summaryrefslogtreecommitdiff
path: root/src/process/im_fft.cpp
blob: 2a368801a53b4e4289d522bd8d85f0f18a2de356 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
/** \file
 * \brief Fast Fourier Transform using FFTW library
 *
 * See Copyright Notice in im_lib.h
 * $Id: im_fft.cpp,v 1.2 2009/08/20 12:37:11 scuri Exp $
 */

#include <im.h>
#include <im_util.h>
#include <im_complex.h>
#include <im_convert.h>

#include "im_process.h"

#include <stdlib.h>
#include <assert.h>
#include <memory.h>

#ifdef USE_FFTW3
#include "fftw3.h"
#else
#include "fftw.h"
#endif

static void iCopyCol(imcfloat *map1, imcfloat *map2, int height, int width1, int width2)
{
  int i;
  for(i = 0; i < height; i++)
  {
    *map1 = *map2;
    map1 += width1;
    map2 += width2;
  }
}

static void iCenterFFT(imcfloat *map, int width, int height, int inverse)
{
  imcfloat *map1, *map2, *map3, *tmp;
  int i, half1_width, half2_width, half1_height, half2_height;

  if (inverse)
  {
    half1_width = width/2;
    half1_height = height/2;

    half2_width = (width+1)/2;
    half2_height = (height+1)/2;
  }
  else
  {
    half1_width = (width+1)/2;
    half1_height = (height+1)/2;

    half2_width = width/2;
    half2_height = height/2;
  }

  tmp = (imcfloat*)malloc(half1_width*sizeof(imcfloat));

  map1 = map;
  map2 = map + half1_width;
  map3 = map + half2_width;
  for(i = 0; i < height; i++)
  {
    memcpy(tmp, map1, half1_width*sizeof(imcfloat));
    memcpy(map1, map2, half2_width*sizeof(imcfloat));
    memcpy(map3, tmp, half1_width*sizeof(imcfloat));

    map1 += width;
    map2 += width;
    map3 += width;
  }

  free(tmp);

  tmp = (imcfloat*)malloc(half1_height*sizeof(imcfloat));

  map1 = map;
  map2 = map + half1_height*width;
  map3 = map + half2_height*width;
  for(i = 0; i < width; i++)
  {
    iCopyCol(tmp, map1, half1_height, 1, width);
    iCopyCol(map1, map2, half2_height, width, width);
    iCopyCol(map3, tmp, half1_height, width, 1);

    map1++;
    map2++;
    map3++;
  }

  free(tmp);
}

static void iDoFFT(void *map, int width, int height, int inverse, int center, int normalize)
{
  if (inverse && center)
    iCenterFFT((imcfloat*)map, width, height, inverse);

#ifdef USE_FFTW3
  fftwf_plan plan = fftwf_plan_dft_2d(height, width, 
                      (fftwf_complex*)map, (fftwf_complex*)map, // in-place transform
                      inverse?FFTW_BACKWARD:FFTW_FORWARD, FFTW_ESTIMATE);
  fftwf_execute(plan);
  fftwf_destroy_plan(plan);
#else
  fftwnd_plan plan = fftw2d_create_plan(height, width, inverse?FFTW_BACKWARD:FFTW_FORWARD, FFTW_ESTIMATE|FFTW_IN_PLACE);
  fftwnd(plan, 1, (FFTW_COMPLEX*)map, 1, 0, 0, 0, 0);
  fftwnd_destroy_plan(plan);
#endif

  if (!inverse && center)
    iCenterFFT((imcfloat*)map, width, height, inverse);

  if (normalize)
  {
    float NM = (float)(width * height);
    int count = (int)(2*NM);

    if (normalize == 1)
      NM = (float)sqrt(NM);

    float *fmap = (float*)map;
    for (int i = 0; i < count; i++)
      *fmap++ /= NM;
  }
}

void imProcessSwapQuadrants(imImage* image, int inverse)
{
  for (int i = 0; i < image->depth; i++)
    iCenterFFT((imcfloat*)image->data[i], image->width, image->height, inverse);
}

void imProcessFFTraw(imImage* image, int inverse, int center, int normalize)
{
  for (int i = 0; i < image->depth; i++)
    iDoFFT(image->data[i], image->width, image->height, inverse, center, normalize);
}

void imProcessFFT(const imImage* src_image, imImage* dst_image)
{
  if (src_image->data_type != IM_CFLOAT)
    imConvertDataType(src_image, dst_image, 0, 0, 0, 0);
  else
    imImageCopy(src_image, dst_image);

  imProcessFFTraw(dst_image, 0, 1, 0); // forward, centered, unnormalized
}

void imProcessIFFT(const imImage* src_image, imImage* dst_image)
{
  imImageCopy(src_image, dst_image);

  imProcessFFTraw(dst_image, 1, 1, 2); // inverse, uncentered, double normalized
}

void imProcessCrossCorrelation(const imImage* src_image1, const imImage* src_image2, imImage* dst_image)
{
  imImage *tmp_image = imImageCreate(src_image2->width, src_image2->height, src_image2->color_space, IM_CFLOAT);
  if (!tmp_image) 
    return;

  if (src_image2->data_type != IM_CFLOAT)
    imConvertDataType(src_image2, tmp_image, 0, 0, 0, 0);
  else
    imImageCopy(src_image2, tmp_image);

  if (src_image1->data_type != IM_CFLOAT)
    imConvertDataType(src_image1, dst_image, 0, 0, 0, 0);
  else
    imImageCopy(src_image1, dst_image);

  imProcessFFTraw(tmp_image, 0, 1, 1);   // forward, centered, normalized
  imProcessFFTraw(dst_image, 0, 1, 1);

  imProcessMultiplyConj(dst_image, tmp_image, dst_image);

  imProcessFFTraw(dst_image, 1, 1, 1);   // inverse, uncentered, normalized
  imProcessSwapQuadrants(dst_image, 0);  // from origin to center

  imImageDestroy(tmp_image);
}

void imProcessAutoCorrelation(const imImage* src_image, imImage* dst_image)
{
  if (src_image->data_type != IM_CFLOAT)
    imConvertDataType(src_image, dst_image, 0, 0, 0, 0);
  else
    imImageCopy(src_image, dst_image);

  imProcessFFTraw(dst_image, 0, 0, 1);   // forward, at origin, normalized

  imProcessMultiplyConj(dst_image, dst_image, dst_image);

  imProcessFFTraw(dst_image, 1, 0, 1);   // inverse, at origin, normalized
  imProcessSwapQuadrants(dst_image, 0);  // from origin to center
}