summaryrefslogtreecommitdiff
path: root/tests/eyal1.c
blob: 17ab6fe3865095c4afe5477d804efab1bd4e2bcd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
/* Simple POSIX threads program.
 *
 * Author: Eyal Lebedinsky eyal@eyal.emu.id.au
 * Written: Sep 1998.
 * Version Date: 12 Sep 1998
 *
 * Do we need to lock stdout or is it thread safe?
 *
 * Used:
 *	pthread_t
 *	pthread_attr_t
 *	pthread_create()
 *	pthread_join()
 *	pthread_mutex_t
 *	PTHREAD_MUTEX_INITIALIZER
 *	pthread_mutex_init() [not used now]
 *	pthread_mutex_destroy()
 *	pthread_mutex_lock()
 *	pthread_mutex_trylock()
 *	pthread_mutex_unlock()
 *
 * What this program does is establish a work queue (implemented using
 * four mutexes for each thread). It then schedules work (by storing
 * a number in 'todo') and releases the threads. When the work is done
 * the threads will block. The program then repeats the same thing once
 * more (just to test the logic) and when the work is done it destroyes
 * the threads.
 *
 * The 'work' we do is simply burning CPU cycles in a loop.
 * The 'todo' work queue is trivial - each threads pops one element
 * off it by incrementing it, the poped number is the 'work' to do.
 * When 'todo' reaches the limit (nwork) the queue is considered
 * empty.
 *
 * The number displayed at the end is the amount of work each thread
 * did, so we can see if the load was properly distributed.
 *
 * The program was written to test a threading setup (not seen here)
 * rather than to demonstrate correct usage of the pthread facilities.
 *
 * Note how each thread is given access to a thread control structure
 * (TC) which is used for communicating to/from the main program (e.g.
 * the threads knows its 'id' and also filles in the 'work' done).
*/

#include "test.h"

#include <stdlib.h>
#include <math.h>

struct thread_control {
  int		id;
  pthread_t	thread;		/* thread id */
  pthread_mutex_t	mutex_start;
  pthread_mutex_t	mutex_started;
  pthread_mutex_t	mutex_end;
  pthread_mutex_t	mutex_ended;
  long		work;		/* work done */
  int		stat;		/* pthread_init status */
};

typedef struct thread_control	TC;

static TC		*tcs = NULL;
static int		nthreads = 10;
static int		nwork = 100;
static int		quiet = 0;

static int		todo = -1;

static pthread_mutex_t	mutex_todo = PTHREAD_MUTEX_INITIALIZER;
static pthread_mutex_t	mutex_stdout = PTHREAD_MUTEX_INITIALIZER;


static void
die (int ret)
{
  if (NULL != tcs)
    {
      free (tcs);
      tcs = NULL;
    }

  if (ret)
    exit (ret);
}


static double
waste_time (int n)
{
  int		i;
  double		f;

  f = rand ();

  for (i = n*100; i > 0; --i)
    {
      f = 2 * f * f / (f * f);
    }
  return f;
}

static int
do_work_unit (int who, int n)
{
  int		i;
  static int	nchars = 0;
  double	f = 0.0;

  if (quiet)
    i = 0;
  else {
    /*
     * get lock on stdout
     */
    assert(pthread_mutex_lock (&mutex_stdout) == 0);

    /*
     * do our job
     */
    i = printf ("%c", "0123456789abcdefghijklmnopqrstuvwxyz"[who]);

    if (!(++nchars % 50))
      printf ("\n");

    fflush (stdout);

    /*
     * release lock on stdout
     */
    assert(pthread_mutex_unlock (&mutex_stdout) == 0);
  }

  n = rand () % 10000;	/* ignore incoming 'n' */
  f = waste_time (n);

  /* This prevents the statement above from being optimised out */
  if (f > 0.0)
    return(n);

  return (n);
}

static int
print_server (void *ptr)
{
  int		mywork;
  int		n;
  TC		*tc = (TC *)ptr;

  assert(pthread_mutex_lock (&tc->mutex_started) == 0);

  for (;;)
    {
      assert(pthread_mutex_lock (&tc->mutex_start) == 0);
      assert(pthread_mutex_unlock (&tc->mutex_start) == 0);
      assert(pthread_mutex_lock (&tc->mutex_ended) == 0);
      assert(pthread_mutex_unlock (&tc->mutex_started) == 0);

      for (;;)
	{

	  /*
	   * get lock on todo list
	   */
	  assert(pthread_mutex_lock (&mutex_todo) == 0);

	  mywork = todo;
	  if (todo >= 0)
	    {
	      ++todo;
	      if (todo >= nwork)
		todo = -1;
	    }
	  assert(pthread_mutex_unlock (&mutex_todo) == 0);

	  if (mywork < 0)
	    break;

	  assert((n = do_work_unit (tc->id, mywork)) >= 0);
	  tc->work += n;
	}

      assert(pthread_mutex_lock (&tc->mutex_end) == 0);
      assert(pthread_mutex_unlock (&tc->mutex_end) == 0);
      assert(pthread_mutex_lock (&tc->mutex_started) == 0);
      assert(pthread_mutex_unlock (&tc->mutex_ended) == 0);

      if (-2 == mywork)
	break;
    }

  assert(pthread_mutex_unlock (&tc->mutex_started) == 0);

  return (0);
}

static void
dosync (void)
{
  int		i;

  for (i = 0; i < nthreads; ++i)
    {
      assert(pthread_mutex_lock (&tcs[i].mutex_end) == 0);
      assert(pthread_mutex_unlock (&tcs[i].mutex_start) == 0);
      assert(pthread_mutex_lock (&tcs[i].mutex_started) == 0);
      assert(pthread_mutex_unlock (&tcs[i].mutex_started) == 0);
    }

  /*
   * Now threads do their work
   */
  for (i = 0; i < nthreads; ++i)
    {
      assert(pthread_mutex_lock (&tcs[i].mutex_start) == 0);
      assert(pthread_mutex_unlock (&tcs[i].mutex_end) == 0);
      assert(pthread_mutex_lock (&tcs[i].mutex_ended) == 0);
      assert(pthread_mutex_unlock (&tcs[i].mutex_ended) == 0);
    }
}

static void
dowork (void)
{
  todo = 0;
  dosync();

  todo = 0;
  dosync();
}

int
main (int argc, char *argv[])
{
  int		i;

  assert(NULL != (tcs = (TC *) calloc (nthreads, sizeof (*tcs))));

  /* 
   * Launch threads
   */
  for (i = 0; i < nthreads; ++i)
    {
      tcs[i].id = i;

      assert(pthread_mutex_init (&tcs[i].mutex_start, NULL) == 0);
      assert(pthread_mutex_init (&tcs[i].mutex_started, NULL) == 0);
      assert(pthread_mutex_init (&tcs[i].mutex_end, NULL) == 0);
      assert(pthread_mutex_init (&tcs[i].mutex_ended, NULL) == 0);

      tcs[i].work = 0;  

      assert(pthread_mutex_lock (&tcs[i].mutex_start) == 0);
      assert((tcs[i].stat = 
	      pthread_create (&tcs[i].thread,
			      NULL,
                  (void *(*)(void *))&print_server,
                (void *) &tcs[i])
	      ) == 0);

      /* 
       * Wait for thread initialisation
       */
      {
	int trylock = 0;

	while (trylock == 0)
	  {
	    trylock = pthread_mutex_trylock(&tcs[i].mutex_started);
	    assert(trylock == 0 || trylock == EBUSY);

	    if (trylock == 0)
	      {
		assert(pthread_mutex_unlock (&tcs[i].mutex_started) == 0);
	      }
	  }
      }
    }

  dowork ();

  /*
   * Terminate threads
   */
  todo = -2;	/* please terminate */
  dosync();

  for (i = 0; i < nthreads; ++i)
    {
      if (0 == tcs[i].stat)
	assert(pthread_join (tcs[i].thread, NULL) == 0);
    }

  /* 
   * destroy locks
   */
  assert(pthread_mutex_destroy (&mutex_stdout) == 0);
  assert(pthread_mutex_destroy (&mutex_todo) == 0);

  /*
   * Cleanup
   */
  printf ("\n");

  /*
   * Show results
   */
  for (i = 0; i < nthreads; ++i)
    {
      printf ("%2d ", i);
      if (0 == tcs[i].stat)
	printf ("%10ld\n", tcs[i].work);
      else
	printf ("failed %d\n", tcs[i].stat);

      assert(pthread_mutex_unlock(&tcs[i].mutex_start) == 0);

      assert(pthread_mutex_destroy (&tcs[i].mutex_start) == 0);
      assert(pthread_mutex_destroy (&tcs[i].mutex_started) == 0);
      assert(pthread_mutex_destroy (&tcs[i].mutex_end) == 0);
      assert(pthread_mutex_destroy (&tcs[i].mutex_ended) == 0);
    }

  die (0);

  return (0);
}