1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
|
/** \file
* \brief Image Processing - Pontual Operations
*
* See Copyright Notice in im_lib.h
*/
#ifndef __IM_PROCESS_PON_H
#define __IM_PROCESS_PON_H
#include "im_image.h"
#if defined(__cplusplus)
extern "C" {
#endif
/** \defgroup arithm Arithmetic Operations
* \par
* Simple math operations for images.
* \par
* See \ref im_process_pon.h
* \ingroup process */
/** Unary Arithmetic Operations. \n
* Inverse and log may lead to math exceptions.
* \ingroup arithm */
enum imUnaryOp {
IM_UN_EQL, /**< equal = a */
IM_UN_ABS, /**< abssolute = |a| */
IM_UN_LESS, /**< less = -a */
IM_UN_INV, /**< invert = 1/a (#) */
IM_UN_SQR, /**< square = a*a */
IM_UN_SQRT, /**< square root = a^(1/2) */
IM_UN_LOG, /**< natural logarithm = ln(a) (#) */
IM_UN_EXP, /**< exponential = exp(a) */
IM_UN_SIN, /**< sine = sin(a) */
IM_UN_COS, /**< cosine = cos(a) */
IM_UN_CONJ, /**< complex conjugate = ar - ai*i */
IM_UN_CPXNORM /**< complex normalization by magnitude = a / cpxmag(a) */
};
/** Apply an arithmetic unary operation. \n
* Can be done in place, images must match size. \n
* Destiny image can be several types depending on source: \n
* \li byte -> byte, ushort, int, float
* \li ushort -> byte, ushort, int, float
* \li int -> byte, ushort, int, float
* \li float -> float
* \li complex -> complex
* If destiny is byte, then the result is cropped to 0-255.
*
* \verbatim im.ProcessUnArithmeticOp(src_image: imImage, dst_image: imImage, op: number) [in Lua 5] \endverbatim
* \verbatim im.ProcessUnArithmeticOpNew(image: imImage, op: number) -> new_image: imImage [in Lua 5] \endverbatim
* \ingroup arithm */
void imProcessUnArithmeticOp(const imImage* src_image, imImage* dst_image, int op);
/** Binary Arithmetic Operations. \n
* Divide may lead to math exceptions.
* \ingroup arithm */
enum imBinaryOp {
IM_BIN_ADD, /**< add = a+b */
IM_BIN_SUB, /**< subtract = a-b */
IM_BIN_MUL, /**< multiply = a*b */
IM_BIN_DIV, /**< divide = a/b (#) */
IM_BIN_DIFF, /**< difference = |a-b| */
IM_BIN_POW, /**< power = a^b */
IM_BIN_MIN, /**< minimum = (a < b)? a: b */
IM_BIN_MAX /**< maximum = (a > b)? a: b */
};
/** Apply a binary arithmetic operation. \n
* Can be done in place, images must match size. \n
* Source images must match type, destiny image can be several types depending on source: \n
* \li byte -> byte, ushort, int, float
* \li ushort -> ushort, int, float
* \li int -> int, float
* \li float -> float
* \li complex -> complex
* One exception is that you can combine complex with float resulting complex.
* If destiny is byte, then the result is cropped to 0-255.
*
* \verbatim im.ProcessArithmeticOp(src_image1: imImage, src_image2: imImage, dst_image: imImage, op: number) [in Lua 5] \endverbatim
* \verbatim im.ProcessArithmeticOpNew(image1: imImage, image2: imImage, op: number) -> new_image: imImage [in Lua 5] \endverbatim
* The New function will create a new image of the same type of the source images.
* \ingroup arithm */
void imProcessArithmeticOp(const imImage* src_image1, const imImage* src_image2, imImage* dst_image, int op);
/** Apply a binary arithmetic operation with a constant value. \n
* Can be done in place, images must match size. \n
* Destiny image can be several types depending on source: \n
* \li byte -> byte, ushort, int, float
* \li ushort -> byte, ushort, int, float
* \li int -> byte, ushort, int, float
* \li float -> float
* \li complex -> complex
* The constant value is type casted to an apropriate type before the operation.
* If destiny is byte, then the result is cropped to 0-255.
*
* \verbatim im.ProcessArithmeticConstOp(src_image: imImage, src_const: number, dst_image: imImage, op: number) [in Lua 5] \endverbatim
* \verbatim im.ProcessArithmeticConstOpNew(image: imImage, src_const: number, op: number) -> new_image: imImage [in Lua 5] \endverbatim
* \ingroup arithm */
void imProcessArithmeticConstOp(const imImage* src_image, float src_const, imImage* dst_image, int op);
/** Blend two images using an alpha value = [a * alpha + b * (1 - alpha)]. \n
* Can be done in place, images must match size and type. \n
* alpha value must be in the interval [0.0 - 1.0].
*
* \verbatim im.ProcessBlendConst(src_image1: imImage, src_image2: imImage, dst_image: imImage, alpha: number) [in Lua 5] \endverbatim
* \verbatim im.ProcessBlendConstNew(image1: imImage, image2: imImage, alpha: number) -> new_image: imImage [in Lua 5] \endverbatim
* \ingroup arithm */
void imProcessBlendConst(const imImage* src_image1, const imImage* src_image2, imImage* dst_image, float alpha);
/** Blend two images using an alpha channel = [a * alpha + b * (1 - alpha)]. \n
* Can be done in place, images must match size and type. \n
* alpha_image must have the same data type except for complex images that must be float, and color_space must be IM_GRAY.
* integer alpha values must be:
\verbatim
0 - 255 IM_BYTE
0 - 65535 IM_USHORT
0 - 2147483647 IM_INT
\endverbatim
* that will be normalized to 0 - 1.
* \verbatim im.ProcessBlend(src_image1: imImage, src_image2: imImage, alpha_image: imImage, dst_image: imImage) [in Lua 5] \endverbatim
* \verbatim im.ProcessBlendNew(image1: imImage, image2: imImage, alpha_image: imImage) -> new_image: imImage [in Lua 5] \endverbatim
* \ingroup arithm */
void imProcessBlend(const imImage* src_image1, const imImage* src_image2, const imImage* alpha_image, imImage* dst_image);
/** Compose two images that have an alpha channel using the OVER operator. \n
* Can be done in place, images must match size and type. \n
* Integer alpha values must be:
\verbatim
0 - 255 IM_BYTE
0 - 65535 IM_USHORT
0 - 2147483647 IM_INT
\endverbatim
* that will be normalized to 0 - 1.
* \verbatim im.ProcessCompose(src_image1: imImage, src_image2: imImage, dst_image: imImage) [in Lua 5] \endverbatim
* \verbatim im.ProcessComposeNew(image1: imImage, image2: imImage) -> new_image: imImage [in Lua 5] \endverbatim
* \ingroup arithm */
void imProcessCompose(const imImage* src_image1, const imImage* src_image2, imImage* dst_image);
/** Split a complex image into two images with real and imaginary parts \n
* or magnitude and phase parts (polar). \n
* Source image must be IM_CFLOAT, destiny images must be IM_FLOAT.
*
* \verbatim im.ProcessSplitComplex(src_image: imImage, dst_image1: imImage, dst_image2: imImage, polar: boolean) [in Lua 5] \endverbatim
* \verbatim im.ProcessSplitComplexNew(image: imImage, polar: boolean) -> dst_image1: imImage, dst_image2: imImage [in Lua 5] \endverbatim
* \ingroup arithm */
void imProcessSplitComplex(const imImage* src_image, imImage* dst_image1, imImage* dst_image2, int polar);
/** Merges two images as the real and imaginary parts of a complex image, \n
* or as magnitude and phase parts (polar = 1). \n
* Source images must be IM_FLOAT, destiny image must be IM_CFLOAT.
*
* \verbatim im.ProcessMergeComplex(src_image1: imImage, src_image2: imImage, dst_image: imImage, polar: boolean) [in Lua 5] \endverbatim
* \verbatim im.ProcessMergeComplexNew(image1: imImage, image2: imImage, polar: boolean) -> new_image: imImage [in Lua 5] \endverbatim
* \ingroup arithm */
void imProcessMergeComplex(const imImage* src_image1, const imImage* src_image2, imImage* dst_image, int polar);
/** Calculates the mean of multiple images. \n
* Images must match size and type.
*
* \verbatim im.ProcessMultipleMean(src_image_list: table of imImage, dst_image: imImage) [in Lua 5] \endverbatim
* \verbatim im.ProcessMultipleMeanNew(src_image_list: table of imImage) -> new_image: imImage [in Lua 5] \endverbatim
* \ingroup arithm */
void imProcessMultipleMean(const imImage** src_image_list, int src_image_count, imImage* dst_image);
/** Calculates the standard deviation of multiple images. \n
* Images must match size and type. Use \ref imProcessMultipleMean to calculate the mean_image.
*
* \verbatim im.ProcessMultipleStdDev(src_image_list: table of imImage, mean_image: imImage, dst_image: imImage) [in Lua 5] \endverbatim
* \verbatim im.ProcessMultipleStdDevNew(src_image_list: table of imImage, mean_image: imImage) -> new_image: imImage [in Lua 5] \endverbatim
* \ingroup arithm */
void imProcessMultipleStdDev(const imImage** src_image_list, int src_image_count, const imImage *mean_image, imImage* dst_image);
/** Calculates the auto-covariance of an image with the mean of a set of images. \n
* Images must match size and type. Returns zero if the counter aborted. \n
* Destiny is IM_FLOAT.
*
* \verbatim im.ProcessAutoCovariance(src_image: imImage, mean_image: imImage, dst_image: imImage) -> counter: boolean [in Lua 5] \endverbatim
* \verbatim im.ProcessAutoCovarianceNew(src_image: imImage, mean_image: imImage) -> counter: boolean, new_image: imImage [in Lua 5] \endverbatim
* \ingroup arithm */
int imProcessAutoCovariance(const imImage* src_image, const imImage* mean_image, imImage* dst_image);
/** Multiplies the conjugate of one complex image with another complex image. \n
* Images must match size. Conj(img1) * img2 \n
* Can be done in-place.
*
* \verbatim im.ProcessMultiplyConj(src_image1: imImage, src_image2: imImage, dst_image: imImage) [in Lua 5] \endverbatim
* \verbatim im.ProcessMultiplyConjNew(src_image1: imImage, src_image2: imImage) -> new_image: imImage [in Lua 5] \endverbatim
* \ingroup arithm */
void imProcessMultiplyConj(const imImage* src_image1, const imImage* src_image2, imImage* dst_image);
/** \defgroup quantize Additional Image Quantization Operations
* \par
* Additionally operations to the \ref imConvertColorSpace function.
* \par
* See \ref im_process_pon.h
* \ingroup process */
/** Converts a RGB image to a MAP image using uniform quantization
* with an optional 8x8 ordered dither. The RGB image must have data type IM_BYTE.
*
* \verbatim im.ProcessQuantizeRGBUniform(src_image: imImage, dst_image: imImage, do_dither: boolean) [in Lua 5] \endverbatim
* \verbatim im.ProcessQuantizeRGBUniformNew(src_image: imImage, do_dither: boolean) -> new_image: imImage [in Lua 5] \endverbatim
* \ingroup quantize */
void imProcessQuantizeRGBUniform(const imImage* src_image, imImage* dst_image, int do_dither);
/** Quantizes a gray scale image in less that 256 grays using uniform quantization. \n
* Both images must be IM_BYTE/IM_GRAY. Can be done in place.
*
* \verbatim im.ProcessQuantizeGrayUniform(src_image: imImage, dst_image: imImage, grays: number) [in Lua 5] \endverbatim
* \verbatim im.ProcessQuantizeGrayUniformNew(src_image: imImage, grays: number) -> new_image: imImage [in Lua 5] \endverbatim
* \ingroup quantize */
void imProcessQuantizeGrayUniform(const imImage* src_image, imImage* dst_image, int grays);
/** \defgroup histo Histogram Based Operations
* \par
* See \ref im_process_pon.h
* \ingroup process */
/** Performs an histogram expansion based on a percentage of the number of pixels. \n
* Percentage defines an amount of pixels to include at the lowest level and at the highest level.
* If its is zero only empty counts of the histogram will be considered. \n
* Images must be IM_BYTE/(IM_RGB or IM_GRAY). Can be done in place. \n
* To expand the gammut without using the histogram, by just specifing the lowest and highest levels
* use the \ref IM_GAMUT_EXPAND tone gammut operation (\ref imProcessToneGamut).
*
* \verbatim im.ProcessExpandHistogram(src_image: imImage, dst_image: imImage, percent: number) [in Lua 5] \endverbatim
* \verbatim im.ProcessExpandHistogramNew(src_image: imImage, percent: number) -> new_image: imImage [in Lua 5] \endverbatim
* \ingroup histo */
void imProcessExpandHistogram(const imImage* src_image, imImage* dst_image, float percent);
/** Performs an histogram equalization. \n
* Images must be IM_BYTE/(IM_RGB or IM_GRAY). Can be done in place.
*
* \verbatim im.ProcessEqualizeHistogram(src_image: imImage, dst_image: imImage) [in Lua 5] \endverbatim
* \verbatim im.ProcessEqualizeHistogramNew(src_image: imImage) -> new_image: imImage [in Lua 5] \endverbatim
* \ingroup histo */
void imProcessEqualizeHistogram(const imImage* src_image, imImage* dst_image);
/** \defgroup colorproc Color Processing Operations
* \par
* Operations to change the color components configuration.
* \par
* See \ref im_process_pon.h
* \ingroup process */
/** Split a RGB image into luma and chroma. \n
* Chroma is calculated as R-Y,G-Y,B-Y. Source image must be IM_RGB/IM_BYTE. \n
* luma image is IM_GRAY/IM_BYTE and chroma is IM_RGB/IM_BYTE. \n
* Source and destiny must have the same size.
*
* \verbatim im.ProcessSplitYChroma(src_image: imImage, y_image: imImage, chroma_image: imImage) [in Lua 5] \endverbatim
* \verbatim im.ProcessSplitYChromaNew(src_image: imImage) -> y_image: imImage, chroma_image: imImage [in Lua 5] \endverbatim
* \ingroup colorproc */
void imProcessSplitYChroma(const imImage* src_image, imImage* y_image, imImage* chroma_image);
/** Split a RGB image into HSI planes. \n
* Source image must be IM_RGB/IM_BYTE,IM_FLOAT. Destiny images are all IM_GRAY/IM_FLOAT. \n
* Source images must normalized to 0-1 if type is IM_FLOAT (\ref imProcessToneGamut can be used). See \ref hsi for a definition of the color conversion.\n
* Source and destiny must have the same size.
*
* \verbatim im.ProcessSplitHSI(src_image: imImage, h_image: imImage, s_image: imImage, i_image: imImage) [in Lua 5] \endverbatim
* \verbatim im.ProcessSplitHSINew(src_image: imImage) -> h_image: imImage, s_image: imImage, i_image: imImage [in Lua 5] \endverbatim
* \ingroup colorproc */
void imProcessSplitHSI(const imImage* src_image, imImage* h_image, imImage* s_image, imImage* i_image);
/** Merge HSI planes into a RGB image. \n
* Source images must be IM_GRAY/IM_FLOAT. Destiny image can be IM_RGB/IM_BYTE,IM_FLOAT. \n
* Source and destiny must have the same size. See \ref hsi for a definition of the color conversion.
*
* \verbatim im.ProcessMergeHSI(h_image: imImage, s_image: imImage, i_image: imImage, dst_image: imImage) [in Lua 5] \endverbatim
* \verbatim im.ProcessMergeHSINew(h_image: imImage, s_image: imImage, i_image: imImage) -> dst_image: imImage [in Lua 5] \endverbatim
* \ingroup colorproc */
void imProcessMergeHSI(const imImage* h_image, const imImage* s_image, const imImage* i_image, imImage* dst_image);
/** Split a multicomponent image into separate components, including alpha.\n
* Destiny images must be IM_GRAY. Size and data types must be all the same.\n
* The number of destiny images must match the depth of the source image, including alpha.
*
* \verbatim im.ProcessSplitComponents(src_image: imImage, dst_image_list: table of imImage) [in Lua 5] \endverbatim
* \verbatim im.ProcessSplitComponentsNew(src_image: imImage) -> dst_image_list: table of imImage [in Lua 5] \endverbatim
* \ingroup colorproc */
void imProcessSplitComponents(const imImage* src_image, imImage** dst_image_list);
/** Merges separate components into a multicomponent image, including alpha.\n
* Source images must be IM_GRAY. Size and data types must be all the same.\n
* The number of source images must match the depth of the destiny image, including alpha.
*
* \verbatim im.ProcessMergeComponents(src_image_list: table of imImage, dst_image: imImage) [in Lua 5] \endverbatim
* \verbatim im.ProcessMergeComponentsNew(src_image_list: table of imImage) -> dst_image: imImage [in Lua 5] \endverbatim
* \ingroup colorproc */
void imProcessMergeComponents(const imImage** src_image_list, imImage* dst_image);
/** Normalize the color components by their sum. Example: c1 = c1/(c1+c2+c3). \n
* Destiny image must be IM_FLOAT.
*
* \verbatim im.ProcessNormalizeComponents(src_image: imImage, dst_image: imImage) [in Lua 5] \endverbatim
* \verbatim im.ProcessNormalizeComponentsNew(src_image: imImage) -> new_image: imImage [in Lua 5] \endverbatim
* \ingroup colorproc */
void imProcessNormalizeComponents(const imImage* src_image, imImage* dst_image);
/** Replaces the source color by the destiny color. \n
* The color will be type casted to the image data type. \n
* The colors must have the same number of components of the images. \n
* Supports all color spaces and all data types except IM_CFLOAT.
*
* \verbatim im.ProcessReplaceColor(src_image: imImage, dst_image: imImage, src_color: table of numbers, dst_color: table of numbers) [in Lua 5] \endverbatim
* \verbatim im.ProcessReplaceColorNew(src_image: imImage, src_color: table of numbers, dst_color: table of numbers) -> new_image: imImage [in Lua 5] \endverbatim
* \ingroup colorproc */
void imProcessReplaceColor(const imImage* src_image, imImage* dst_image, float* src_color, float* dst_color);
/** \defgroup logic Logical Arithmetic Operations
* \par
* Logical binary math operations for images.
* \par
* See \ref im_process_pon.h
* \ingroup process */
/** Logical Operations.
* \ingroup logic */
enum imLogicOp {
IM_BIT_AND, /**< and = a & b */
IM_BIT_OR, /**< or = a | b */
IM_BIT_XOR /**< xor = ~(a | b) */
};
/** Apply a logical operation.\n
* Images must have data type IM_BYTE, IM_USHORT or IM_INT. Can be done in place.
*
* \verbatim im.ProcessBitwiseOp(src_image1: imImage, src_image2: imImage, dst_image: imImage, op: number) [in Lua 5] \endverbatim
* \verbatim im.ProcessBitwiseOpNew(src_image1: imImage, src_image2: imImage, op: number) -> new_image: imImage [in Lua 5] \endverbatim
* \ingroup logic */
void imProcessBitwiseOp(const imImage* src_image1, const imImage* src_image2, imImage* dst_image, int op);
/** Apply a logical NOT operation.\n
* Images must have data type IM_BYTE, IM_USHORT or IM_INT. Can be done in place.
*
* \verbatim im.ProcessBitwiseNot(src_image: imImage, dst_image: imImage) [in Lua 5] \endverbatim
* \verbatim im.ProcessBitwiseNotNew(src_image: imImage) -> new_image: imImage [in Lua 5] \endverbatim
* \ingroup logic */
void imProcessBitwiseNot(const imImage* src_image, imImage* dst_image);
/** Apply a bit mask. \n
* The same as imProcessBitwiseOp but the second image is replaced by a fixed mask. \n
* Images must have data type IM_BYTE. It is valid only for AND, OR and XOR. Can be done in place.
*
* \verbatim im.ProcessBitMask(src_image: imImage, dst_image: imImage, mask: string, op: number) [in Lua 5] \endverbatim
* \verbatim im.ProcessBitMaskNew(src_image: imImage, mask: string, op: number) -> new_image: imImage [in Lua 5] \endverbatim
* In Lua, mask is a string with 0s and 1s, for example: "11001111".
* \ingroup logic */
void imProcessBitMask(const imImage* src_image, imImage* dst_image, unsigned char mask, int op);
/** Extract or Reset a bit plane. For ex: 000X0000 or XXX0XXXX (plane=3).\n
* Images must have data type IM_BYTE. Can be done in place.
*
* \verbatim im.ProcessBitPlane(src_image: imImage, dst_image: imImage, plane: number, do_reset: boolean) [in Lua 5] \endverbatim
* \verbatim im.ProcessBitPlaneNew(src_image: imImage, plane: number, do_reset: boolean) -> new_image: imImage [in Lua 5] \endverbatim
* \ingroup logic */
void imProcessBitPlane(const imImage* src_image, imImage* dst_image, int plane, int do_reset);
/** \defgroup render Synthetic Image Render
* \par
* Renders some 2D mathematical functions as images. All the functions operates in place
* and supports all data types except IM_CFLOAT.
* \par
* See \ref im_process_pon.h
* \ingroup process */
/** Render Funtion.
* \verbatim render_func(x: number, y: number, d: number, param: table of number) -> value: number [in Lua 5] \endverbatim
* \ingroup render */
typedef float (*imRenderFunc)(int x, int y, int d, float* param);
/** Render Conditional Funtion.
* \verbatim render_cond_func(x: number, y: number, d: number, param: table of number) -> value: number, cond: boolean [in Lua 5] \endverbatim
* \ingroup render */
typedef float (*imRenderCondFunc)(int x, int y, int d, int *cond, float* param);
/** Render a synthetic image using a render function. \n
* plus will make the render be added to the current image data,
* or else all data will be replaced. All the render functions use this or the conditional function. \n
* Returns zero if the counter aborted.
*
* \verbatim im.ProcessRenderOp(image: imImage, render_func: function, render_name: string, param: table of number, plus: boolean) -> counter: boolean [in Lua 5] \endverbatim
* \ingroup render */
int imProcessRenderOp(imImage* image, imRenderFunc render_func, char* render_name, float* param, int plus);
/** Render a synthetic image using a conditional render function. \n
* Data will be rendered only if the condional param is true. \n
* Returns zero if the counter aborted.
*
* \verbatim im.ProcessRenderCondOp(image: imImage, render_cond_func: function, render_name: string, param: table of number) -> counter: boolean [in Lua 5] \endverbatim
* \ingroup render */
int imProcessRenderCondOp(imImage* image, imRenderCondFunc render_cond_func, char* render_name, float* param);
/** Render speckle noise on existing data. Can be done in place.
*
* \verbatim im.ProcessRenderAddSpeckleNoise(src_image: imImage, dst_image: imImage, percent: number) -> counter: boolean [in Lua 5] \endverbatim
* \verbatim im.ProcessRenderAddSpeckleNoiseNew(src_image: imImage, percent: number) -> counter: boolean, new_image: imImage [in Lua 5] \endverbatim
* \ingroup render */
int imProcessRenderAddSpeckleNoise(const imImage* src_image, imImage* dst_image, float percent);
/** Render gaussian noise on existing data. Can be done in place.
*
* \verbatim im.ProcessRenderAddGaussianNoise(src_image: imImage, dst_image: imImage, mean: number, stddev: number) -> counter: boolean [in Lua 5] \endverbatim
* \verbatim im.ProcessRenderAddGaussianNoiseNew(src_image: imImage, mean: number, stddev: number) -> counter: boolean, new_image: imImage [in Lua 5] \endverbatim
* \ingroup render */
int imProcessRenderAddGaussianNoise(const imImage* src_image, imImage* dst_image, float mean, float stddev);
/** Render uniform noise on existing data. Can be done in place.
*
* \verbatim im.ProcessRenderAddUniformNoise(src_image: imImage, dst_image: imImage, mean: number, stddev: number) -> counter: boolean [in Lua 5] \endverbatim
* \verbatim im.ProcessRenderAddUniformNoiseNew(src_image: imImage, mean: number, stddev: number) -> counter: boolean, new_image: imImage [in Lua 5] \endverbatim
* \ingroup render */
int imProcessRenderAddUniformNoise(const imImage* src_image, imImage* dst_image, float mean, float stddev);
/** Render random noise.
*
* \verbatim im.ProcessRenderRandomNoise(image: imImage) -> counter: boolean [in Lua 5] \endverbatim
* \ingroup render */
int imProcessRenderRandomNoise(imImage* image);
/** Render a constant. The number of values must match the depth of the image.
*
* \verbatim im.ProcessRenderConstant(image: imImage, value: table of number) -> counter: boolean [in Lua 5] \endverbatim
* \ingroup render */
int imProcessRenderConstant(imImage* image, float* value);
/** Render a centered wheel.
*
* \verbatim im.ProcessRenderWheel(image: imImage, internal_radius: number, external_radius: number) -> counter: boolean [in Lua 5] \endverbatim
* \ingroup render */
int imProcessRenderWheel(imImage* image, int internal_radius, int external_radius);
/** Render a centered cone.
*
* \verbatim im.ProcessRenderCone(image: imImage, radius: number) -> counter: boolean [in Lua 5] \endverbatim
* \ingroup render */
int imProcessRenderCone(imImage* image, int radius);
/** Render a centered tent.
*
* \verbatim im.ProcessRenderTent(image: imImage, tent_width: number, tent_height: number) -> counter: boolean [in Lua 5] \endverbatim
* \ingroup render */
int imProcessRenderTent(imImage* image, int tent_width, int tent_height);
/** Render a ramp. Direction can be vertical (1) or horizontal (0).
*
* \verbatim im.ProcessRenderRamp(image: imImage, start: number, end: number, vert_dir: boolean) -> counter: boolean [in Lua 5] \endverbatim
* \ingroup render */
int imProcessRenderRamp(imImage* image, int start, int end, int vert_dir);
/** Render a centered box.
*
* \verbatim im.ProcessRenderBox(image: imImage, box_width: number, box_height: number) -> counter: boolean [in Lua 5] \endverbatim
* \ingroup render */
int imProcessRenderBox(imImage* image, int box_width, int box_height);
/** Render a centered sinc.
*
* \verbatim im.ProcessRenderSinc(image: imImage, x_period: number, y_period: number) -> counter: boolean [in Lua 5] \endverbatim
* \ingroup render */
int imProcessRenderSinc(imImage* image, float x_period, float y_period);
/** Render a centered gaussian.
*
* \verbatim im.ProcessRenderGaussian(image: imImage, stddev: number) -> counter: boolean [in Lua 5] \endverbatim
* \ingroup render */
int imProcessRenderGaussian(imImage* image, float stddev);
/** Render the laplacian of a centered gaussian.
*
* \verbatim im.ProcessRenderLapOfGaussian(image: imImage, stddev: number) -> counter: boolean [in Lua 5] \endverbatim
* \ingroup render */
int imProcessRenderLapOfGaussian(imImage* image, float stddev);
/** Render a centered cosine.
*
* \verbatim im.ProcessRenderCosine(image: imImage, x_period: number, y_period: number) -> counter: boolean [in Lua 5] \endverbatim
* \ingroup render */
int imProcessRenderCosine(imImage* image, float x_period, float y_period);
/** Render a centered grid.
*
* \verbatim im.ProcessRenderGrid(image: imImage, x_space: number, y_space: number) -> counter: boolean [in Lua 5] \endverbatim
* \ingroup render */
int imProcessRenderGrid(imImage* image, int x_space, int y_space);
/** Render a centered chessboard.
*
* \verbatim im.ProcessRenderChessboard(image: imImage, x_space: number, y_space: number) -> counter: boolean [in Lua 5] \endverbatim
* \ingroup render */
int imProcessRenderChessboard(imImage* image, int x_space, int y_space);
/** \defgroup tonegamut Tone Gamut Operations
* \par
* Operations that try to preserve the min-max interval in the output (the dynamic range).
* \par
* See \ref im_process_pon.h
* \ingroup process */
/** Tone Gamut Operations.
* \ingroup tonegamut */
enum imToneGamut {
IM_GAMUT_NORMALIZE, /**< normalize = (a-min) / (max-min) (destiny image must be IM_FLOAT) */
IM_GAMUT_POW, /**< pow = ((a-min) / (max-min))^gamma * (max-min) + min \n
param[0]=gamma */
IM_GAMUT_LOG, /**< log = log(K * (a-min) / (max-min) + 1))*(max-min)/log(K+1) + min \n
param[0]=K (K>0) */
IM_GAMUT_EXP, /**< exp = (exp(K * (a-min) / (max-min)) - 1))*(max-min)/(exp(K)-1) + min \n
param[0]=K */
IM_GAMUT_INVERT, /**< invert = max - (a-min) */
IM_GAMUT_ZEROSTART, /**< zerostart = a - min */
IM_GAMUT_SOLARIZE, /**< solarize = a < level ? a: (level * (max-min) - a * (level-min)) / (max-level) \n
param[0]=level percentage (0-100) relative to min-max \n
photography solarization effect. */
IM_GAMUT_SLICE, /**< slice = start < a || a > end ? min: binarize? max: a \n
param[0]=start, param[1]=end, param[2]=binarize */
IM_GAMUT_EXPAND, /**< expand = a < start ? min: a > end ? max : (a-start)*(max-min)/(end-start) + min \n
param[0]=start, param[1]=end */
IM_GAMUT_CROP, /**< crop = a < start ? start: a > end ? end : a \n
param[0]=start, param[1]=end */
IM_GAMUT_BRIGHTCONT /**< brightcont = a < min ? min: a > max ? max: a * tan(c_a) + b_s + (max-min)*(1 - tan(c_a))/2 \n
param[0]=bright_shift (-100%..+100%), param[1]=contrast_factor (-100%..+100%) \n
change brightness and contrast simultaneously. */
};
/** Apply a gamut operation with arguments. \n
* Supports all data types except IM_CFLOAT. \n
* The linear operation do a special convertion when min > 0 and max < 1, it forces min=0 and max=1. \n
* IM_BYTE images have min=0 and max=255 always. \n
* Can be done in place. When there is no extra params, can use NULL.
*
* \verbatim im.ProcessToneGamut(src_image: imImage, dst_image: imImage, op: number, param: table of number) [in Lua 5] \endverbatim
* \verbatim im.ProcessToneGamutNew(src_image: imImage, op: number, param: table of number) -> new_image: imImage [in Lua 5] \endverbatim
* \ingroup tonegamut */
void imProcessToneGamut(const imImage* src_image, imImage* dst_image, int op, float* param);
/** Converts from (0-1) to (0-255), crop out of bounds values. \n
* Source image must be IM_FLOAT, and destiny image must be IM_BYTE.
*
* \verbatim im.ProcessUnNormalize(src_image: imImage, dst_image: imImage) [in Lua 5] \endverbatim
* \verbatim im.ProcessUnNormalizeNew(src_image: imImage) -> new_image: imImage [in Lua 5] \endverbatim
* \ingroup tonegamut */
void imProcessUnNormalize(const imImage* src_image, imImage* dst_image);
/** Directly converts IM_USHORT, IM_INT and IM_FLOAT into IM_BYTE images. \n
* This can also be done using \ref imConvertDataType with IM_CAST_DIRECT.
*
* \verbatim im.ProcessDirectConv(src_image: imImage, dst_image: imImage) [in Lua 5] \endverbatim
* \verbatim im.ProcessDirectConvNew(src_image: imImage) -> new_image: imImage [in Lua 5] \endverbatim
* \ingroup tonegamut */
void imProcessDirectConv(const imImage* src_image, imImage* dst_image);
/** A negative effect. Uses \ref imProcessToneGamut with IM_GAMUT_INVERT for non MAP images. \n
* Supports all color spaces and all data types except IM_CFLOAT. \n
* Can be done in place.
*
* \verbatim im.ProcessNegative(src_image: imImage, dst_image: imImage) [in Lua 5] \endverbatim
* \verbatim im.ProcessNegativeNew(src_image: imImage) -> new_image: imImage [in Lua 5] \endverbatim
* \ingroup tonegamut */
void imProcessNegative(const imImage* src_image, imImage* dst_image);
/** \defgroup threshold Threshold Operations
* \par
* Operations that converts a usually IM_GRAY/IM_BYTE image into a IM_BINARY image using several threshold techniques.
* \par
* See \ref im_process_pon.h
* \ingroup process */
/** Apply a manual threshold. \n
* threshold = a <= level ? 0: value \n
* Normal value is 1 but another common value is 255. Can be done in place for IM_BYTE source. \n
* Supports all integer IM_GRAY images as source, and IM_BINARY as destiny.
*
* \verbatim im.ProcessThreshold(src_image: imImage, dst_image: imImage, level: number, value: number) [in Lua 5] \endverbatim
* \verbatim im.ProcessThresholdNew(src_image: imImage, level: number, value: number) -> new_image: imImage [in Lua 5] \endverbatim
* \ingroup threshold */
void imProcessThreshold(const imImage* src_image, imImage* dst_image, int level, int value);
/** Apply a threshold by the difference of two images. \n
* threshold = a1 <= a2 ? 0: 1 \n
* Can be done in place.
*
* \verbatim im.ProcessThresholdByDiff(src_image1: imImage, src_image2: imImage, dst_image: imImage) [in Lua 5] \endverbatim
* \verbatim im.ProcessThresholdByDiffNew(src_image1: imImage, src_image2: imImage) -> new_image: imImage [in Lua 5] \endverbatim
* \ingroup threshold */
void imProcessThresholdByDiff(const imImage* src_image1, const imImage* src_image2, imImage* dst_image);
/** Apply a threshold by the Hysteresis method. \n
* Hysteresis thersholding of edge pixels. Starting at pixels with a
* value greater than the HIGH threshold, trace a connected sequence
* of pixels that have a value greater than the LOW threhsold. \n
* Supports only IM_BYTE images.
* Note: could not find the original source code author name.
*
* \verbatim im.ProcessHysteresisThreshold(src_image: imImage, dst_image: imImage, low_thres: number, high_thres: number) [in Lua 5] \endverbatim
* \verbatim im.ProcessHysteresisThresholdNew(src_image: imImage, low_thres: number, high_thres: number) -> new_image: imImage [in Lua 5] \endverbatim
* \ingroup threshold */
void imProcessHysteresisThreshold(const imImage* src_image, imImage* dst_image, int low_thres, int high_thres);
/** Estimates hysteresis low and high threshold levels. \n
* Supports only IM_BYTE images.
* Usefull for \ref imProcessHysteresisThreshold.
*
* \verbatim im.ProcessHysteresisThresEstimate(image: imImage) -> low_level: number, high_level: number [in Lua 5] \endverbatim
* \ingroup threshold */
void imProcessHysteresisThresEstimate(const imImage* image, int *low_level, int *high_level);
/** Calculates the threshold level for manual threshold using an uniform error approach. \n
* Supports only IM_BYTE images.
* Extracted from XITE, Copyright 1991, Blab, UiO \n
* http://www.ifi.uio.no/~blab/Software/Xite/
\verbatim
Reference:
S. M. Dunn & D. Harwood & L. S. Davis:
"Local Estimation of the Uniform Error Threshold"
IEEE Trans. on PAMI, Vol PAMI-6, No 6, Nov 1984.
Comments: It only works well on images whith large objects.
Author: Olav Borgli, BLAB, ifi, UiO
Image processing lab, Department of Informatics, University of Oslo
\endverbatim
* Returns the used level.
*
* \verbatim im.ProcessUniformErrThreshold(src_image: imImage, dst_image: imImage) -> level: number [in Lua 5] \endverbatim
* \verbatim im.ProcessUniformErrThresholdNew(src_image: imImage) -> level: number, new_image: imImage [in Lua 5] \endverbatim
* \ingroup threshold */
int imProcessUniformErrThreshold(const imImage* src_image, imImage* dst_image);
/** Apply a dithering on each image channel by using a difusion error method. \n
* It can be applied on any IM_BYTE images. It will "threshold" each channel indivudually, so
* source and destiny must be of the same depth.
*
* \verbatim im.ProcessDifusionErrThreshold(src_image: imImage, dst_image: imImage, level: number) [in Lua 5] \endverbatim
* \verbatim im.ProcessDifusionErrThresholdNew(src_image: imImage, level: number) -> new_image: imImage [in Lua 5] \endverbatim
* \ingroup threshold */
void imProcessDifusionErrThreshold(const imImage* src_image, imImage* dst_image, int level);
/** Calculates the threshold level for manual threshold using a percentage of pixels
* that should stay bellow the threshold. \n
* Supports only IM_BYTE images.
* Returns the used level.
*
* \verbatim im.ProcessPercentThreshold(src_image: imImage, dst_image: imImage, percent: number) -> level: number [in Lua 5] \endverbatim
* \verbatim im.ProcessPercentThresholdNew(src_image: imImage, percent: number) -> level: number, new_image: imImage [in Lua 5] \endverbatim
* \ingroup threshold */
int imProcessPercentThreshold(const imImage* src_image, imImage* dst_image, float percent);
/** Calculates the threshold level for manual threshold using the Otsu approach. \n
* Returns the used level. \n
* Supports only IM_BYTE images.
* Original implementation by Flavio Szenberg.
*
* \verbatim im.ProcessOtsuThreshold(src_image: imImage, dst_image: imImage) -> level: number [in Lua 5] \endverbatim
* \verbatim im.ProcessOtsuThresholdNew(src_image: imImage) -> level: number, new_image: imImage [in Lua 5] \endverbatim
* \ingroup threshold */
int imProcessOtsuThreshold(const imImage* src_image, imImage* dst_image);
/** Calculates the threshold level for manual threshold using (max-min)/2. \n
* Returns the used level. \n
* Supports all integer IM_GRAY images as source, and IM_BINARY as destiny.
*
* \verbatim im.ProcessMinMaxThreshold(src_image: imImage, dst_image: imImage) -> level: number [in Lua 5] \endverbatim
* \verbatim im.ProcessMinMaxThresholdNew(src_image: imImage) -> level: number, new_image: imImage [in Lua 5] \endverbatim
* \ingroup threshold */
int imProcessMinMaxThreshold(const imImage* src_image, imImage* dst_image);
/** Estimates Local Max threshold level for IM_BYTE images.
*
* \verbatim im.ProcessLocalMaxThresEstimate(image: imImage) -> level: number [in Lua 5] \endverbatim
* \ingroup threshold */
void imProcessLocalMaxThresEstimate(const imImage* image, int *level);
/** Apply a manual threshold using an interval. \n
* threshold = start_level <= a <= end_level ? 1: 0 \n
* Normal value is 1 but another common value is 255. Can be done in place for IM_BYTE source. \n
* Supports all integer IM_GRAY images as source, and IM_BINARY as destiny.
*
* \verbatim im.ProcessSliceThreshold(src_image: imImage, dst_image: imImage, start_level: number, end_level: number) [in Lua 5] \endverbatim
* \verbatim im.ProcessSliceThresholdNew(src_image: imImage, start_level: number, end_level: number) -> new_image: imImage [in Lua 5] \endverbatim
* \ingroup threshold */
void imProcessSliceThreshold(const imImage* src_image, imImage* dst_image, int start_level, int end_level);
/** \defgroup effects Special Effects
* \par
* Operations to change image appearance.
* \par
* See \ref im_process_pon.h
* \ingroup process */
/** Generates a zoom in effect averaging colors inside a square region. \n
* Operates only on IM_BYTE images.
*
* \verbatim im.ProcessPixelate(src_image: imImage, dst_image: imImage, box_size: number) [in Lua 5] \endverbatim
* \verbatim im.ProcessPixelateNew(src_image: imImage, box_size: number) -> new_image: imImage [in Lua 5] \endverbatim
* \ingroup effects */
void imProcessPixelate(const imImage* src_image, imImage* dst_image, int box_size);
/** A simple Posterize effect. It reduces the number of colors in the image eliminating
* less significant bit planes. Can have 1 to 7 levels. See \ref imProcessBitMask. \n
* Images must have data type IM_BYTE.
*
* \verbatim im.ProcessPosterize(src_image: imImage, dst_image: imImage, level: number) [in Lua 5] \endverbatim
* \verbatim im.ProcessPosterizeNew(src_image: imImage, level: number) -> new_image: imImage [in Lua 5] \endverbatim
* \ingroup effects */
void imProcessPosterize(const imImage* src_image, imImage* dst_image, int level);
#if defined(__cplusplus)
}
#endif
#endif
|