1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
|
/** \file
* \brief Threshold Operations
*
* See Copyright Notice in im_lib.h
* $Id: im_threshold.cpp,v 1.1 2008/10/17 06:16:33 scuri Exp $
*/
#include <im.h>
#include <im_util.h>
#include "im_process_pon.h"
#include "im_process_ana.h"
#include <stdlib.h>
#include <stdio.h>
#include <memory.h>
#include <string.h>
#include <math.h>
void imProcessSliceThreshold(const imImage* src_image, imImage* dst_image, int start_level, int end_level)
{
float params[3];
params[0] = (float)start_level;
params[1] = (float)end_level;
params[2] = (float)1; /* binarize 0-255 */
imProcessToneGamut(src_image, dst_image, IM_GAMUT_SLICE, params);
imImageMakeBinary(dst_image); /* this compensates the returned values in IM_GAMUT_SLICE */
}
void imProcessThresholdByDiff(const imImage* image1, const imImage* image2, imImage* NewImage)
{
imbyte *src_map1 = (imbyte*)image1->data[0];
imbyte *src_map2 = (imbyte*)image2->data[0];
imbyte *dst_map = (imbyte*)NewImage->data[0];
int size = image1->count;
for (int i = 0; i < size; i++)
{
if (*src_map1++ <= *src_map2++)
*dst_map++ = 0;
else
*dst_map++ = 1;
}
}
template <class T>
static void doThreshold(T *src_map, imbyte *dst_map, int count, int level, int value)
{
for (int i = 0; i < count; i++)
{
if (*src_map++ <= level)
*dst_map++ = 0;
else
*dst_map++ = (imbyte)value;
}
}
void imProcessThreshold(const imImage* src_image, imImage* dst_image, int level, int value)
{
switch(src_image->data_type)
{
case IM_BYTE:
doThreshold((imbyte*)src_image->data[0], (imbyte*)dst_image->data[0],
src_image->count, level, value);
break;
case IM_USHORT:
doThreshold((imushort*)src_image->data[0], (imbyte*)dst_image->data[0],
src_image->count, level, value);
break;
case IM_INT:
doThreshold((int*)src_image->data[0], (imbyte*)dst_image->data[0],
src_image->count, level, value);
break;
}
}
static int compare_int(const void *elem1, const void *elem2)
{
int* v1 = (int*)elem1;
int* v2 = (int*)elem2;
if (*v1 < *v2)
return -1;
if (*v1 > *v2)
return 1;
return 0;
}
static int thresUniErr(unsigned char* band, int width, int height)
{
int x, y, i, bottom, top, ant2x2, maks1, maks2, maks4, t;
int xsize, ysize, offset1, offset2;
double a, b, c, phi;
int g[4], tab1[256], tab2[256], tab4[256];
memset(tab1, 0, sizeof(int)*256);
memset(tab2, 0, sizeof(int)*256);
memset(tab4, 0, sizeof(int)*256);
xsize = width;
ysize = height;
if (xsize%2 != 0)
xsize--;
if (ysize%2 != 0)
ysize--;
/* examine all 2x2 neighborhoods */
for (y=0; y<ysize; y+=2)
{
offset1 = y*width;
offset2 = (y+1)*width;
for (x=0; x<xsize; x+=2)
{
g[0] = band[offset1 + x];
g[1] = band[offset1 + x+1];
g[2] = band[offset2 + x];
g[3] = band[offset2 + x+1];
/* Sorting */
qsort(g, 4, sizeof(int), compare_int);
/* Accumulating */
tab1[g[0]] += 1;
tab1[g[1]] += 1;
tab1[g[2]] += 1;
tab1[g[3]] += 1;
tab2[g[0]] +=3;
tab2[g[1]] +=2;
tab2[g[2]] +=1;
tab4[g[0]] +=1;
}
}
/* Summing */
for (i=254; i>=0; i--)
{
tab1[i] += tab1[i+1];
tab2[i] += tab2[i+1];
tab4[i] += tab4[i+1];
}
/* Tables are ready, find threshold */
bottom = 0; top = 255;
ant2x2 = (xsize/2)*(ysize/2);
maks1 = tab1[0]; /* = ant2x2 * 4; */
maks2 = tab2[0]; /* = ant2x2 * 6; */
maks4 = tab4[0]; /* = ant2x2; */
/* binary search */
t = 0;
while (bottom != top-1)
{
t = (int) ((bottom+top)/2);
/* Calculate probabilities */
a = (double) tab1[t+1]/maks1;
b = (double) tab2[t+1]/maks2;
c = (double) tab4[t+1]/maks4;
phi = sqrt((b*b - c) / (a*a - b));
if (phi> 1)
bottom = t;
else
top = t;
}
return t;
}
int imProcessUniformErrThreshold(const imImage* image, imImage* NewImage)
{
int level = thresUniErr((imbyte*)image->data[0], image->width, image->height);
imProcessThreshold(image, NewImage, level, 1);
return level;
}
static void do_dither_error(imbyte* data1, imbyte* data2, int size, int t, int value)
{
int i, error;
float scale = (float)(t/(255.0-t));
error = 0; /* always in [-127,127] */
for (i = 0; i < size; i++)
{
if ((int)(*data1 + error) > t)
{
error -= (int)(((int)255 - (int)*data1++)*scale);
*data2++ = (imbyte)value;
}
else
{
error += (int)*data1++;
*data2++ = (imbyte)0;
}
}
}
void imProcessDifusionErrThreshold(const imImage* image, imImage* NewImage, int level)
{
int value = image->depth > 1? 255: 1;
int size = image->width * image->height;
for (int i = 0; i < image->depth; i++)
{
do_dither_error((imbyte*)image->data[i], (imbyte*)NewImage->data[i], size, level, value);
}
}
int imProcessPercentThreshold(const imImage* image, imImage* NewImage, float percent)
{
unsigned long histo[256], cut;
cut = (int)((image->width * image->height * percent)/100.);
imCalcHistogram((imbyte*)image->data[0], image->width * image->height, histo, 1);
int i;
for (i = 0; i < 256; i++)
{
if (histo[i] > cut)
break;
}
int level = (i==0? 0: i==256? 254: i-1);
imProcessThreshold(image, NewImage, level, 1);
return level;
}
static int MaximizeDiscriminantFunction(double * p)
{
double mi_255 = 0;
int k;
for (k=0; k<256; k++)
mi_255 += k*p[k];
int index = 0;
double max = 0;
double mi_k = 0;
double w_k = 0;
double value;
for (k=0; k<256; k++)
{
mi_k += k*p[k];
w_k += p[k];
value = ((w_k == 0) || (w_k == 1))? -1 : ((mi_255*w_k - mi_k)*(mi_255*w_k - mi_k))/(w_k*(1-w_k));
if (value >= max)
{
index = k;
max = value;
}
}
return index;
}
static unsigned char Otsu(const imImage *image)
{
unsigned long histo[256];
imCalcHistogram((imbyte*)image->data[0], image->count, histo, 0);
double totalPixels = image->count;
double p[256];
for (int i=0; i<256; i++)
p[i] = histo[i]/totalPixels;
return (unsigned char)MaximizeDiscriminantFunction(p);
}
int imProcessOtsuThreshold(const imImage* image, imImage* NewImage)
{
int level = Otsu(image);
imProcessThreshold(image, NewImage, level, 1);
return level;
}
int imProcessMinMaxThreshold(const imImage* image, imImage* NewImage)
{
imStats stats;
imCalcImageStatistics(image, &stats);
int level = (int)((stats.max - stats.min)/2.0f);
imProcessThreshold(image, NewImage, level, 1);
return level;
}
void imProcessHysteresisThresEstimate(const imImage* image, int *low_thres, int *high_thres)
{
unsigned long hist[256];
imCalcHistogram((imbyte*)image->data[0], image->count, hist, 0);
/* The high threshold should be > 80 or 90% of the pixels */
unsigned long cut = (int)(0.1*image->count);
int k = 255;
unsigned long count = hist[255];
while (count < cut)
{
k--;
count += hist[k];
}
*high_thres = k;
k=0;
while (hist[k]==0) k++;
*low_thres = (int)((*high_thres + k)/2.0) + k;
}
void imProcessHysteresisThreshold(const imImage* image, imImage* NewImage, int low_thres, int high_thres)
{
imbyte *src_map = (imbyte*)image->data[0];
imbyte *dst_map = (imbyte*)NewImage->data[0];
int i, j, size = image->count;
for (i = 0; i < size; i++)
{
if (*src_map > high_thres)
*dst_map++ = 1;
else if (*src_map > low_thres)
*dst_map++ = 2; // mark for future replace
else
*dst_map++ = 0;
src_map++;
}
// now loop multiple times until there is no "2"s or no one was changed
dst_map = (imbyte*)NewImage->data[0];
int changed = 1;
while (changed)
{
changed = 0;
for (j=1; j<image->height-1; j++)
{
for (i=1; i<image->width-1; i++)
{
int offset = i+j*image->width;
if (dst_map[offset] == 2)
{
// if there is an edge neighbor mark this as edge too
if (dst_map[offset+1] == 1 || dst_map[offset-1] == 1 ||
dst_map[offset+image->width] == 1 || dst_map[offset-image->width] == 1 ||
dst_map[offset+image->width-1] == 1 || dst_map[offset+image->width+1] == 1 ||
dst_map[offset-image->width-1] == 1 || dst_map[offset-image->width+1] == 1)
{
dst_map[offset] = 1;
changed = 1;
}
}
}
}
}
// Clear the remaining "2"s
dst_map = (imbyte*)NewImage->data[0];
for (i = 0; i < size; i++)
{
if (*dst_map == 2)
*dst_map = 0;
dst_map++;
}
}
void imProcessLocalMaxThresEstimate(const imImage* image, int *thres)
{
unsigned long hist[256];
imCalcHistogram((imbyte*)image->data[0], image->count, hist, 0);
int high_count = 0;
int index = 255;
while (high_count < 10 && index > 0)
{
if (hist[index] != 0)
high_count++;
index--;
}
*thres = index+1;
}
|