summaryrefslogtreecommitdiff
path: root/im/include/im_process_pon.h
diff options
context:
space:
mode:
authorPixel <pixel@nobis-crew.org>2009-11-04 11:56:41 -0800
committerPixel <pixel@nobis-crew.org>2009-11-04 11:59:33 -0800
commitd577d991b97ae2b5ee1af23641bcffc3f83af5b2 (patch)
tree590639d50205d1bcfaff2a7d2dc6ebf3f373c7ed /im/include/im_process_pon.h
Initial import. Contains the im, cd and iup librairies, and a "working" Makefile for them under linux.
Diffstat (limited to 'im/include/im_process_pon.h')
-rwxr-xr-xim/include/im_process_pon.h720
1 files changed, 720 insertions, 0 deletions
diff --git a/im/include/im_process_pon.h b/im/include/im_process_pon.h
new file mode 100755
index 0000000..0611cc6
--- /dev/null
+++ b/im/include/im_process_pon.h
@@ -0,0 +1,720 @@
+/** \file
+ * \brief Image Processing - Pontual Operations
+ *
+ * See Copyright Notice in im_lib.h
+ */
+
+#ifndef __IM_PROCESS_PON_H
+#define __IM_PROCESS_PON_H
+
+#include "im_image.h"
+
+#if defined(__cplusplus)
+extern "C" {
+#endif
+
+
+
+/** \defgroup arithm Arithmetic Operations
+ * \par
+ * Simple math operations for images.
+ * \par
+ * See \ref im_process_pon.h
+ * \ingroup process */
+
+/** Unary Arithmetic Operations. \n
+ * Inverse and log may lead to math exceptions.
+ * \ingroup arithm */
+enum imUnaryOp {
+ IM_UN_EQL, /**< equal = a */
+ IM_UN_ABS, /**< abssolute = |a| */
+ IM_UN_LESS, /**< less = -a */
+ IM_UN_INV, /**< invert = 1/a (#) */
+ IM_UN_SQR, /**< square = a*a */
+ IM_UN_SQRT, /**< square root = a^(1/2) */
+ IM_UN_LOG, /**< natural logarithm = ln(a) (#) */
+ IM_UN_EXP, /**< exponential = exp(a) */
+ IM_UN_SIN, /**< sine = sin(a) */
+ IM_UN_COS, /**< cosine = cos(a) */
+ IM_UN_CONJ, /**< complex conjugate = ar - ai*i */
+ IM_UN_CPXNORM /**< complex normalization by magnitude = a / cpxmag(a) */
+};
+
+/** Apply an arithmetic unary operation. \n
+ * Can be done in place, images must match size. \n
+ * Destiny image can be several types depending on source: \n
+ * \li byte -> byte, ushort, int, float
+ * \li ushort -> byte, ushort, int, float
+ * \li int -> byte, ushort, int, float
+ * \li float -> float
+ * \li complex -> complex
+ * If destiny is byte, then the result is cropped to 0-255.
+ *
+ * \verbatim im.ProcessUnArithmeticOp(src_image: imImage, dst_image: imImage, op: number) [in Lua 5] \endverbatim
+ * \verbatim im.ProcessUnArithmeticOpNew(image: imImage, op: number) -> new_image: imImage [in Lua 5] \endverbatim
+ * \ingroup arithm */
+void imProcessUnArithmeticOp(const imImage* src_image, imImage* dst_image, int op);
+
+/** Binary Arithmetic Operations. \n
+ * Divide may lead to math exceptions.
+ * \ingroup arithm */
+enum imBinaryOp {
+ IM_BIN_ADD, /**< add = a+b */
+ IM_BIN_SUB, /**< subtract = a-b */
+ IM_BIN_MUL, /**< multiply = a*b */
+ IM_BIN_DIV, /**< divide = a/b (#) */
+ IM_BIN_DIFF, /**< difference = |a-b| */
+ IM_BIN_POW, /**< power = a^b */
+ IM_BIN_MIN, /**< minimum = (a < b)? a: b */
+ IM_BIN_MAX /**< maximum = (a > b)? a: b */
+};
+
+/** Apply a binary arithmetic operation. \n
+ * Can be done in place, images must match size. \n
+ * Source images must match type, destiny image can be several types depending on source: \n
+ * \li byte -> byte, ushort, int, float
+ * \li ushort -> ushort, int, float
+ * \li int -> int, float
+ * \li float -> float
+ * \li complex -> complex
+ * One exception is that you can combine complex with float resulting complex.
+ * If destiny is byte, then the result is cropped to 0-255.
+ *
+ * \verbatim im.ProcessArithmeticOp(src_image1: imImage, src_image2: imImage, dst_image: imImage, op: number) [in Lua 5] \endverbatim
+ * \verbatim im.ProcessArithmeticOpNew(image1: imImage, image2: imImage, op: number) -> new_image: imImage [in Lua 5] \endverbatim
+ * The New function will create a new image of the same type of the source images.
+ * \ingroup arithm */
+void imProcessArithmeticOp(const imImage* src_image1, const imImage* src_image2, imImage* dst_image, int op);
+
+/** Apply a binary arithmetic operation with a constant value. \n
+ * Can be done in place, images must match size. \n
+ * Destiny image can be several types depending on source: \n
+ * \li byte -> byte, ushort, int, float
+ * \li ushort -> byte, ushort, int, float
+ * \li int -> byte, ushort, int, float
+ * \li float -> float
+ * \li complex -> complex
+ * The constant value is type casted to an apropriate type before the operation.
+ * If destiny is byte, then the result is cropped to 0-255.
+ *
+ * \verbatim im.ProcessArithmeticConstOp(src_image: imImage, src_const: number, dst_image: imImage, op: number) [in Lua 5] \endverbatim
+ * \verbatim im.ProcessArithmeticConstOpNew(image: imImage, src_const: number, op: number) -> new_image: imImage [in Lua 5] \endverbatim
+ * \ingroup arithm */
+void imProcessArithmeticConstOp(const imImage* src_image, float src_const, imImage* dst_image, int op);
+
+/** Blend two images using an alpha value = [a * alpha + b * (1 - alpha)]. \n
+ * Can be done in place, images must match size and type. \n
+ * alpha value must be in the interval [0.0 - 1.0].
+ *
+ * \verbatim im.ProcessBlendConst(src_image1: imImage, src_image2: imImage, dst_image: imImage, alpha: number) [in Lua 5] \endverbatim
+ * \verbatim im.ProcessBlendConstNew(image1: imImage, image2: imImage, alpha: number) -> new_image: imImage [in Lua 5] \endverbatim
+ * \ingroup arithm */
+void imProcessBlendConst(const imImage* src_image1, const imImage* src_image2, imImage* dst_image, float alpha);
+
+/** Blend two images using an alpha channel = [a * alpha + b * (1 - alpha)]. \n
+ * Can be done in place, images must match size and type. \n
+ * alpha_image must have the same data type except for complex images that must be float, and color_space must be IM_GRAY.
+ * integer alpha values must be:
+\verbatim
+0 - 255 IM_BYTE
+0 - 65535 IM_USHORT
+0 - 2147483647 IM_INT
+\endverbatim
+ * that will be normalized to 0 - 1.
+ * \verbatim im.ProcessBlend(src_image1: imImage, src_image2: imImage, alpha_image: imImage, dst_image: imImage) [in Lua 5] \endverbatim
+ * \verbatim im.ProcessBlendNew(image1: imImage, image2: imImage, alpha_image: imImage) -> new_image: imImage [in Lua 5] \endverbatim
+ * \ingroup arithm */
+void imProcessBlend(const imImage* src_image1, const imImage* src_image2, const imImage* alpha_image, imImage* dst_image);
+
+/** Split a complex image into two images with real and imaginary parts \n
+ * or magnitude and phase parts (polar). \n
+ * Source image must be IM_CFLOAT, destiny images must be IM_FLOAT.
+ *
+ * \verbatim im.ProcessSplitComplex(src_image: imImage, dst_image1: imImage, dst_image2: imImage, polar: boolean) [in Lua 5] \endverbatim
+ * \verbatim im.ProcessSplitComplexNew(image: imImage, polar: boolean) -> dst_image1: imImage, dst_image2: imImage [in Lua 5] \endverbatim
+ * \ingroup arithm */
+void imProcessSplitComplex(const imImage* src_image, imImage* dst_image1, imImage* dst_image2, int polar);
+
+/** Merges two images as the real and imaginary parts of a complex image, \n
+ * or as magnitude and phase parts (polar = 1). \n
+ * Source images must be IM_FLOAT, destiny image must be IM_CFLOAT.
+ *
+ * \verbatim im.ProcessMergeComplex(src_image1: imImage, src_image2: imImage, dst_image: imImage, polar: boolean) [in Lua 5] \endverbatim
+ * \verbatim im.ProcessMergeComplexNew(image1: imImage, image2: imImage, polar: boolean) -> new_image: imImage [in Lua 5] \endverbatim
+ * \ingroup arithm */
+void imProcessMergeComplex(const imImage* src_image1, const imImage* src_image2, imImage* dst_image, int polar);
+
+/** Calculates the mean of multiple images. \n
+ * Images must match size and type.
+ *
+ * \verbatim im.ProcessMultipleMean(src_image_list: table of imImage, dst_image: imImage) [in Lua 5] \endverbatim
+ * \verbatim im.ProcessMultipleMeanNew(src_image_list: table of imImage) -> new_image: imImage [in Lua 5] \endverbatim
+ * \ingroup arithm */
+void imProcessMultipleMean(const imImage** src_image_list, int src_image_count, imImage* dst_image);
+
+/** Calculates the standard deviation of multiple images. \n
+ * Images must match size and type. Use \ref imProcessMultipleMean to calculate the mean_image.
+ *
+ * \verbatim im.ProcessMultipleStdDev(src_image_list: table of imImage, mean_image: imImage, dst_image: imImage) [in Lua 5] \endverbatim
+ * \verbatim im.ProcessMultipleStdDevNew(src_image_list: table of imImage, mean_image: imImage) -> new_image: imImage [in Lua 5] \endverbatim
+ * \ingroup arithm */
+void imProcessMultipleStdDev(const imImage** src_image_list, int src_image_count, const imImage *mean_image, imImage* dst_image);
+
+/** Calculates the auto-covariance of an image with the mean of a set of images. \n
+ * Images must match size and type. Returns zero if the counter aborted. \n
+ * Destiny is IM_FLOAT.
+ *
+ * \verbatim im.ProcessAutoCovariance(src_image: imImage, mean_image: imImage, dst_image: imImage) -> counter: boolean [in Lua 5] \endverbatim
+ * \verbatim im.ProcessAutoCovarianceNew(src_image: imImage, mean_image: imImage) -> counter: boolean, new_image: imImage [in Lua 5] \endverbatim
+ * \ingroup arithm */
+int imProcessAutoCovariance(const imImage* src_image, const imImage* mean_image, imImage* dst_image);
+
+/** Multiplies the conjugate of one complex image with another complex image. \n
+ * Images must match size. Conj(img1) * img2 \n
+ * Can be done in-place.
+ *
+ * \verbatim im.ProcessMultiplyConj(src_image1: imImage, src_image2: imImage, dst_image: imImage) [in Lua 5] \endverbatim
+ * \verbatim im.ProcessMultiplyConjNew(src_image1: imImage, src_image2: imImage) -> new_image: imImage [in Lua 5] \endverbatim
+ * \ingroup arithm */
+void imProcessMultiplyConj(const imImage* src_image1, const imImage* src_image2, imImage* dst_image);
+
+
+
+/** \defgroup quantize Additional Image Quantization Operations
+ * \par
+ * Additionally operations to the \ref imConvertColorSpace function.
+ * \par
+ * See \ref im_process_pon.h
+ * \ingroup process */
+
+/** Converts a RGB image to a MAP image using uniform quantization
+ * with an optional 8x8 ordered dither. The RGB image must have data type IM_BYTE.
+ *
+ * \verbatim im.ProcessQuantizeRGBUniform(src_image: imImage, dst_image: imImage, do_dither: boolean) [in Lua 5] \endverbatim
+ * \verbatim im.ProcessQuantizeRGBUniformNew(src_image: imImage, do_dither: boolean) -> new_image: imImage [in Lua 5] \endverbatim
+ * \ingroup quantize */
+void imProcessQuantizeRGBUniform(const imImage* src_image, imImage* dst_image, int do_dither);
+
+/** Quantizes a gray scale image in less that 256 grays using uniform quantization. \n
+ * Both images must be IM_BYTE/IM_GRAY. Can be done in place.
+ *
+ * \verbatim im.ProcessQuantizeGrayUniform(src_image: imImage, dst_image: imImage, grays: number) [in Lua 5] \endverbatim
+ * \verbatim im.ProcessQuantizeGrayUniformNew(src_image: imImage, grays: number) -> new_image: imImage [in Lua 5] \endverbatim
+ * \ingroup quantize */
+void imProcessQuantizeGrayUniform(const imImage* src_image, imImage* dst_image, int grays);
+
+
+
+/** \defgroup histo Histogram Based Operations
+ * \par
+ * See \ref im_process_pon.h
+ * \ingroup process */
+
+/** Performs an histogram expansion based on a percentage of the number of pixels. \n
+ * Percentage defines an amount of pixels to include at the lowest level and at the highest level.
+ * If its is zero only empty counts of the histogram will be considered. \n
+ * Images must be IM_BYTE/(IM_RGB or IM_GRAY). Can be done in place. \n
+ * To expand the gammut without using the histogram, by just specifing the lowest and highest levels
+ * use the \ref IM_GAMUT_EXPAND tone gammut operation (\ref imProcessToneGamut).
+ *
+ * \verbatim im.ProcessExpandHistogram(src_image: imImage, dst_image: imImage, percent: number) [in Lua 5] \endverbatim
+ * \verbatim im.ProcessExpandHistogramNew(src_image: imImage, percent: number) -> new_image: imImage [in Lua 5] \endverbatim
+ * \ingroup histo */
+void imProcessExpandHistogram(const imImage* src_image, imImage* dst_image, float percent);
+
+/** Performs an histogram equalization. \n
+ * Images must be IM_BYTE/(IM_RGB or IM_GRAY). Can be done in place.
+ *
+ * \verbatim im.ProcessEqualizeHistogram(src_image: imImage, dst_image: imImage) [in Lua 5] \endverbatim
+ * \verbatim im.ProcessEqualizeHistogramNew(src_image: imImage) -> new_image: imImage [in Lua 5] \endverbatim
+ * \ingroup histo */
+void imProcessEqualizeHistogram(const imImage* src_image, imImage* dst_image);
+
+
+
+/** \defgroup colorproc Color Processing Operations
+ * \par
+ * Operations to change the color components configuration.
+ * \par
+ * See \ref im_process_pon.h
+ * \ingroup process */
+
+/** Split a RGB image into luma and chroma. \n
+ * Chroma is calculated as R-Y,G-Y,B-Y. Source image must be IM_RGB/IM_BYTE. \n
+ * luma image is IM_GRAY/IM_BYTE and chroma is IM_RGB/IM_BYTE. \n
+ * Source and destiny must have the same size.
+ *
+ * \verbatim im.ProcessSplitYChroma(src_image: imImage, y_image: imImage, chroma_image: imImage) [in Lua 5] \endverbatim
+ * \verbatim im.ProcessSplitYChromaNew(src_image: imImage) -> y_image: imImage, chroma_image: imImage [in Lua 5] \endverbatim
+ * \ingroup colorproc */
+void imProcessSplitYChroma(const imImage* src_image, imImage* y_image, imImage* chroma_image);
+
+/** Split a RGB image into HSI planes. \n
+ * Source image must be IM_RGB/IM_BYTE,IM_FLOAT. Destiny images are all IM_GRAY/IM_FLOAT. \n
+ * Source images must normalized to 0-1 if type is IM_FLOAT (\ref imProcessToneGamut can be used). See \ref hsi for a definition of the color conversion.\n
+ * Source and destiny must have the same size.
+ *
+ * \verbatim im.ProcessSplitHSI(src_image: imImage, h_image: imImage, s_image: imImage, i_image: imImage) [in Lua 5] \endverbatim
+ * \verbatim im.ProcessSplitHSINew(src_image: imImage) -> h_image: imImage, s_image: imImage, i_image: imImage [in Lua 5] \endverbatim
+ * \ingroup colorproc */
+void imProcessSplitHSI(const imImage* src_image, imImage* h_image, imImage* s_image, imImage* i_image);
+
+/** Merge HSI planes into a RGB image. \n
+ * Source images must be IM_GRAY/IM_FLOAT. Destiny image can be IM_RGB/IM_BYTE,IM_FLOAT. \n
+ * Source and destiny must have the same size. See \ref hsi for a definition of the color conversion.
+ *
+ * \verbatim im.ProcessMergeHSI(h_image: imImage, s_image: imImage, i_image: imImage, dst_image: imImage) [in Lua 5] \endverbatim
+ * \verbatim im.ProcessMergeHSINew(h_image: imImage, s_image: imImage, i_image: imImage) -> dst_image: imImage [in Lua 5] \endverbatim
+ * \ingroup colorproc */
+void imProcessMergeHSI(const imImage* h_image, const imImage* s_image, const imImage* i_image, imImage* dst_image);
+
+/** Split a multicomponent image into separate components.\n
+ * Destiny images must be IM_GRAY. Size and data types must be all the same.\n
+ * The number of destiny images must match the depth of the source image.
+ *
+ * \verbatim im.ProcessSplitComponents(src_image: imImage, dst_image_list: table of imImage) [in Lua 5] \endverbatim
+ * \verbatim im.ProcessSplitComponentsNew(src_image: imImage) -> dst_image_list: table of imImage [in Lua 5] \endverbatim
+ * \ingroup colorproc */
+void imProcessSplitComponents(const imImage* src_image, imImage** dst_image_list);
+
+/** Merges separate components into a multicomponent image.\n
+ * Source images must be IM_GRAY. Size and data types must be all the same.\n
+ * The number of source images must match the depth of the destiny image.
+ *
+ * \verbatim im.ProcessMergeComponents(src_image_list: table of imImage, dst_image: imImage) [in Lua 5] \endverbatim
+ * \verbatim im.ProcessMergeComponentsNew(src_image_list: table of imImage) -> dst_image: imImage [in Lua 5] \endverbatim
+ * \ingroup colorproc */
+void imProcessMergeComponents(const imImage** src_image_list, imImage* dst_image);
+
+/** Normalize the color components by their sum. Example: c1 = c1/(c1+c2+c3). \n
+ * Destiny image must be IM_FLOAT.
+ *
+ * \verbatim im.ProcessNormalizeComponents(src_image: imImage, dst_image: imImage) [in Lua 5] \endverbatim
+ * \verbatim im.ProcessNormalizeComponentsNew(src_image: imImage) -> new_image: imImage [in Lua 5] \endverbatim
+ * \ingroup colorproc */
+void imProcessNormalizeComponents(const imImage* src_image, imImage* dst_image);
+
+/** Replaces the source color by the destiny color. \n
+ * The color will be type casted to the image data type. \n
+ * The colors must have the same number of components of the images. \n
+ * Supports all color spaces and all data types except IM_CFLOAT.
+ *
+ * \verbatim im.ProcessReplaceColor(src_image: imImage, dst_image: imImage, src_color: table of numbers, dst_color: table of numbers) [in Lua 5] \endverbatim
+ * \verbatim im.ProcessReplaceColorNew(src_image: imImage, src_color: table of numbers, dst_color: table of numbers) -> new_image: imImage [in Lua 5] \endverbatim
+ * \ingroup colorproc */
+void imProcessReplaceColor(const imImage* src_image, imImage* dst_image, float* src_color, float* dst_color);
+
+
+
+/** \defgroup logic Logical Arithmetic Operations
+ * \par
+ * Logical binary math operations for images.
+ * \par
+ * See \ref im_process_pon.h
+ * \ingroup process */
+
+/** Logical Operations.
+ * \ingroup logic */
+enum imLogicOp {
+ IM_BIT_AND, /**< and = a & b */
+ IM_BIT_OR, /**< or = a | b */
+ IM_BIT_XOR /**< xor = ~(a | b) */
+};
+
+/** Apply a logical operation.\n
+ * Images must have data type IM_BYTE, IM_USHORT or IM_INT. Can be done in place.
+ *
+ * \verbatim im.ProcessBitwiseOp(src_image1: imImage, src_image2: imImage, dst_image: imImage, op: number) [in Lua 5] \endverbatim
+ * \verbatim im.ProcessBitwiseOpNew(src_image1: imImage, src_image2: imImage, op: number) -> new_image: imImage [in Lua 5] \endverbatim
+ * \ingroup logic */
+void imProcessBitwiseOp(const imImage* src_image1, const imImage* src_image2, imImage* dst_image, int op);
+
+/** Apply a logical NOT operation.\n
+ * Images must have data type IM_BYTE, IM_USHORT or IM_INT. Can be done in place.
+ *
+ * \verbatim im.ProcessBitwiseNot(src_image: imImage, dst_image: imImage) [in Lua 5] \endverbatim
+ * \verbatim im.ProcessBitwiseNotNew(src_image: imImage) -> new_image: imImage [in Lua 5] \endverbatim
+ * \ingroup logic */
+void imProcessBitwiseNot(const imImage* src_image, imImage* dst_image);
+
+/** Apply a bit mask. \n
+ * The same as imProcessBitwiseOp but the second image is replaced by a fixed mask. \n
+ * Images must have data type IM_BYTE. It is valid only for AND, OR and XOR. Can be done in place.
+ *
+ * \verbatim im.ProcessBitMask(src_image: imImage, dst_image: imImage, mask: string, op: number) [in Lua 5] \endverbatim
+ * \verbatim im.ProcessBitMaskNew(src_image: imImage, mask: string, op: number) -> new_image: imImage [in Lua 5] \endverbatim
+ * In Lua, mask is a string with 0s and 1s, for example: "11001111".
+ * \ingroup logic */
+void imProcessBitMask(const imImage* src_image, imImage* dst_image, unsigned char mask, int op);
+
+/** Extract or Reset a bit plane. For ex: 000X0000 or XXX0XXXX (plane=3).\n
+ * Images must have data type IM_BYTE. Can be done in place.
+ *
+ * \verbatim im.ProcessBitPlane(src_image: imImage, dst_image: imImage, plane: number, do_reset: boolean) [in Lua 5] \endverbatim
+ * \verbatim im.ProcessBitPlaneNew(src_image: imImage, plane: number, do_reset: boolean) -> new_image: imImage [in Lua 5] \endverbatim
+ * \ingroup logic */
+void imProcessBitPlane(const imImage* src_image, imImage* dst_image, int plane, int do_reset);
+
+
+
+/** \defgroup render Synthetic Image Render
+ * \par
+ * Renders some 2D mathematical functions as images. All the functions operates in place
+ * and supports all data types except IM_CFLOAT.
+ * \par
+ * See \ref im_process_pon.h
+ * \ingroup process */
+
+/** Render Funtion.
+ * \verbatim render_func(x: number, y: number, d: number, param: table of number) -> value: number [in Lua 5] \endverbatim
+ * \ingroup render */
+typedef float (*imRenderFunc)(int x, int y, int d, float* param);
+
+/** Render Conditional Funtion.
+ * \verbatim render_cond_func(x: number, y: number, d: number, param: table of number) -> value: number, cond: boolean [in Lua 5] \endverbatim
+ * \ingroup render */
+typedef float (*imRenderCondFunc)(int x, int y, int d, int *cond, float* param);
+
+/** Render a synthetic image using a render function. \n
+ * plus will make the render be added to the current image data,
+ * or else all data will be replaced. All the render functions use this or the conditional function. \n
+ * Returns zero if the counter aborted.
+ *
+ * \verbatim im.ProcessRenderOp(image: imImage, render_func: function, render_name: string, param: table of number, plus: boolean) -> counter: boolean [in Lua 5] \endverbatim
+ * \ingroup render */
+int imProcessRenderOp(imImage* image, imRenderFunc render_func, char* render_name, float* param, int plus);
+
+/** Render a synthetic image using a conditional render function. \n
+ * Data will be rendered only if the condional param is true. \n
+ * Returns zero if the counter aborted.
+ *
+ * \verbatim im.ProcessRenderCondOp(image: imImage, render_cond_func: function, render_name: string, param: table of number) -> counter: boolean [in Lua 5] \endverbatim
+ * \ingroup render */
+int imProcessRenderCondOp(imImage* image, imRenderCondFunc render_cond_func, char* render_name, float* param);
+
+/** Render speckle noise on existing data. Can be done in place.
+ *
+ * \verbatim im.ProcessRenderAddSpeckleNoise(src_image: imImage, dst_image: imImage, percent: number) -> counter: boolean [in Lua 5] \endverbatim
+ * \verbatim im.ProcessRenderAddSpeckleNoiseNew(src_image: imImage, percent: number) -> counter: boolean, new_image: imImage [in Lua 5] \endverbatim
+ * \ingroup render */
+int imProcessRenderAddSpeckleNoise(const imImage* src_image, imImage* dst_image, float percent);
+
+/** Render gaussian noise on existing data. Can be done in place.
+ *
+ * \verbatim im.ProcessRenderAddGaussianNoise(src_image: imImage, dst_image: imImage, mean: number, stddev: number) -> counter: boolean [in Lua 5] \endverbatim
+ * \verbatim im.ProcessRenderAddGaussianNoiseNew(src_image: imImage, mean: number, stddev: number) -> counter: boolean, new_image: imImage [in Lua 5] \endverbatim
+ * \ingroup render */
+int imProcessRenderAddGaussianNoise(const imImage* src_image, imImage* dst_image, float mean, float stddev);
+
+/** Render uniform noise on existing data. Can be done in place.
+ *
+ * \verbatim im.ProcessRenderAddUniformNoise(src_image: imImage, dst_image: imImage, mean: number, stddev: number) -> counter: boolean [in Lua 5] \endverbatim
+ * \verbatim im.ProcessRenderAddUniformNoiseNew(src_image: imImage, mean: number, stddev: number) -> counter: boolean, new_image: imImage [in Lua 5] \endverbatim
+ * \ingroup render */
+int imProcessRenderAddUniformNoise(const imImage* src_image, imImage* dst_image, float mean, float stddev);
+
+/** Render random noise.
+ *
+ * \verbatim im.ProcessRenderRandomNoise(image: imImage) -> counter: boolean [in Lua 5] \endverbatim
+ * \ingroup render */
+int imProcessRenderRandomNoise(imImage* image);
+
+/** Render a constant. The number of values must match the depth of the image.
+ *
+ * \verbatim im.ProcessRenderConstant(image: imImage, value: table of number) -> counter: boolean [in Lua 5] \endverbatim
+ * \ingroup render */
+int imProcessRenderConstant(imImage* image, float* value);
+
+/** Render a centered wheel.
+ *
+ * \verbatim im.ProcessRenderWheel(image: imImage, internal_radius: number, external_radius: number) -> counter: boolean [in Lua 5] \endverbatim
+ * \ingroup render */
+int imProcessRenderWheel(imImage* image, int internal_radius, int external_radius);
+
+/** Render a centered cone.
+ *
+ * \verbatim im.ProcessRenderCone(image: imImage, radius: number) -> counter: boolean [in Lua 5] \endverbatim
+ * \ingroup render */
+int imProcessRenderCone(imImage* image, int radius);
+
+/** Render a centered tent.
+ *
+ * \verbatim im.ProcessRenderTent(image: imImage, tent_width: number, tent_height: number) -> counter: boolean [in Lua 5] \endverbatim
+ * \ingroup render */
+int imProcessRenderTent(imImage* image, int tent_width, int tent_height);
+
+/** Render a ramp. Direction can be vertical (1) or horizontal (0).
+ *
+ * \verbatim im.ProcessRenderRamp(image: imImage, start: number, end: number, vert_dir: boolean) -> counter: boolean [in Lua 5] \endverbatim
+ * \ingroup render */
+int imProcessRenderRamp(imImage* image, int start, int end, int vert_dir);
+
+/** Render a centered box.
+ *
+ * \verbatim im.ProcessRenderBox(image: imImage, box_width: number, box_height: number) -> counter: boolean [in Lua 5] \endverbatim
+ * \ingroup render */
+int imProcessRenderBox(imImage* image, int box_width, int box_height);
+
+/** Render a centered sinc.
+ *
+ * \verbatim im.ProcessRenderSinc(image: imImage, x_period: number, y_period: number) -> counter: boolean [in Lua 5] \endverbatim
+ * \ingroup render */
+int imProcessRenderSinc(imImage* image, float x_period, float y_period);
+
+/** Render a centered gaussian.
+ *
+ * \verbatim im.ProcessRenderGaussian(image: imImage, stddev: number) -> counter: boolean [in Lua 5] \endverbatim
+ * \ingroup render */
+int imProcessRenderGaussian(imImage* image, float stddev);
+
+/** Render the laplacian of a centered gaussian.
+ *
+ * \verbatim im.ProcessRenderLapOfGaussian(image: imImage, stddev: number) -> counter: boolean [in Lua 5] \endverbatim
+ * \ingroup render */
+int imProcessRenderLapOfGaussian(imImage* image, float stddev);
+
+/** Render a centered cosine.
+ *
+ * \verbatim im.ProcessRenderCosine(image: imImage, x_period: number, y_period: number) -> counter: boolean [in Lua 5] \endverbatim
+ * \ingroup render */
+int imProcessRenderCosine(imImage* image, float x_period, float y_period);
+
+/** Render a centered grid.
+ *
+ * \verbatim im.ProcessRenderGrid(image: imImage, x_space: number, y_space: number) -> counter: boolean [in Lua 5] \endverbatim
+ * \ingroup render */
+int imProcessRenderGrid(imImage* image, int x_space, int y_space);
+
+/** Render a centered chessboard.
+ *
+ * \verbatim im.ProcessRenderChessboard(image: imImage, x_space: number, y_space: number) -> counter: boolean [in Lua 5] \endverbatim
+ * \ingroup render */
+int imProcessRenderChessboard(imImage* image, int x_space, int y_space);
+
+
+
+/** \defgroup tonegamut Tone Gamut Operations
+ * \par
+ * Operations that try to preserve the min-max interval in the output (the dynamic range).
+ * \par
+ * See \ref im_process_pon.h
+ * \ingroup process */
+
+
+/** Tone Gamut Operations.
+ * \ingroup tonegamut */
+enum imToneGamut {
+ IM_GAMUT_NORMALIZE, /**< normalize = (a-min) / (max-min) (destiny image must be IM_FLOAT) */
+ IM_GAMUT_POW, /**< pow = ((a-min) / (max-min))^gamma * (max-min) + min \n
+ param[0]=gamma */
+ IM_GAMUT_LOG, /**< log = log(K * (a-min) / (max-min) + 1))*(max-min)/log(K+1) + min \n
+ param[0]=K (K>0) */
+ IM_GAMUT_EXP, /**< exp = (exp(K * (a-min) / (max-min)) - 1))*(max-min)/(exp(K)-1) + min \n
+ param[0]=K */
+ IM_GAMUT_INVERT, /**< invert = max - (a-min) */
+ IM_GAMUT_ZEROSTART, /**< zerostart = a - min */
+ IM_GAMUT_SOLARIZE, /**< solarize = a < level ? a: (level * (max-min) - a * (level-min)) / (max-level) \n
+ param[0]=level percentage (0-100) relative to min-max \n
+ photography solarization effect. */
+ IM_GAMUT_SLICE, /**< slice = start < a || a > end ? min: binarize? max: a \n
+ param[0]=start, param[1]=end, param[2]=binarize */
+ IM_GAMUT_EXPAND, /**< expand = a < start ? min: a > end ? max : (a-start)*(max-min)/(end-start) + min \n
+ param[0]=start, param[1]=end */
+ IM_GAMUT_CROP, /**< crop = a < start ? start: a > end ? end : a \n
+ param[0]=start, param[1]=end */
+ IM_GAMUT_BRIGHTCONT /**< brightcont = a < min ? min: a > max ? max: a * tan(c_a) + b_s + (max-min)*(1 - tan(c_a))/2 \n
+ param[0]=bright_shift (-100%..+100%), param[1]=contrast_factor (-100%..+100%) \n
+ change brightness and contrast simultaneously. */
+};
+
+/** Apply a gamut operation with arguments. \n
+ * Supports all data types except IM_CFLOAT. \n
+ * The linear operation do a special convertion when min > 0 and max < 1, it forces min=0 and max=1. \n
+ * IM_BYTE images have min=0 and max=255 always. \n
+ * Can be done in place. When there is no extra params, can use NULL.
+ *
+ * \verbatim im.ProcessToneGamut(src_image: imImage, dst_image: imImage, op: number, param: table of number) [in Lua 5] \endverbatim
+ * \verbatim im.ProcessToneGamutNew(src_image: imImage, op: number, param: table of number) -> new_image: imImage [in Lua 5] \endverbatim
+ * \ingroup tonegamut */
+void imProcessToneGamut(const imImage* src_image, imImage* dst_image, int op, float* param);
+
+/** Converts from (0-1) to (0-255), crop out of bounds values. \n
+ * Source image must be IM_FLOAT, and destiny image must be IM_BYTE.
+ *
+ * \verbatim im.ProcessUnNormalize(src_image: imImage, dst_image: imImage) [in Lua 5] \endverbatim
+ * \verbatim im.ProcessUnNormalizeNew(src_image: imImage) -> new_image: imImage [in Lua 5] \endverbatim
+ * \ingroup tonegamut */
+void imProcessUnNormalize(const imImage* src_image, imImage* dst_image);
+
+/** Directly converts IM_USHORT, IM_INT and IM_FLOAT into IM_BYTE images. \n
+ * This can also be done using \ref imConvertDataType with IM_CAST_DIRECT.
+ *
+ * \verbatim im.ProcessDirectConv(src_image: imImage, dst_image: imImage) [in Lua 5] \endverbatim
+ * \verbatim im.ProcessDirectConvNew(src_image: imImage) -> new_image: imImage [in Lua 5] \endverbatim
+ * \ingroup tonegamut */
+void imProcessDirectConv(const imImage* src_image, imImage* dst_image);
+
+/** A negative effect. Uses \ref imProcessToneGamut with IM_GAMUT_INVERT for non MAP images. \n
+ * Supports all color spaces and all data types except IM_CFLOAT. \n
+ * Can be done in place.
+ *
+ * \verbatim im.ProcessNegative(src_image: imImage, dst_image: imImage) [in Lua 5] \endverbatim
+ * \verbatim im.ProcessNegativeNew(src_image: imImage) -> new_image: imImage [in Lua 5] \endverbatim
+ * \ingroup tonegamut */
+void imProcessNegative(const imImage* src_image, imImage* dst_image);
+
+
+
+/** \defgroup threshold Threshold Operations
+ * \par
+ * Operations that converts a usually IM_GRAY/IM_BYTE image into a IM_BINARY image using several threshold techniques.
+ * \par
+ * See \ref im_process_pon.h
+ * \ingroup process */
+
+/** Apply a manual threshold. \n
+ * threshold = a <= level ? 0: value \n
+ * Normal value is 1 but another common value is 255. Can be done in place for IM_BYTE source. \n
+ * Supports all integer IM_GRAY images as source, and IM_BINARY as destiny.
+ *
+ * \verbatim im.ProcessThreshold(src_image: imImage, dst_image: imImage, level: number, value: number) [in Lua 5] \endverbatim
+ * \verbatim im.ProcessThresholdNew(src_image: imImage, level: number, value: number) -> new_image: imImage [in Lua 5] \endverbatim
+ * \ingroup threshold */
+void imProcessThreshold(const imImage* src_image, imImage* dst_image, int level, int value);
+
+/** Apply a threshold by the difference of two images. \n
+ * threshold = a1 <= a2 ? 0: 1 \n
+ * Can be done in place.
+ *
+ * \verbatim im.ProcessThresholdByDiff(src_image1: imImage, src_image2: imImage, dst_image: imImage) [in Lua 5] \endverbatim
+ * \verbatim im.ProcessThresholdByDiffNew(src_image1: imImage, src_image2: imImage) -> new_image: imImage [in Lua 5] \endverbatim
+ * \ingroup threshold */
+void imProcessThresholdByDiff(const imImage* src_image1, const imImage* src_image2, imImage* dst_image);
+
+/** Apply a threshold by the Hysteresis method. \n
+ * Hysteresis thersholding of edge pixels. Starting at pixels with a
+ * value greater than the HIGH threshold, trace a connected sequence
+ * of pixels that have a value greater than the LOW threhsold. \n
+ * Supports only IM_BYTE images.
+ * Note: could not find the original source code author name.
+ *
+ * \verbatim im.ProcessHysteresisThreshold(src_image: imImage, dst_image: imImage, low_thres: number, high_thres: number) [in Lua 5] \endverbatim
+ * \verbatim im.ProcessHysteresisThresholdNew(src_image: imImage, low_thres: number, high_thres: number) -> new_image: imImage [in Lua 5] \endverbatim
+ * \ingroup threshold */
+void imProcessHysteresisThreshold(const imImage* src_image, imImage* dst_image, int low_thres, int high_thres);
+
+/** Estimates hysteresis low and high threshold levels. \n
+ * Supports only IM_BYTE images.
+ * Usefull for \ref imProcessHysteresisThreshold.
+ *
+ * \verbatim im.ProcessHysteresisThresEstimate(image: imImage) -> low_level: number, high_level: number [in Lua 5] \endverbatim
+ * \ingroup threshold */
+void imProcessHysteresisThresEstimate(const imImage* image, int *low_level, int *high_level);
+
+/** Calculates the threshold level for manual threshold using an uniform error approach. \n
+ * Supports only IM_BYTE images.
+ * Extracted from XITE, Copyright 1991, Blab, UiO \n
+ * http://www.ifi.uio.no/~blab/Software/Xite/
+\verbatim
+ Reference:
+ S. M. Dunn & D. Harwood & L. S. Davis:
+ "Local Estimation of the Uniform Error Threshold"
+ IEEE Trans. on PAMI, Vol PAMI-6, No 6, Nov 1984.
+ Comments: It only works well on images whith large objects.
+ Author: Olav Borgli, BLAB, ifi, UiO
+ Image processing lab, Department of Informatics, University of Oslo
+\endverbatim
+ * Returns the used level.
+ *
+ * \verbatim im.ProcessUniformErrThreshold(src_image: imImage, dst_image: imImage) -> level: number [in Lua 5] \endverbatim
+ * \verbatim im.ProcessUniformErrThresholdNew(src_image: imImage) -> level: number, new_image: imImage [in Lua 5] \endverbatim
+ * \ingroup threshold */
+int imProcessUniformErrThreshold(const imImage* src_image, imImage* dst_image);
+
+/** Apply a dithering on each image channel by using a difusion error method. \n
+ * It can be applied on any IM_BYTE images. It will "threshold" each channel indivudually, so
+ * source and destiny must be of the same depth.
+ *
+ * \verbatim im.ProcessDifusionErrThreshold(src_image: imImage, dst_image: imImage, level: number) [in Lua 5] \endverbatim
+ * \verbatim im.ProcessDifusionErrThresholdNew(src_image: imImage, level: number) -> new_image: imImage [in Lua 5] \endverbatim
+ * \ingroup threshold */
+void imProcessDifusionErrThreshold(const imImage* src_image, imImage* dst_image, int level);
+
+/** Calculates the threshold level for manual threshold using a percentage of pixels
+ * that should stay bellow the threshold. \n
+ * Supports only IM_BYTE images.
+ * Returns the used level.
+ *
+ * \verbatim im.ProcessPercentThreshold(src_image: imImage, dst_image: imImage, percent: number) -> level: number [in Lua 5] \endverbatim
+ * \verbatim im.ProcessPercentThresholdNew(src_image: imImage, percent: number) -> level: number, new_image: imImage [in Lua 5] \endverbatim
+ * \ingroup threshold */
+int imProcessPercentThreshold(const imImage* src_image, imImage* dst_image, float percent);
+
+/** Calculates the threshold level for manual threshold using the Otsu approach. \n
+ * Returns the used level. \n
+ * Supports only IM_BYTE images.
+ * Original implementation by Flavio Szenberg.
+ *
+ * \verbatim im.ProcessOtsuThreshold(src_image: imImage, dst_image: imImage) -> level: number [in Lua 5] \endverbatim
+ * \verbatim im.ProcessOtsuThresholdNew(src_image: imImage) -> level: number, new_image: imImage [in Lua 5] \endverbatim
+ * \ingroup threshold */
+int imProcessOtsuThreshold(const imImage* src_image, imImage* dst_image);
+
+/** Calculates the threshold level for manual threshold using (max-min)/2. \n
+ * Returns the used level. \n
+ * Supports all integer IM_GRAY images as source, and IM_BINARY as destiny.
+ *
+ * \verbatim im.ProcessMinMaxThreshold(src_image: imImage, dst_image: imImage) -> level: number [in Lua 5] \endverbatim
+ * \verbatim im.ProcessMinMaxThresholdNew(src_image: imImage) -> level: number, new_image: imImage [in Lua 5] \endverbatim
+ * \ingroup threshold */
+int imProcessMinMaxThreshold(const imImage* src_image, imImage* dst_image);
+
+/** Estimates Local Max threshold level for IM_BYTE images.
+ *
+ * \verbatim im.ProcessLocalMaxThresEstimate(image: imImage) -> level: number [in Lua 5] \endverbatim
+ * \ingroup threshold */
+void imProcessLocalMaxThresEstimate(const imImage* image, int *level);
+
+/** Apply a manual threshold using an interval. \n
+ * threshold = start_level <= a <= end_level ? 1: 0 \n
+ * Normal value is 1 but another common value is 255. Can be done in place for IM_BYTE source. \n
+ * Supports all integer IM_GRAY images as source, and IM_BINARY as destiny.
+ *
+ * \verbatim im.ProcessSliceThreshold(src_image: imImage, dst_image: imImage, start_level: number, end_level: number) [in Lua 5] \endverbatim
+ * \verbatim im.ProcessSliceThresholdNew(src_image: imImage, start_level: number, end_level: number) -> new_image: imImage [in Lua 5] \endverbatim
+ * \ingroup threshold */
+void imProcessSliceThreshold(const imImage* src_image, imImage* dst_image, int start_level, int end_level);
+
+
+/** \defgroup effects Special Effects
+ * \par
+ * Operations to change image appearance.
+ * \par
+ * See \ref im_process_pon.h
+ * \ingroup process */
+
+
+/** Generates a zoom in effect averaging colors inside a square region. \n
+ * Operates only on IM_BYTE images.
+ *
+ * \verbatim im.ProcessPixelate(src_image: imImage, dst_image: imImage, box_size: number) [in Lua 5] \endverbatim
+ * \verbatim im.ProcessPixelateNew(src_image: imImage, box_size: number) -> new_image: imImage [in Lua 5] \endverbatim
+ * \ingroup effects */
+void imProcessPixelate(const imImage* src_image, imImage* dst_image, int box_size);
+
+/** A simple Posterize effect. It reduces the number of colors in the image eliminating
+ * less significant bit planes. Can have 1 to 7 levels. See \ref imProcessBitMask. \n
+ * Images must have data type IM_BYTE.
+ *
+ * \verbatim im.ProcessPosterize(src_image: imImage, dst_image: imImage, level: number) [in Lua 5] \endverbatim
+ * \verbatim im.ProcessPosterizeNew(src_image: imImage, level: number) -> new_image: imImage [in Lua 5] \endverbatim
+ * \ingroup effects */
+void imProcessPosterize(const imImage* src_image, imImage* dst_image, int level);
+
+
+
+#if defined(__cplusplus)
+}
+#endif
+
+#endif