  boxlist[0].c2min = 0;
  boxlist[0].c2max = 255 >> C2_SHIFT;
  /* Shrink it to actually-used volume and set its statistics */
  update_box(& boxlist[0]);
  /* Perform median-cut to produce final box list */
  numboxes = median_cut(boxlist, numboxes, descolors);
  /* Compute the representative color for each box, fill colormap */
  for (i = 0; i < numboxes; i++)
    compute_color(& boxlist[i], i);
  sl_num_colors = numboxes;
}


/* log2(histogram cells in update box) for each axis; this can be adjusted */
#define BOX_C0_LOG  (HIST_C0_BITS-3)
#define BOX_C1_LOG  (HIST_C1_BITS-3)
#define BOX_C2_LOG  (HIST_C2_BITS-3)

#define BOX_C0_ELEMS  (1<<BOX_C0_LOG) /* # of hist cells in update box */
#define BOX_C1_ELEMS  (1<<BOX_C1_LOG)
#define BOX_C2_ELEMS  (1<<BOX_C2_LOG)

#define BOX_C0_SHIFT  (C0_SHIFT + BOX_C0_LOG)
#define BOX_C1_SHIFT  (C1_SHIFT + BOX_C1_LOG)
#define BOX_C2_SHIFT  (C2_SHIFT + BOX_C2_LOG)


static int find_nearby_colors (int minc0, int minc1, int minc2, imbyte* colorlist)
{
  int numcolors = sl_num_colors;
  int maxc0, maxc1, maxc2;
  int centerc0, centerc1, centerc2;
  int i, x, ncolors;
  int minmaxdist, min_dist, max_dist, tdist;
  int mindist[MAXNUMCOLORS];	/* min distance to colormap entry i */
  
  maxc0 = minc0 + ((1 << BOX_C0_SHIFT) - (1 << C0_SHIFT));
  centerc0 = (minc0 + maxc0) >> 1;
  maxc1 = minc1 + ((1 << BOX_C1_SHIFT) - (1 << C1_SHIFT));
  centerc1 = (minc1 + maxc1) >> 1;
  maxc2 = minc2 + ((1 << BOX_C2_SHIFT) - (1 << C2_SHIFT));
  centerc2 = (minc2 + maxc2) >> 1;
  
  minmaxdist = 0x7FFFFFFFL;
  
  for (i = 0; i < numcolors; i++) {
    /* We compute the squared-c0-distance term, then add in the other two. */
    x = sl_colormap[0][i];
    if (x < minc0) {
      tdist = (x - minc0) * C0_SCALE;
      min_dist = tdist*tdist;
      tdist = (x - maxc0) * C0_SCALE;
      max_dist = tdist*tdist;
    } else if (x > maxc0) {
      tdist = (x - maxc0) * C0_SCALE;
      min_dist = tdist*tdist;
      tdist = (x - minc0) * C0_SCALE;
      max_dist = tdist*tdist;
    } else {
      /* within cell range so no contribution to min_dist */
      min_dist = 0;
      if (x <= centerc0) {
        tdist = (x - maxc0) * C0_SCALE;
        max_dist = tdist*tdist;
      } else {
        tdist = (x - minc0) * C0_SCALE;
        max_dist = tdist*tdist;
      }
    }
    
    x = sl_colormap[1][i];
    if (x < minc1) {
      tdist = (x - minc1) * C1_SCALE;
      min_dist += tdist*tdist;
      tdist = (x - maxc1) * C1_SCALE;
      max_dist += tdist*tdist;
    } else if (x > maxc1) {
      tdist = (x - maxc1) * C1_SCALE;
      min_dist += tdist*tdist;
      tdist = (x - minc1) * C1_SCALE;
      max_dist += tdist*tdist;
    } else {
      /* within cell range so no contribution to min_dist */
      if (x <= centerc1) {
        tdist = (x - maxc1) * C1_SCALE;
        max_dist += tdist*tdist;
      } else {
        tdist = (x - minc1) * C1_SCALE;
        max_dist += tdist*tdist;
      }
    }
    
    x = sl_colormap[2][i];
    if (x < minc2) {
      tdist = (x - minc2) * C2_SCALE;
      min_dist += tdist*tdist;
      tdist = (x - maxc2) * C2_SCALE;
      max_dist += tdist*tdist;
    } else if (x > maxc2) {
      tdist = (x - maxc2) * C2_SCALE;
      min_dist += tdist*tdist;
      tdist = (x - minc2) * C2_SCALE;
      max_dist += tdist*tdist;
    } else {
      /* within cell range so no contribution to min_dist */
      if (x <= centerc2) {
        tdist = (x - maxc2) * C2_SCALE;
        max_dist += tdist*tdist;
      } else {
        tdist = (x - minc2) * C2_SCALE;
        max_dist += tdist*tdist;
      }
    }
    
    mindist[i] = min_dist;	/* save away the results */
    if (max_dist < minmaxdist)
      minmaxdist = max_dist;
  }
  
  ncolors = 0;
  for (i = 0; i < numcolors; i++) {
    if (mindist[i] <= minmaxdist)
      colorlist[ncolors++] = (imbyte) i;
  }
  return ncolors;
}


static void find_best_colors (int minc0, int minc1, int minc2, int numcolors,
                              imbyte* colorlist, imbyte* bestcolor)
{
  int ic0, ic1, ic2;
  int i, icolor;
  register int * bptr;	/* pointer into bestdist[] array */
  imbyte * cptr;		/* pointer into bestcolor[] array */
  int dist0, dist1;		/* initial distance values */
  register int dist2;		/* current distance in inner loop */
  int xx0, xx1;		/* distance increments */
  register int xx2;
  int inc0, inc1, inc2;	/* initial values for increments */
  /* This array holds the distance to the nearest-so-far color for each cell */
  int bestdist[BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS];
  
  /* Initialize best-distance for each cell of the update box */
  bptr = bestdist;
  for (i = BOX_C0_ELEMS*BOX_C1_ELEMS*BOX_C2_ELEMS-1; i >= 0; i--)
    *bptr++ = 0x7FFFFFFFL;
  
  /* Nominal steps between cell centers ("x" in Thomas article) */
#define STEP_C0  ((1 << C0_SHIFT) * C0_SCALE)
#define STEP_C1  ((1 << C1_SHIFT) * C1_SCALE)
#define STEP_C2  ((1 << C2_SHIFT) * C2_SCALE)
  
  for (i = 0; i < numcolors; i++) {
    icolor = colorlist[i];
    /* Compute (square of) distance from minc0/c1/c2 to this color */
    inc0 = (minc0 - (int) sl_colormap[0][icolor]) * C0_SCALE;
    dist0 = inc0*inc0;
    inc1 = (minc1 - (int) sl_colormap[1][icolor]) * C1_SCALE;
    dist0 += inc1*inc1;
    inc2 = (minc2 - (int) sl_colormap[2][icolor]) * C2_SCALE;
    dist0 += inc2*inc2;
    /* Form the initial difference increments */
    inc0 = inc0 * (2 * STEP_C0) + STEP_C0 * STEP_C0;
    inc1 = inc1 * (2 * STEP_C1) + STEP_C1 * STEP_C1;
    inc2 = inc2 * (2 * STEP_C2) + STEP_C2 * STEP_C2;
    /* Now loop over all cells in box, updating distance per Thomas method */
    bptr = bestdist;
    cptr = bestcolor;
    xx0 = inc0;
    for (ic0 = BOX_C0_ELEMS-1; ic0 >= 0; ic0--) {
      dist1 = dist0;
      xx1 = inc1;
      for (ic1 = BOX_C1_ELEMS-1; ic1 >= 0; ic1--) {
        dist2 = dist1;
        xx2 = inc2;
        for (ic2 = BOX_C2_ELEMS-1; ic2 >= 0; ic2--) {
          if (dist2 < *bptr) {
            *bptr = dist2;
            *cptr = (imbyte) icolor;
          }
          dist2 += xx2;
          xx2 += 2 * STEP_C2 * STEP_C2;
          bptr++;
          cptr++;
        }
        dist1 += xx1;
        xx1 += 2 * STEP_C1 * STEP_C1;
      }
      dist0 += xx0;
      xx0 += 2 * STEP_C0 * STEP_C0;
    }
  }
}


static void fill_inverse_cmap (int c0, int c1, int c2)
{
  hist2d * histogram = sl_histogram;
  int minc0, minc1, minc2;	/* lower left corner of update box */
  int ic0, ic1, ic2;
  register imbyte * cptr;	/* pointer into bestcolor[] array */
  register histptr cachep;	/* pointer into main cache array */
  /* This array lists the candidate colormap indexes. */
  imbyte colorlist[MAXNUMCOLORS];
  int numcolors;		/* number of candidate colors */
  /* This array holds the actually closest colormap index for each cell. */
  imbyte bestcolor[BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS];
  
  /* Convert cell coordinates to update box ID */
  c0 >>= BOX_C0_LOG;
  c1 >>= BOX_C1_LOG;
  c2 >>= BOX_C2_LOG;
  
  minc0 = (c0 << BOX_C0_SHIFT) + ((1 << C0_SHIFT) >> 1);
  minc1 = (c1 << BOX_C1_SHIFT) + ((1 << C1_SHIFT) >> 1);
  minc2 = (c2 << BOX_C2_SHIFT) + ((1 << C2_SHIFT) >> 1);
  
  numcolors = find_nearby_colors(minc0, minc1, minc2, colorlist);
  
  /* Determine the actually nearest colors. */
  find_best_colors(minc0, minc1, minc2, numcolors, colorlist, bestcolor);
  
  /* Save the best color numbers (plus 1) in the main cache array */
  c0 <<= BOX_C0_LOG;		/* convert ID back to base cell indexes */
  c1 <<= BOX_C1_LOG;
  c2 <<= BOX_C2_LOG;
  cptr = bestcolor;
  for (ic0 = 0; ic0 < BOX_C0_ELEMS; ic0++) {
    for (ic1 = 0; ic1 < BOX_C1_ELEMS; ic1++) {
      cachep = & histogram[c0+ic0][c1+ic1][c2];
      for (ic2 = 0; ic2 < BOX_C2_ELEMS; ic2++) {
        *cachep++ = (histcell) (*cptr++ + 1);
      }
    }
  }
}


static void slow_map_pixels (imbyte *red, imbyte *green, imbyte *blue, int width, int height, imbyte *map)
{
  register LOCFSERROR cur0, cur1, cur2;	/* current error or pixel value */
  LOCFSERROR belowerr0, belowerr1, belowerr2; /* error for pixel below cur */
  LOCFSERROR bpreverr0, bpreverr1, bpreverr2; /* error for below/prev col */
  register FSERRPTR errorptr;	/* => fserrors[] at column before current */
  imbyte *inRptr, *inGptr, *inBptr;		/* => current input pixel */
  imbyte* outptr;		/* => current output pixel */
  histptr cachep;
  int dir;			/* +1 or -1 depending on direction */
  int dir3;			/* 3*dir, for advancing errorptr */
  int row, col, offset;
  int *error_limit = sl_error_limiter;
  imbyte* colormap0 = sl_colormap[0];
  imbyte* colormap1 = sl_colormap[1];
  imbyte* colormap2 = sl_colormap[2];
  hist2d * histogram = sl_histogram;
  
  for (row = 0; row < height; row++) 
  {
    offset = row * width;

    inRptr = & red[offset];
    inGptr = & green[offset];
    inBptr = & blue[offset];
    outptr = & map[offset];

    if (sl_on_odd_row) 
    {
      /* work right to left in this row */
      offset = width-1;

      inRptr += offset;	/* so point to rightmost pixel */
      inGptr += offset;	/* so point to rightmost pixel */
      inBptr += offset;	/* so point to rightmost pixel */

      outptr += offset;

      dir = -1;
      dir3 = -3;
      errorptr = sl_fserrors + (width+1)*3; /* => entry after last column */
      sl_on_odd_row = 0;	/* flip for next time */
    } 
    else 
    {
      /* work left to right in this row */
      dir = 1;
      dir3 = 3;
      errorptr = sl_fserrors;	/* => entry before first real column */
      sl_on_odd_row = 1;	/* flip for next time */
    }

    /* Preset error values: no error propagated to first pixel from left */
    cur0 = cur1 = cur2 = 0;
    /* and no error propagated to row below yet */
    belowerr0 = belowerr1 = belowerr2 = 0;
    bpreverr0 = bpreverr1 = bpreverr2 = 0;
    
    for (col = width; col > 0; col--) 
    {
      cur0 = (cur0 + errorptr[dir3+0] + 8) >> 4;
      cur1 = (cur1 + errorptr[dir3+1] + 8) >> 4;
      cur2 = (cur2 + errorptr[dir3+2] + 8) >> 4;

      cur0 = error_limit[cur0];
      cur1 = error_limit[cur1];
      cur2 = error_limit[cur2];

      cur0 += inRptr[0];
      cur1 += inGptr[0];
      cur2 += inBptr[0];

      RANGE(cur0, 0, 255);
      RANGE(cur1, 0, 255);
      RANGE(cur2, 0, 255);

      /* Index into the cache with adjusted pixel value */
      cachep = & histogram[cur0>>C0_SHIFT][cur1>>C1_SHIFT][cur2>>C2_SHIFT];

      /* If we have not seen this color before, find nearest colormap */
      /* entry and update the cache */
      if (*cachep == 0)
        fill_inverse_cmap(cur0>>C0_SHIFT, cur1>>C1_SHIFT, cur2>>C2_SHIFT);

      /* Now emit the colormap index for this cell */
      {
        register int pixcode = *cachep - 1;
        *outptr = (imbyte) pixcode;
        /* Compute representation error for this pixel */
        cur0 -= (int) colormap0[pixcode];
        cur1 -= (int) colormap1[pixcode];
        cur2 -= (int) colormap2[pixcode];
      }

      /* Compute error fractions to be propagated to adjacent pixels.
      * Add these into the running sums, and simultaneously shift the
      * next-line error sums left by 1 column. */
      { 
        register LOCFSERROR bnexterr, delta;
        bnexterr = cur0;	/* Process component 0 */
        delta = cur0 * 2;
        cur0 += delta;		/* form error * 3 */
        errorptr[0] = (FSERROR) (bpreverr0 + cur0);
        cur0 += delta;		/* form error * 5 */
        bpreverr0 = belowerr0 + cur0;
        belowerr0 = bnexterr;
        cur0 += delta;		/* form error * 7 */
        bnexterr = cur1;	/* Process component 1 */
        delta = cur1 * 2;
        cur1 += delta;		/* form error * 3 */
        errorptr[1] = (FSERROR) (bpreverr1 + cur1);
        cur1 += delta;		/* form error * 5 */
        bpreverr1 = belowerr1 + cur1;
        belowerr1 = bnexterr;
        cur1 += delta;		/* form error * 7 */
        bnexterr = cur2;	/* Process component 2 */
        delta = cur2 * 2;
        cur2 += delta;		/* form error * 3 */
        errorptr[2] = (FSERROR) (bpreverr2 + cur2);
        cur2 += delta;		/* form error * 5 */
        bpreverr2 = belowerr2 + cur2;
        belowerr2 = bnexterr;
        cur2 += delta;		/* form error * 7 */
      }

      /* At this point curN contains the 7/16 error value to be propagated
      * to the next pixel on the current line, and all the errors for the
      * next line have been shifted over.  We are therefore ready to move on.
      */
      inRptr += dir;		/* Advance pixel pointers to next column */
      inGptr += dir;		/* Advance pixel pointers to next column */
      inBptr += dir;		/* Advance pixel pointers to next column */
      outptr += dir;
      errorptr += dir3;		/* advance errorptr to current column */
    }

    /* Post-loop cleanup: we must unload the final error values into the
    * final fserrors[] entry.  Note we need not unload belowerrN because
    * it is for the dummy column before or after the actual array.
    */
    errorptr[0] = (FSERROR) bpreverr0; /* unload prev errs into array */
    errorptr[1] = (FSERROR) bpreverr1;
    errorptr[2] = (FSERROR) bpreverr2;
  }
}


/* Allocate and fill in the error_limiter table */
static void init_error_limit (void)
{
  int * table;
  int in, out, STEPSIZE;
  
  table = (int *) malloc((size_t) ((255*2+1) * sizeof(int)));
  if (! table) return;
  
  table += 255;		/* so can index -255 .. +255 */
  sl_error_limiter = table;
  
  STEPSIZE = ((255+1)/16);

  /* Map errors 1:1 up to +- 255/16 */
  out = 0;
  for (in = 0; in < STEPSIZE; in++, out++) 
  {
    table[in]  =  out; 
    table[-in] = -out;
  }

  /* Map errors 1:2 up to +- 3*255/16 */
  for (; in < STEPSIZE*3; in++, out += (in&1) ? 0 : 1) 
  {
    table[in]  =  out;
    table[-in] = -out;
  }

  /* Clamp the rest to final out value (which is (255+1)/8) */
  for (; in <= 255; in++) 
  {
    table[in]  =  out; 
    table[-in] = -out;
  }
}

int imConvertRGB2Map(int width, int height, unsigned char *red, unsigned char *green, unsigned char *blue, unsigned char *map, long *palette, int *palette_count)
{
  int i, err, new_palette_count;
  imbyte rm[256], gm[256], bm[256];

  if (*palette_count <= 0 || *palette_count > 256)
    *palette_count = 256;
  
  new_palette_count = quick_map(red, green, blue, width, height, map, rm, gm, bm, *palette_count);
  if (new_palette_count)  
  {
    for (i=0; i < new_palette_count; i++)
      *palette++ = imColorEncode(rm[i], gm[i], bm[i]);

    *palette_count = new_palette_count;
    return IM_ERR_NONE;
  }
  
  err = slow_quant(red, green, blue, width, height, map, rm, gm, bm, *palette_count);
  if (err)
    return IM_ERR_MEM;

  for (i=0; i < *palette_count; i++)
    *palette++ = imColorEncode(rm[i], gm[i], bm[i]);

  return IM_ERR_NONE;
}